JP2638052B2 - High temperature electrical insulating filler and method for producing the same - Google Patents

High temperature electrical insulating filler and method for producing the same

Info

Publication number
JP2638052B2
JP2638052B2 JP8302988A JP8302988A JP2638052B2 JP 2638052 B2 JP2638052 B2 JP 2638052B2 JP 8302988 A JP8302988 A JP 8302988A JP 8302988 A JP8302988 A JP 8302988A JP 2638052 B2 JP2638052 B2 JP 2638052B2
Authority
JP
Japan
Prior art keywords
magnesia
mgo
insulating filler
powder
insulation resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8302988A
Other languages
Japanese (ja)
Other versions
JPH02307821A (en
Inventor
房夫 河野
国彦 丹生
弘 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINNIPPON KAGAKU KOGYO KK
Original Assignee
SHINNIPPON KAGAKU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINNIPPON KAGAKU KOGYO KK filed Critical SHINNIPPON KAGAKU KOGYO KK
Priority to JP8302988A priority Critical patent/JP2638052B2/en
Publication of JPH02307821A publication Critical patent/JPH02307821A/en
Application granted granted Critical
Publication of JP2638052B2 publication Critical patent/JP2638052B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は焼結マグネシア(MgO)を主成分とし、高温
における電気絶縁抵抗の優れた電気絶縁充填材およびそ
の製造方法に関するもので、特にシースヒーターの絶縁
充填材として適するものである。
Description: TECHNICAL FIELD The present invention relates to an electric insulating filler containing sintered magnesia (MgO) as a main component and having excellent electric insulation resistance at a high temperature, and a method for producing the same. It is suitable as an insulating filler for heaters.

[従来の技術及び問題点] MgOは高温下での電気絶縁抵抗が非常に高いという特
徴があり、電気絶縁材料、特にシースヒーターの絶縁充
填材として使用されている。
[Prior art and problems] MgO is characterized by having a very high electric insulation resistance at high temperatures, and is used as an electric insulating material, particularly as an insulating filler of a sheath heater.

従来使用されている電融マグネシアはその製造方法上
大きな塊状で得られるために、細いシースヒーターの絶
縁充填材として使用するにはどうしても破砕して整粒せ
ざるを得ず、その破砕粒は角張った形状をしているの
で、充填するのが困難であるばかりでなく、充填後の成
形加工時にヒーターを傷付け、寿命低下の原因となって
いた。
Since conventionally used fused magnesia is obtained in a large lump due to its manufacturing method, it must be crushed and sized to be used as an insulating filler for a thin sheath heater, and the crushed grains are square. In addition, it is difficult to fill, and the heater is damaged at the time of molding after filling, resulting in shortening of the life.

また焼結マグネシアは製造し易く、近年注目されては
いるが特開昭62−90807号や特開昭62−268002号に記載
された焼結マグネシアでも高絶縁抵抗の要望を満足する
ものではなかった。
Sintered magnesia is easy to manufacture and has attracted attention in recent years, but the sintered magnesia described in JP-A-62-90807 and JP-A-62-268002 does not satisfy the demand for high insulation resistance. Was.

また、本発明者らが特開昭62−90807号で記載した球
状焼結マグネシアでは細いヒーターを作るのには適する
がなお絶縁抵抗が低かった。
The spherical sintered magnesia described in Japanese Patent Application Laid-Open No. 62-90807 by the present inventors was suitable for producing a thin heater, but still had low insulation resistance.

[発明が解決しようとする課題] 本発明は、高温に置ける電気絶縁抵抗が高く、かつ粒
形が球状で、シースヒーターの絶縁材料として用いた場
合、そのヒーターの成形加工時にヒーターを傷つけない
ような球状の高温用電気絶縁充填材とその製造方法を提
供しようとするものである。
[Problems to be Solved by the Invention] The present invention has a high electric insulation resistance at a high temperature, a spherical particle shape, and when used as an insulating material of a sheath heater, does not damage the heater at the time of forming the heater. An object of the present invention is to provide a spherical high-temperature electric insulating filler for high temperature and a method for producing the same.

[課題を解決するための手段] 焼結マグネシアはMgOにCaOが固溶していることが知ら
れており、このCaOの固溶が原因でMgOの格子の歪みが生
じ、MgOの格子定数が大きくなる。
[Means for Solving the Problems] It is known that sintered magnesia has a solid solution of CaO in MgO, and the solid solution of CaO causes distortion of the lattice of MgO, and the lattice constant of MgO is reduced. growing.

焼結マグネシアの絶縁抵抗が小さいのはCaOの固溶と
それが原因で起るMgOの格子歪が原因であると推察され
ている。
It is presumed that the low insulation resistance of sintered magnesia is caused by the solid solution of CaO and the lattice distortion of MgO caused by the solid solution.

本発明は、熱処理によって、固溶している上記CaOを
粒界に析出させ、このCaOを酸性溶液で溶解除去するこ
とによって、高温における電気絶縁抵抗が大きい電気絶
縁充填材を提供しようとするものである。
The present invention intends to provide an electric insulating filler having a high electric insulation resistance at high temperature by precipitating the solid solution CaO at a grain boundary by heat treatment and dissolving and removing the CaO with an acidic solution. It is.

[課題を解決するための手段] 上記課題を解決するための電気絶縁充填材はマグネシ
ア焼結粉体で a)化学組成が i)MgO≧93wt% ii)0.3≦CaO≦1.5wt% iii)SiO2≦4wt% iv)Fe2O3+Al2O3≦0.4wt% v)B2O3≦0.1wt% vi)Igloss≦0.3wt% であり、 b)MgOの格子定数が4.2130A以下 c)MgOの格子歪みが7.0×10-4以下 である電気絶縁充填材である。
[Means for Solving the Problems] The electrically insulating filler for solving the above problems is a magnesia sintered powder, a) a chemical composition i) MgO ≧ 93 wt% ii) 0.3 ≦ CaO ≦ 1.5 wt% iii) SiO 2 ≦ 4wt% iv) Fe 2 O 3 + Al 2 O 3 ≦ 0.4wt% v) B is a 2 O 3 ≦ 0.1wt% vi) Igloss ≦ 0.3wt%, b) the lattice constant of the MgO is 4.2130A less c) It is an electrically insulating filler with a lattice strain of MgO of 7.0 × 10 -4 or less.

マグネシア焼結粉体の化学組成が上記範囲内にあると
きに電気絶縁抵抗が十分に高く、化学組成が上記範囲を
外れると絶縁抵抗が低くなるので高温用充填材としての
実用性がなくなる。
When the chemical composition of the magnesia sintered powder is within the above range, the electric insulation resistance is sufficiently high, and when the chemical composition is out of the above range, the insulation resistance becomes low, so that the practical use as a high-temperature filler is lost.

このような電気絶縁充填材の製造方法はマグネシア粉
体を最高温度1000℃以上で熱処理したのち、酸性溶液と
接触させ、その後充分に水洗する。
In a method for producing such an electrically insulating filler, magnesia powder is heat-treated at a maximum temperature of 1000 ° C. or higher, then brought into contact with an acidic solution, and then sufficiently washed with water.

本発明の電気絶縁充填材の製造にあたり、ロータリキ
ルン等で焼結された所定組成の球状をした粉体のうち42
0μmの篩を通過し、25μmの篩を通過しない部分を採
取するのが適当である。また、粉体にはZnO2等の助剤な
どが他の成分が影響のない範囲で含まれていてもよい。
In the production of the electric insulating filler of the present invention, among the spherical powder having a predetermined composition sintered in a rotary kiln or the like, 42
It is appropriate to collect a portion that passes through a 0 μm sieve and does not pass through a 25 μm sieve. Further, the powder may contain an auxiliary agent such as ZnO 2 or the like in a range where other components do not affect the powder.

その製造方法は好ましくは粒径420〜25μmのものが9
5wt%以上になるように調整された粉体をロータリキル
ン等の加熱炉で1000℃以上で熱処理したのち、酸性溶液
と接触させ、その後十分に水洗し、濾過、乾燥するもの
である。
The production method is preferably 9 to 25 μm in particle size.
After the powder adjusted to 5 wt% or more is heat-treated at 1000 ° C. or more in a heating furnace such as a rotary kiln, the powder is brought into contact with an acidic solution, then sufficiently washed with water, filtered and dried.

本発明のマグネシア粉体は800℃に24Hr保持した後の
絶縁抵抗が1.8×109Ω・cm以上のものが好ましい。さら
に好ましくは2.5×109Ω・cm以上である。
The magnesia powder of the present invention preferably has an insulation resistance of 1.8 × 10 9 Ω · cm or more after being kept at 800 ° C. for 24 hours. More preferably, it is 2.5 × 10 9 Ω · cm or more.

さらに充填物のフロータイムはシースヒーター粉体を
充填する際、製造上、特に作業効率上重要な要素である
ことはよく知られており、フロータイムが200sec/100gr
以下、特に180sec/100gr以下であることは産業上意義の
あることである。
Furthermore, it is well known that the flow time of the filler is an important factor in manufacturing, especially work efficiency when filling sheath heater powder, and the flow time is 200 sec / 100 gr.
Below, in particular, it is industrially significant to be 180 sec / 100gr or less.

また、本発明において、充填物の充填密度は2.10〜2.
35(g/cc)が好ましく、2.10(g/cc)以下では、絶縁抵
抗の寿命低下が大きく、2.35(g/cc)を越えると初期か
ら絶縁抵抗が低く、いずれも、高温用として実用に供せ
なくなる。
In the present invention, the packing density of the filler is 2.10 to 2.
It is preferably 35 (g / cc). If it is 2.10 (g / cc) or less, the life of the insulation resistance is greatly reduced. If it exceeds 2.35 (g / cc), the insulation resistance is low from the beginning. Will not be able to serve.

また本発明においてMgOの格子定数が4.2130A以下、Mg
Oの格子歪みが7×10-4以下であることが必要であり、
その範囲を外れるといずれも絶縁抵抗が悪化し、高温用
として実用に供しなくなる。さらに好ましくはMgOの格
子歪みが5×10-4以下である。
In the present invention, the lattice constant of MgO is 4.2130A or less, Mg
The lattice distortion of O needs to be 7 × 10 −4 or less,
Outside of this range, the insulation resistance deteriorates in any case, making it unsuitable for high temperature use. More preferably, the lattice distortion of MgO is 5 × 10 −4 or less.

本発明の製造方法において最高温度が1000℃未満では
熱処理の効果が小さく、1000℃以上、好ましくは1200〜
1400℃が望ましい。
In the production method of the present invention, the maximum temperature is less than 1000 ℃, the effect of heat treatment is small, 1000 ℃ or more, preferably 1200 ~
1400 ° C is desirable.

次に酸性溶液と1分間以上接触させ、この溶液と分離
後、十分に水洗をしたのち、濾過、乾燥する。
Next, it is brought into contact with an acidic solution for 1 minute or more, separated from the solution, washed sufficiently with water, filtered and dried.

すなわち、その表面に不純物の少ないマグネシア焼結
粉体は前述の流動性を損なうことなく、高温での絶縁抵
抗が優れている。
That is, the magnesia sintered powder having few impurities on its surface has excellent insulation resistance at high temperatures without impairing the fluidity described above.

[実施例] 以下、本発明を実施例および比較例によって、具体的
に説明する。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.

本発明における実施例の化学組成のうちMgO、CaO、Si
O2、Fe2O3、Al2O3、B2O3はマグネシア粉末を塩酸水溶液
で熱処理したのち、またZrO2はNa2CO3、Na2B2O7・10H2O
を用い、アルカリ溶融したのち、硝酸水溶液に熱溶解し
た後、日本ジャーレルアッシュ製の575−II製のICAPを
用いて測定した。
MgO, CaO, Si among the chemical compositions of the examples of the present invention
O 2, Fe 2 O 3, Al 2 O 3, B 2 O 3 is then heat treated magnesia powder with aqueous hydrochloric acid, and ZrO 2 is Na 2 CO 3, Na 2 B 2 O 7 · 10H 2 O
After alkali-melting, it was dissolved in a nitric acid aqueous solution by heating, and then measured using ICAP manufactured by Nippon Jarrell Ash 575-II.

Iglossは試料10gを精秤し、白金ルツボに入れ、それ
を電気炉に入れ1000℃×1hr後の重量減少を重量減少を
重量%で示したものである。
Igloss is a method in which 10 g of a sample is precisely weighed, placed in a platinum crucible, placed in an electric furnace, and the weight loss after 1000 ° C. × 1 hour is represented by the weight percentage of the weight loss.

本発明の実施例のマグネシアにおける高温絶縁抵抗は
内径10mmの金属パイプと外径5mmの中心棒の間隙に絶縁
充填材を約25mmの長さに1.5T/cm2の圧力で圧縮充填した
ものに、白金線を取り付けて電気炉内に置き、各温度で
の絶縁抵抗を測定した(フェタリー法)。なお、用いた
金属パイプならびに中心棒の材質はsus.304である。
The high-temperature insulation resistance in magnesia of the embodiment of the present invention is obtained by compressing and filling an insulating filler in a gap between a metal pipe having an inner diameter of 10 mm and a center rod having an outer diameter of 5 mm at a pressure of 1.5 T / cm 2 to a length of about 25 mm. Then, a platinum wire was attached and placed in an electric furnace, and the insulation resistance at each temperature was measured (Fettery method). The material of the metal pipe and the center rod used is sus.304.

格子歪みの測定はX線回析(理学電機製IR−1A型)に
より40kV、20mA、1/4deg/mm、time constant 5secの条
件でMgOの(1.1.1)、(2.0.0)、(2.2.0)、(3.1.
1)、(2.2.2)、(4.4.0)(4.2.0)の各ピークの積分
幅を測定しkα、kαの分離補正(文献1)、スタ
ンダード補正(文献1)を行い真の半価幅を求める。得
られた半価幅からHallプロット(文献2)を行い、最小
二乗法による直線回帰から傾きを求め、傾きの1/2の値
をもって格子歪みとした。
The lattice strain was measured by X-ray diffraction (IR-1A, manufactured by Rigaku Denki) under the conditions of 40 kV, 20 mA, 1/4 deg / mm, and time constant of 5 sec. (1.1.1), (2.0.0), 2.2.0), (3.1.
1), (2.2.2), Shin performed (4.4.0) (ka 1 measures the integration width of each peak 4.2.0), ka 2 separate correction (Document 1), Standard Correction (Document 1) Find the half-value width of A Hall plot (Reference 2) was performed from the obtained half width, a slope was obtained from linear regression by the least squares method, and a value of 1/2 of the slope was defined as lattice distortion.

なお、標準試料はMgO純度99.9%のマグネシア単結晶
を粉砕したのち、44〜20μmのものを1300℃で5時間熱
処理したものを用いた。測定試料も粒径44〜20μmの範
囲に粒度調整したものを用いた。
As a standard sample, a magnesia single crystal having an MgO purity of 99.9% was pulverized, and a material having a size of 44 to 20 μm which was heat-treated at 1300 ° C. for 5 hours was used. The measurement sample used also had a particle size adjusted to a range of 44 to 20 μm.

(上記文献1)「The measurement of particle size
by X−ray method」by F.W.Jones.,Prpc.Roy.Soc.,A16
6,16(1938)。
(1) "The measurement of particle size"
by X-ray method '' by FWJones., Prpc.Roy.Soc., A16
6,16 (1938).

(上記文献2)Hall,W.H.,Proc.Phys.Soc.,A62.,741
(1949)。
(Reference 2) Hall, WH, Proc. Phys. Soc., A62., 741
(1949).

また、格子定数の測定はケイ素を内部標準物質として
Braggの式から求めた。MgOの(3.1.1)、(2.2.0)、
(3.1.1)、(2.2.2)、(4.2.0)のピークから半価幅
中点法から回折角を読み、kα、kαの分離補正を
行い、最小自乗法で格子定数を求めた。
In addition, measurement of lattice constant was performed using silicon as an internal standard.
It was obtained from Bragg's equation. MgO (3.1.1), (2.2.0),
From the peaks of (3.1.1), (2.2.2), and (4.2.0), read the diffraction angle from the half-value width midpoint method, correct the separation of kα 1 and kα 2 , and calculate the lattice constant by the least square method. I asked.

また、上記絶縁充填材をつめた金属パイプ(セル)を
800℃の電気炉に入れ、絶縁抵抗の経時変化を測定し
た。
In addition, metal pipes (cells) filled with the insulating filler
It was placed in an electric furnace at 800 ° C., and the change with time in the insulation resistance was measured.

第1図および第2図は800℃で24時間焼成した後、あ
るいは72時間焼成した後の抵抗値を示した。
FIG. 1 and FIG. 2 show the resistance values after firing at 800 ° C. for 24 hours or after firing for 72 hours.

また、粉末のタップ密度、フロータイムはASTM stand
ards D 2755に規定されている方法によりアメリカのBoe
h Tool and Die Company製の装置を用いて測定した。
The tap density and flow time of the powder are ASTM stand
American Boe by the method specified in ards D 2755
h Measured using a tool and tool from Die Company.

粒度分布はJIS標準篩を用いて篩分けて求めた。 The particle size distribution was determined by sieving using a JIS standard sieve.

なお実施例に示す各成分の量(%)は重量%である。 The amounts (%) of the components shown in the examples are% by weight.

実施例1及び比較例1 ロータリーキルンで2000℃の温度で焼成した1mm以下
の高純度マグネシア粉をステンレス製の金網を用いて、
420μmから25μmで篩い分けた。これをロータリキル
ンを用いて最高温度1200℃で焼成した。
Example 1 and Comparative Example 1 A high-purity magnesia powder of 1 mm or less fired at a temperature of 2000 ° C. in a rotary kiln using a stainless steel wire mesh,
Screened from 420 μm to 25 μm. This was fired at a maximum temperature of 1200 ° C. using a rotary kiln.

上記のマグネシア粉体2.5kgを0.2N塩酸溶液10に入
れて5分間撹拌し、上澄液を捨てて、水10を加えて撹
拌水洗を2回行い真空濾過した。この濾滓にさらに水5
をふりかけて水洗し、120℃の熱風中で乾燥した。
(以下この処理方法を酸水洗と呼ぶ) このマグネシア粉体の化学組成、粒度分布、フロータ
イムおよび初期の絶縁抵抗、さらに800℃における抵抗
の経時変化を第1表および第1図に示した。
2.5 kg of the above magnesia powder was placed in a 0.2N hydrochloric acid solution 10 and stirred for 5 minutes. The supernatant was discarded, water 10 was added, and the mixture was washed twice with stirring and vacuum filtered. Add 5 more water to the cake.
Was washed with water and dried in hot air at 120 ° C.
(Hereinafter, this treatment method is referred to as pickling with water.) The chemical composition, particle size distribution, flow time and initial insulation resistance of this magnesia powder, and the change with time of resistance at 800 ° C. are shown in Table 1 and FIG.

また、比較例1として原料に用いたマグネシア粉の上
記測定値も示した。
Further, as Comparative Example 1, the above measured values of magnesia powder used as a raw material are also shown.

実施例2 実施例1に用いた420〜25μmに篩分けられたマグネ
シア粉体を箱型電気炉に入れ、800〜1400℃の各温度で
焼成し、以下室温まで炉内で放置し、これを酸水洗し
た。このマグネシア粉体の800℃における抵抗の経時変
化を調べ、その値の24時間後および72時間後を前記熱処
理温度に対してプロットしたのが第2図である。
Example 2 The magnesia powder sieved to 420 to 25 μm used in Example 1 was put into a box-type electric furnace, fired at each temperature of 800 to 1400 ° C., and then left in the furnace to room temperature. It was washed with acid water. FIG. 2 shows the change over time in the resistance of the magnesia powder at 800 ° C., and plots the values 24 hours and 72 hours after the change with respect to the heat treatment temperature.

比較例で示す市販電マグ(高温用)に比べて、2倍以
上の高い抵抗値を示すことが示されている。
It is shown that the resistance value is twice or more higher than that of a commercial electromagnet (for high temperature) shown in Comparative Example.

実施例3 実施例1に用いた試料から粒度分布を調整して、充填
密度の異なる1から5の試料を実施例2と同じ方法で作
製し、800℃における24時間後と240時間後の絶縁抵抗を
調べ、その結果を第2表と第3図に示した。
Example 3 The particle size distribution was adjusted from the sample used in Example 1 to prepare 1 to 5 samples having different packing densities by the same method as in Example 2, and the insulation was performed at 800 ° C. after 24 hours and 240 hours. The resistance was examined, and the results are shown in Table 2 and FIG.

[発明の効果] 以上説明したように、本発明の電気絶縁充填材は800
℃以上の高温における絶縁抵抗が高く、かつ流動特性に
優れており、シースヒーターの絶縁充填材として優れた
ものである。また、第1図、第2図に示されたように絶
縁抵抗の劣化も小さく、ヒーターの寿命も長くなる。
[Effects of the Invention] As described above, the electric insulating filler of the present invention is 800
It has high insulation resistance at a high temperature of not less than ℃ and excellent flow characteristics, and is excellent as an insulating filler for a sheath heater. In addition, as shown in FIGS. 1 and 2, the deterioration of the insulation resistance is small, and the life of the heater is prolonged.

【図面の簡単な説明】[Brief description of the drawings]

第1図は実施例1および比較例1の800℃での絶縁抵抗
の経時変化を示す。 第2図は熱処理温度と酸水洗後のマグネシア粉体の800
℃での抵抗値を示す。白丸は24Hr値、黒丸は72Hr値を示
す。 第3図は800℃における24時間後と240時間後の絶縁抵抗
を示す。 図中の記号は次の通りである。 白丸は24時間後 黒丸は240時間後
FIG. 1 shows the change over time of the insulation resistance at 800 ° C. in Example 1 and Comparative Example 1. Fig. 2 shows the heat treatment temperature and 800 magnesia powder after pickling.
Shows the resistance at ° C. Open circles indicate 24 Hr values and black circles indicate 72 Hr values. FIG. 3 shows the insulation resistance after 24 hours and 240 hours at 800 ° C. The symbols in the figure are as follows. White circles after 24 hours Black circles after 240 hours

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】マグネシア焼結粉体で a)化学組成が i)MgO≧93wt% ii)0.3≦CaO≦1.5wt% iii)SiO2≦4wt% iv)Fe2O3+Al2O3≦0.4wt% v)B2O3≦0.1wt% vi)Igloss≦0.3wt% であり、 b)MgOの格子定数が4.2130A以下 c)MgOの格子歪みが7.0×10-4以下 であることを特徴とする電気絶縁充填材1. Magnesia sintered powder a) Chemical composition i) MgO ≧ 93 wt% ii) 0.3 ≦ CaO ≦ 1.5 wt% iii) SiO 2 ≦ 4 wt% iv) Fe 2 O 3 + Al 2 O 3 ≦ 0.4 wt% v) B 2 O 3 ≤ 0.1 wt% vi) Igloss ≤ 0.3 wt%, b) The lattice constant of MgO is 4.2130A or less c) The lattice distortion of MgO is 7.0 × 10 -4 or less Electrical insulation filler 【請求項2】マグネシア粉体を最高温度1000℃以上で熱
処理したのち、酸性溶液と接触させ、その後充分に水洗
することを特徴とする電気絶縁充填材の製造方法。
2. A method for producing an electrically insulating filler, comprising: subjecting magnesia powder to a heat treatment at a maximum temperature of 1000 ° C. or higher, bringing the magnesia powder into contact with an acidic solution, and then thoroughly washing with water.
JP8302988A 1988-04-06 1988-04-06 High temperature electrical insulating filler and method for producing the same Expired - Lifetime JP2638052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8302988A JP2638052B2 (en) 1988-04-06 1988-04-06 High temperature electrical insulating filler and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8302988A JP2638052B2 (en) 1988-04-06 1988-04-06 High temperature electrical insulating filler and method for producing the same

Publications (2)

Publication Number Publication Date
JPH02307821A JPH02307821A (en) 1990-12-21
JP2638052B2 true JP2638052B2 (en) 1997-08-06

Family

ID=13790806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8302988A Expired - Lifetime JP2638052B2 (en) 1988-04-06 1988-04-06 High temperature electrical insulating filler and method for producing the same

Country Status (1)

Country Link
JP (1) JP2638052B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100351177C (en) * 2006-03-10 2007-11-28 庄伟� Process for preparing magnesium oxide powder for fire-proof cable

Also Published As

Publication number Publication date
JPH02307821A (en) 1990-12-21

Similar Documents

Publication Publication Date Title
CN110204328B (en) Preparation method of high-entropy oxide ceramic
JPH0217508B2 (en)
JPS6410585B2 (en)
EP2749531B1 (en) Silicon carbide powder and method for producing same
EP0237072A2 (en) Practically pore-free polycrystalline aluminium nitride body and method of making the same without use of sintering aids
US1814719A (en) Ductile thorium and method of making the same
CN114349493B (en) Copper ion doped calcium silicate microwave dielectric ceramic and preparation method thereof
CN110026561B (en) Method for producing tungsten-rhenium thermocouple wire for temperature measurement with high reliability by using combination technology
US5590386A (en) Method of making an alloy of tungsten and lanthana
JP2638052B2 (en) High temperature electrical insulating filler and method for producing the same
JP6440602B2 (en) Spark plug
CN110862257A (en) Graphite ceramic closing resistor and preparation method thereof
JP2985090B2 (en) High temperature electric insulating filler and sheath heater filled with the same
KR101786056B1 (en) Lead-free piezoelectric seramic for low temperature firing having core-shell structure and method of manufacturing the same
US5795366A (en) Method of manufacturing a non-sag tungsten wire for electric lamps
US3051924A (en) Sintered electric resistance heating elements and methods of producing such elements
JPH0444384B2 (en)
JP4795534B2 (en) Silicon nitride sintered body and manufacturing method thereof
JP2984581B2 (en) Member composed of indium-tin oxide and method for producing the same
CN114907121B (en) High-entropy ceramic with thermal conductivity adjustable and controllable along with temperature and preparation method thereof
JPH03210705A (en) Manufacture of electric insulation filler material for high temperature and sheath heater where same is filled
JPS63192839A (en) Lithium-tungsten alloy and its production
JPS59177305A (en) Production of molybdenum powder and molybdenum material
KR910002172B1 (en) Sintered particles use for the electric insulation and preparation method thereof
JP2906354B2 (en) Electrical insulating filler and sheath heater filled with it