JPH02307821A - Electrical insulating filler for high-temperature use and its production - Google Patents

Electrical insulating filler for high-temperature use and its production

Info

Publication number
JPH02307821A
JPH02307821A JP8302988A JP8302988A JPH02307821A JP H02307821 A JPH02307821 A JP H02307821A JP 8302988 A JP8302988 A JP 8302988A JP 8302988 A JP8302988 A JP 8302988A JP H02307821 A JPH02307821 A JP H02307821A
Authority
JP
Japan
Prior art keywords
mgo
insulating filler
cao
filler
lattice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8302988A
Other languages
Japanese (ja)
Other versions
JP2638052B2 (en
Inventor
Fusao Kono
房夫 河野
Kunihiko Nibu
丹生 国彦
Hiroshi Takeuchi
弘 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Nihon Kagaku Kogyo KK
Original Assignee
Shin Nihon Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Nihon Kagaku Kogyo KK filed Critical Shin Nihon Kagaku Kogyo KK
Priority to JP8302988A priority Critical patent/JP2638052B2/en
Publication of JPH02307821A publication Critical patent/JPH02307821A/en
Application granted granted Critical
Publication of JP2638052B2 publication Critical patent/JP2638052B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To obtain a spherical filler having high electric resistance as well as specific lattice constant and lattice strain of MgO by precipitating CaO in a state of solid solution in grain boundaries by means of heat treatment and then removing, by dissolution, the above CaO in the filler composed princi pally of sintered MgO. CONSTITUTION:A powdered MgO consisting of, by weight, >=93% MgO, 0.3-1.5% CaO, <=4% SiO2, <=0.4% (Fe2O3+Al2O3), <=0.1% B2O3, and <=0.3% Igloss is heat-treated at >=1000 deg.C maximum temp. This powder is brought into contact with the acid solution of hydrochloric acid, etc., and then washed well with water, filtered, and dried, by which an electrical insulating filler in which the lattice constant of MgO and the lattice strain of MgO are regulated to <=4,2130A and <=7.0X10<-4>, respectively, is obtained. If the above lattice constant and lattice strain are beyond the above ranges, electric resistance is deteriorated and, as a result, this filler becomes unapplicable to the high temp. use.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は焼結マグネシア(MgO)を主成分とし、高温
における電気絶縁抵抗の優れた電気絶縁充填材およびそ
の製造方法に関するもので、特にシースヒーターの絶縁
充填材として適するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an electrical insulating filler containing sintered magnesia (MgO) as a main component and having excellent electrical insulation resistance at high temperatures, and a method for producing the same. It is suitable as an insulating filler for heaters.

[従来の技術及び問題点] MgOは高温下での電気絶縁抵抗が非常に高いという特
徴があり、電気絶縁材料、特にシースヒーターの絶縁充
填材として使用されている。
[Prior Art and Problems] MgO is characterized by extremely high electrical insulation resistance at high temperatures, and is used as an electrical insulating material, particularly as an insulating filler for sheath heaters.

従来使用されている電融マグネシアはその製造方法上大
きな塊状で得られるために、細いシースヒーターの絶縁
充填材として使用するにはどうしても破砕して整粒せざ
るを得ず、その破砕粒は角張った形状をしているので、
充填するのが困難であるばかりでなく、充填後の成形加
工時にヒーターを傷付け、寿命低下の原因となっていた
The conventionally used electrofused magnesia is obtained in large lumps due to its manufacturing method, so in order to use it as an insulating filler for thin sheath heaters, it must be crushed and sized, and the crushed particles are angular. Because it has a shape,
Not only was it difficult to fill, but the heater was also damaged during the molding process after filling, causing a shortened lifespan.

ま−た焼結マグネシアは製造し易く、近年注目されでは
いるが特開昭82−90807号や特開昭62−288
002号に記載された焼結マグネシアでも高絶縁抵抗の
要望を満足するものではなかった。
Also, sintered magnesia is easy to manufacture and has attracted attention in recent years, but it has been published in Japanese Patent Application Laid-open Nos. 82-90807 and 62-288.
Even the sintered magnesia described in No. 002 did not satisfy the demand for high insulation resistance.

また、本発明者らが特開昭62−90807号で記載し
た球状焼結マグネシアでは細いヒーターを作るのには適
するがなお絶縁抵抗が低かった。
Further, the spherical sintered magnesia described by the present inventors in JP-A-62-90807 was suitable for making a thin heater, but had low insulation resistance.

[発明が解決しようとする課題] 本発明は、高温に置ける電気絶縁抵抗が高(、かつ、粒
形が球状で、シースヒーターの絶縁材料として用いた場
合、そのヒーターの成形加工時にヒーターを傷つけない
ような球状の高温用電気絶縁充填材とその製造方法を提
供しようとするものである。
[Problems to be Solved by the Invention] The present invention has a high electrical insulation resistance at high temperatures (and a spherical grain shape), and when used as an insulating material for a sheathed heater, it will not damage the heater during molding. The present invention aims to provide a spherical high-temperature electrical insulating filler and a method for manufacturing the same.

[課題を解決するための6手段] 焼結マグネシアはM g 01;: Ca Oが固溶し
ていることが知られており、このCaOの固溶が原因で
MgOの格子の歪みが生じ、MgOの格子定数が大きく
なる。
[Six means to solve the problem] It is known that sintered magnesia contains M g 01;: Ca O in solid solution, and this solid solution of CaO causes distortion of the MgO lattice. The lattice constant of MgO increases.

焼結マグネシアの絶縁抵抗が小さいのはCaOの固溶と
それが原因で起るMgOの格子歪が原因であると推察さ
れている。
It is presumed that the reason why the insulation resistance of sintered magnesia is low is due to the solid solution of CaO and the resulting lattice strain of MgO.

本発明は、熱処理によって、固溶している上記CaOを
粒界に析出させ、このCaOを酸性溶液で溶解除去する
ことによって、高温における電気絶縁抵抗が大きい電気
絶縁充填材を提供しようとするものである。
The present invention aims to provide an electrical insulating filler having high electrical insulation resistance at high temperatures by precipitating the CaO in solid solution at grain boundaries through heat treatment and dissolving and removing this CaO with an acidic solution. It is.

[課題を解決するための手段] 上記:!jA21iを解決するための電気絶縁充填材は
マグネシア焼結粉体で a)化学組成が i)MgO≧93vt% ii)  0.3≦CaO≦1.5 vt%iii)S
 i O2≦4 vt% iy)   Fe20z+Al  20  コ ≦  
0.4Wt %y)B20:+≦ 0.1wt% vi) 1gloss≦ 0.3wt%であり、 b)MgOの格子定数が4.2130八以下c)MgO
の格子歪みが7.0X 104以下である電気絶縁充填
材である。
[Means to solve the problem] Above:! The electrical insulating filler to solve jA21i is magnesia sintered powder with a) chemical composition of i) MgO≧93vt% ii) 0.3≦CaO≦1.5 vt%iii) S
i O2≦4 vt% iy) Fe20z+Al 20 co≦
0.4Wt%y) B20:+≦0.1wt% vi) 1gloss≦0.3wt%, b) MgO lattice constant is 4.2130 or less c) MgO
It is an electrically insulating filler having a lattice strain of 7.0×104 or less.

マグネシア焼結粉体の化学組成が上記範囲内にあるとき
に電気絶縁抵抗が十分に高く、化学組成が上記範囲を外
れると絶縁抵抗が低くなるので高温用充填材として実用
性がなくなる。
When the chemical composition of the magnesia sintered powder is within the above range, the electrical insulation resistance is sufficiently high, and when the chemical composition is outside the above range, the insulation resistance becomes low and it is no longer practical as a filler for high temperatures.

このような電気絶縁充填材の製造方法はマグネシア粉体
を最高温度1000℃以上で熱処理したのち、酸性溶液
と接触させ、その後充分に水洗する。
In the method for producing such an electrically insulating filler, magnesia powder is heat-treated at a maximum temperature of 1000° C. or higher, brought into contact with an acidic solution, and then thoroughly washed with water.

本発明の電気絶縁充填材の製造にあたり、ロータリキル
ン等で焼結された所定組成の球状をした粉体のうち42
0μ■の篩を通過し、25μ腸の篩を通過しない部分を
採取するのが適当である。また、粉体にはZnO2等の
助剤などが他の成分が影響のない範囲で含まれていても
よい。
In producing the electrical insulating filler of the present invention, 42 out of spherical powders of a predetermined composition sintered in a rotary kiln etc.
It is appropriate to collect the part of the intestines that passes through a 0μ sieve and does not pass through a 25μ sieve. Further, the powder may contain an auxiliary agent such as ZnO2 within a range where other components do not affect the powder.

その製造方法は好ましくは粒径420〜25μ信のもの
が95wt%以上になるように調整された粉体をロータ
リキルン等の加熱炉で1000℃以上で熱処理したのち
、酸性溶液と接触させ、その後十分に水洗し、濾過、乾
燥するものである。
The manufacturing method is preferably such that the powder is adjusted to have a particle size of 420 to 25 μm at 95 wt% or more, and then heat treated at 1000°C or higher in a heating furnace such as a rotary kiln, and then brought into contact with an acidic solution. Wash thoroughly with water, filter, and dry.

本発明のマグネシア粉体は800℃に24 II r保
持した後の絶縁抵抗が1.8X 109Ω・am以上の
ものが好ましい。さらに好ましくは2.5X 10’Ω
・0層以上である。
The magnesia powder of the present invention preferably has an insulation resistance of 1.8×10 9 Ω·am or more after being maintained at 800° C. for 24 II r. More preferably 2.5X 10'Ω
・The number of layers is 0 or more.

さらに充填物のフロータイムはシースヒーター粉体を充
填する際、製造上、特に作業効率上重要な要素であるこ
とはよく知られており、フロータイムが200sec/
100gr以下、特に180scc/100gr以下で
あることは産業上意義のあることである。
Furthermore, it is well known that the flow time of the filling is an important factor in manufacturing, especially in terms of work efficiency, when filling sheath heater powder.
It is industrially significant that it is 100gr or less, especially 180scc/100gr or less.

また本発明においてMgOの格子定数が4.2130A
以下、M g Oの格子歪みが7XIO−’以下である
ことが必要であり、その範囲を外れるといずれも絶縁抵
抗が悪化し、高温用として実用に供しなくなる。さらに
好ましくはMgOの格子歪みが5X10’以下である。
Furthermore, in the present invention, the lattice constant of MgO is 4.2130A.
Hereinafter, it is necessary that the lattice strain of MgO be 7XIO-' or less, and if it is outside this range, the insulation resistance will deteriorate and the material will not be practical for high-temperature use. More preferably, the lattice strain of MgO is 5×10' or less.

本発明の製造方法において最高温度が1000’c未満
では熱処理の効果が小さく 、tooo℃以上、好まし
くは1200〜1400℃が望ましい。
In the manufacturing method of the present invention, if the maximum temperature is less than 1000'C, the effect of heat treatment will be small, so it is desirable that the maximum temperature is 1000C or higher, preferably 1200 to 1400C.

次に酸性溶液と1分間以上接触させ、この溶液と分離後
、十分に水洗をしたのち、濾過、乾燥する。
Next, it is brought into contact with an acidic solution for 1 minute or more, separated from this solution, thoroughly washed with water, filtered, and dried.

すなわち、その表面に不純物の少ないマグネシア焼結粉
体は前述の流動性を損なうことなく、高温での絶縁抵抗
が優れている。
That is, the magnesia sintered powder, which has few impurities on its surface, has excellent insulation resistance at high temperatures without impairing the above-mentioned fluidity.

[実施例] 以下、本発明を実施例および比較例によって、具体的に
説明する。
[Examples] Hereinafter, the present invention will be specifically explained using Examples and Comparative Examples.

本発明における実施例の化学組成のうちMg0SCab
SS i02、Fe2O3、Al2O3、B2O3はマ
グネシア粉末を塩酸水溶液で熱溶解したのち、またZ 
rozはNazCO3、Na2B2Qr  1OHzo
を用い、アルカリ溶融したのち、硝酸水溶液に熱溶解し
た後、[1本ジャーレルアッシュ製の 575−■製の
ICAPを用いて測定した。
Among the chemical compositions of Examples in the present invention, Mg0SCab
SS i02, Fe2O3, Al2O3, and B2O3 are prepared by hot dissolving magnesia powder in aqueous hydrochloric acid solution, and then Z
roz is NazCO3, Na2B2Qr 1OHzo
After melting with an alkali and then hotly dissolving in an aqueous nitric acid solution, measurements were taken using an ICAP manufactured by Jarel Ash 575-■.

1glossは試料logを精秤し、白金ルツボに入れ
、それを電気炉に入れ1000℃X lhr後の重量減
少を重量減少を重量%で示したものである。
1 gloss is the weight loss expressed in weight percent after accurately weighing the log of the sample, placing it in a platinum crucible, and placing it in an electric furnace for 1000°C x 1hr.

本発明の実施例のマグネシアにおける高温絶縁抵抗は内
径Loamの金属パイプと外径5鴛亀の中心棒の間隙に
絶縁充填材を約25■の長さに 1.5Teem ’の
圧力で圧縮充填したものに、白金線を取り付けて電気炉
内に置き、各温度での絶縁抵抗を測定した(フエタリー
法)。なお、用いた金属パイプならびに中心棒の材質は
sus、304である。
The high-temperature insulation resistance of magnesia in the example of the present invention was obtained by compressing and filling the gap between the metal pipe with an inner diameter of Loam and the center rod of an outer diameter of 5 with an insulating filler to a length of about 25cm at a pressure of 1.5Teem'. A platinum wire was attached to the material and placed in an electric furnace, and the insulation resistance at each temperature was measured (Fuettary method). The material of the metal pipe and center rod used was SUS 304.

格子歪みの11PI定はX線回折(理学電機製IR−I
A型)により40kL 20111^、l/4deg/
■、time constant 5secの条件でM
goの(1,1,1)、(2,0,0)、 (2,2,
0)、 (3,1,1)、 (2,2,2)、(4,0
,0)、(4,2,0)の各ピークの積分幅を測定し、
kαI、kα2の分離補正(文献1)、スタンダード補
正(文献1)を行い真の半価幅を求める。得られた半価
幅から1lallプロツト(文献2)を行い、最小二乗
法による直線回帰から傾きを求め、傾きの1/2の値を
もって格子歪みとした。
The 11PI constant of lattice strain is determined by X-ray diffraction (IR-I manufactured by Rigaku Denki).
Type A) 40kL 20111^, l/4deg/
■, M under the condition of time constant 5sec
go's (1,1,1), (2,0,0), (2,2,
0), (3,1,1), (2,2,2), (4,0
, 0), (4, 2, 0), and
Separate correction (Reference 1) and standard correction (Reference 1) of kαI and kα2 are performed to determine the true half-width. A 1llall plot (Reference 2) was performed from the obtained half-width, and the slope was determined by linear regression using the least squares method, and the value of 1/2 of the slope was taken as the lattice distortion.

なお標り試料はMgO純度99.9%のマグネシアr1
1結晶を粉砕したのち、44〜20μ曙のものを130
0℃で5時間熱処理したものを用いた。測定試料も粒径
44〜20μmの範囲に粒度調整したものを用いた。
The marker sample is magnesia r1 with MgO purity of 99.9%.
After crushing 1 crystal, 44~20μ Akebono is 130μ
The sample was heat-treated at 0°C for 5 hours. The measurement sample was also adjusted to have a particle size in the range of 44 to 20 μm.

(上記文献1) r The lleasuremen
t ol’particle 5ize by the
 X−ray 1ethodJ by P。
(Reference 1 above) r The leasuremen
tol'particle 5ize by the
X-ray 1methodJ by P.

W、Jones、、Prpc、Roy、Soc、、^1
86.16(1938)。
W,Jones,,Prpc,Roy,Soc,,^1
86.16 (1938).

(上記文献2)Ilal l 、W、Il、 、 Pr
oc、Phys、Soc、 。
(Above document 2) Ilal, W, Il, Pr
oc, Phys, Soc, .

A62..741(1949)。A62. .. 741 (1949).

また、格子定数のall!定はケイ素を内部標準物質と
してBraggの式から求めた。M g Oの(3,1
,l)、(2,2,0)、(3,1,l)、(2,2,
2)、(4,2,0)のピークから半価幅中点法から回
折角を読み、kαI、kα2の分離補正を行い、最小自
乗法で格子定数を求めた。
Also, all of the lattice constants! The value was determined from Bragg's equation using silicon as an internal standard. M g O (3,1
,l), (2,2,0), (3,1,l), (2,2,
2), the diffraction angle was read from the peak of (4, 2, 0) using the half-width midpoint method, the separation correction of kαI and kα2 was performed, and the lattice constant was determined using the least squares method.

また、上記絶縁充填材をつめた金属パイプ(セル)を8
00℃の7d気炉に入れ、絶縁抵抗の経時変化を測定し
た。
In addition, 8 metal pipes (cells) filled with the above insulating filler were used.
The sample was placed in an air furnace at 00°C for 7 days, and changes in insulation resistance over time were measured.

第1図および第2図は800℃で24時間焼成した後、
あるいは72時間焼成した後の抵抗値を示した。
Figures 1 and 2 show the results after firing at 800°C for 24 hours.
Alternatively, the resistance value after firing for 72 hours is shown.

また、粉末のタップ密度、フロータイムはA S T 
M 5tandards D 2755に規定されてい
る方法によりアメリカのBoeh Tool and 
DleCoIIpan>’製の装置を用いてΔp1定し
た。
In addition, the powder tap density and flow time are A S T
The American Boeh Tool and
Δp1 was determined using a device manufactured by DleCoIIpan>'.

粒度分布はJIS漂章篩を用いて篩分けて求めた。The particle size distribution was determined by sieving using a JIS sieve.

なお実施例に示す各成分の量(%)はff1m%である
Note that the amount (%) of each component shown in the examples is ff1m%.

実施例1及び比較例1 0−タリーキルンで2000℃の温度で焼成したlnm
以下の高純度マグネシア粉をステンレろ製の金網を用い
て、420μmから25μmで篩い分けた。これをロー
タリキルンを用いて最高温度1200℃で焼成した。
Example 1 and Comparative Example 1 lnm fired at a temperature of 2000°C in an 0-tally kiln
The following high-purity magnesia powder was sieved from 420 μm to 25 μm using a stainless steel wire mesh. This was fired using a rotary kiln at a maximum temperature of 1200°C.

上記のマグネシア粉体2.5kgを0.2N塩酸溶I夜
1(19,に入れて5分間撹拌し、上澄液を捨てて、水
101を加えて撹拌水洗を2回行い真空濾過した。この
濾滓にさらに水551をふりかけて水洗し、120℃の
熱風中で乾燥した。(以下この処理方法を酸水洗と呼ぶ
) このマグネシア粉体の化学組成、粒度分布、フロータイ
ムおよび初期の絶縁抵抗、さらに800℃における抵抗
の経時変化を第1表および第1図に示した。
2.5 kg of the above magnesia powder was added to 0.2 N hydrochloric acid solution I (19) and stirred for 5 minutes, the supernatant liquid was discarded, water 101 was added, stirred and washed twice, and the mixture was vacuum filtered. This filter residue was further sprinkled with water 551, washed with water, and dried in hot air at 120°C. (Hereinafter, this treatment method will be referred to as acid washing.) Chemical composition, particle size distribution, flow time, and initial insulation of this magnesia powder. Table 1 and FIG. 1 show the resistance and the change in resistance over time at 800°C.

また、比較例1として原料に用いたマグネシア粉の上記
測定値も示した。
In addition, the above measured values of magnesia powder used as a raw material as Comparative Example 1 are also shown.

第1表 第1表つづき 実施例2 実施例1に用いた420〜25μmに篩分けられたマグ
ネシア粉体を箱型電気炉に入れ、800〜!400℃の
各温度で焼成し、以下室温まで炉内で放置し、これを酸
水洗した。このマグネシア粉体の800℃における抵抗
の経時変化を調べ、その値の24時間後および72時間
後を前記熱処理温度に対してプロットしたのが第2図で
ある。
Table 1 Table 1 Continued Example 2 The magnesia powder used in Example 1, which had been sieved to 420-25 μm, was placed in a box-shaped electric furnace. The pieces were fired at a temperature of 400°C, left in a furnace until the temperature reached room temperature, and then washed with acid water. The change in resistance of this magnesia powder at 800° C. over time was investigated, and the values after 24 hours and 72 hours were plotted against the heat treatment temperature in FIG. 2.

比較例で示す市販型マグ(高温用)に比べて、2倍以上
の高い抵抗値を示すことが示されている。
It has been shown that the resistance value is more than twice as high as that of the commercially available mug (for high temperature use) shown in the comparative example.

[発明の効果] 以上説明したように、本発明の電気絶縁充填材は800
℃以上の高温における絶縁抵抗が高く、かつ流動特性に
優れており、シースヒーターの絶縁充填材として優れた
ものである。また、第1図、第2図に示されたように絶
縁抵抗の劣化も小さく、ヒーターの寿命も長(なる。
[Effects of the Invention] As explained above, the electrical insulating filler of the present invention has 800
It has high insulation resistance at high temperatures of ℃ or higher and excellent flow characteristics, making it an excellent insulating filler for sheath heaters. Furthermore, as shown in FIGS. 1 and 2, the deterioration of insulation resistance is small and the life of the heater is long.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1および比較例1の800℃での絶縁抵
抗の経時変化を示す。 第2図は熱処理温度と酸水洗後のマグネシア粉体の80
0℃での抵抗値を示す。白丸は24 It r値、黒丸
は72 Hr値を示す。 □    1 手続補正書 (自発) し 1、事件の表示 特願昭63−83029号 2、発明の名称 高温用電気絶縁充填材およびその製造方法] 名  称   新日本化学工業株式会社4、代理人 5、補正命令の日付く自発) 6、補正の対象 (1)明細書第6頁第9行と第10行の間に下記の事項
を挿入する。 ′ 「 また、本発明において、充填物の充填密度は2
.10〜2J5(g/cc)が好ましく 、2.10(
g/ee)以下では、絶縁抵抗の寿命低下が大きく、2
.35(g/cc)を越えると初期から絶縁抵抗が低く
、いずれも、高温用として実用に供せなくなる。」 (2)同第13頁第5行と第6行の間に下記の事項を挿
入する。 「実施例3 実施例1に用いた試料から粒度分布を調整して、充填密
度の異なる1から5の試料を実施例2と同じ方法で作製
し、800℃における24時間後と240時間後の絶縁
抵抗を調べ、その結果を第2表と第3図に示した。 第2表 」 (3)同、第13頁末行の次に下記の事項を挿入する。 「 第3図は 800℃における24時間後と240時
間後の絶縁抵抗を示す。 図中の記号は次の通りである。 白丸は24時間後 黒丸は240時間後」 (4)図面(別紙第3図)を追加する。 手続補正書彷 却 平成2年7月12日 特許庁長官  植 松  敏 殿 1、事件の表示 特願昭83−83029号 2、発明の名称 高温用電気絶縁充填材およびその製造方法3、補正をす
る者 事件との関係  特許出願人 〒107(電話58B−8854) 住 所  東京都港区赤坂4丁目13番5号5、補正命
令の日付 起案臼:平成2年6月22日 発送8二平成2年7月 3日
FIG. 1 shows changes in insulation resistance over time at 800° C. of Example 1 and Comparative Example 1. Figure 2 shows the heat treatment temperature and the temperature of magnesia powder after washing with acid water.
The resistance value at 0°C is shown. White circles indicate 24 It r values, and black circles indicate 72 Hr values. □ 1 Procedural amendment (spontaneous) 1. Indication of the case Patent Application No. 1983-83029 2. Title of invention: High-temperature electrical insulating filler and method for manufacturing the same] Name: Shin Nippon Chemical Co., Ltd. 4. Agent: 5 6. Subject of amendment (1) The following matters are inserted between lines 9 and 10 on page 6 of the specification. ' In addition, in the present invention, the packing density of the filling is 2.
.. 10 to 2J5 (g/cc) is preferable, and 2.10 (
g/ee), the life of insulation resistance decreases significantly, and
.. If it exceeds 35 (g/cc), the insulation resistance will be low from the beginning, and any of them will not be practical for high temperature applications. (2) The following matters should be inserted between lines 5 and 6 of page 13. Example 3 Samples 1 to 5 with different packing densities were prepared in the same manner as in Example 2 by adjusting the particle size distribution from the sample used in Example 1. The insulation resistance was investigated and the results are shown in Table 2 and Figure 3.Table 2'' (3) Insert the following information next to the last line of page 13. "Figure 3 shows the insulation resistance after 24 hours and 240 hours at 800°C. The symbols in the figure are as follows. White circles are after 24 hours and black circles are after 240 hours." (4) Drawing (attached sheet) Figure 3) is added. Procedural amendments dismissed July 12, 1990 Toshi Uematsu, Commissioner of the Japan Patent Office1, Indication of the case Japanese Patent Application No. 83-830292, Name of the invention High-temperature electrical insulating filler and method for manufacturing the same3, Amendment. Relationship with the case of the person who filed the patent application Patent applicant: 107 (telephone: 58B-8854) Address: 4-13-5-5 Akasaka, Minato-ku, Tokyo Date of amendment order: Sent on June 22, 1990 82 Heisei July 3, 2017

Claims (2)

【特許請求の範囲】[Claims] (1)マグネシア焼結粉体で a)化学組成が i)MgO≧93wt% ii)0.3≦CaO≦1.5wt% iii)SiO_2≦4wt% iv)Fe_2O_3+Al_2O_3≦0.4wt%
v)B_2O_3≦0.1wt% vi)1gloss≦0.3wt% であり、 b)MgOの格子定数が4.2130A以下c)MgO
の格子歪みが7.0×10^−^4以下であることを特
徴とする電気絶縁充填材
(1) Magnesia sintered powder has a) chemical composition: i) MgO≧93wt% ii) 0.3≦CaO≦1.5wt% iii) SiO_2≦4wt% iv) Fe_2O_3+Al_2O_3≦0.4wt%
v) B_2O_3≦0.1wt% vi) 1gloss≦0.3wt%, b) MgO lattice constant is 4.2130A or less c) MgO
An electrically insulating filler characterized by having a lattice strain of 7.0×10^-^4 or less.
(2)マグネシア粉体を最高温度1000℃以上で熱処
理したのち、酸性溶液と接触させ、その後充分に水洗す
ることを特徴とする電気絶縁充填材の製造方法。
(2) A method for producing an electrically insulating filler, which comprises heat-treating magnesia powder at a maximum temperature of 1000° C. or higher, bringing it into contact with an acidic solution, and then washing thoroughly with water.
JP8302988A 1988-04-06 1988-04-06 High temperature electrical insulating filler and method for producing the same Expired - Lifetime JP2638052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8302988A JP2638052B2 (en) 1988-04-06 1988-04-06 High temperature electrical insulating filler and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8302988A JP2638052B2 (en) 1988-04-06 1988-04-06 High temperature electrical insulating filler and method for producing the same

Publications (2)

Publication Number Publication Date
JPH02307821A true JPH02307821A (en) 1990-12-21
JP2638052B2 JP2638052B2 (en) 1997-08-06

Family

ID=13790806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8302988A Expired - Lifetime JP2638052B2 (en) 1988-04-06 1988-04-06 High temperature electrical insulating filler and method for producing the same

Country Status (1)

Country Link
JP (1) JP2638052B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100351177C (en) * 2006-03-10 2007-11-28 庄伟� Process for preparing magnesium oxide powder for fire-proof cable

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100351177C (en) * 2006-03-10 2007-11-28 庄伟� Process for preparing magnesium oxide powder for fire-proof cable

Also Published As

Publication number Publication date
JP2638052B2 (en) 1997-08-06

Similar Documents

Publication Publication Date Title
CA1139930A (en) Cermet materials
JPH0217508B2 (en)
JP2001064080A (en) Silicon nitride sintered body and its production
JPH02307821A (en) Electrical insulating filler for high-temperature use and its production
JP4078414B2 (en) Lanthanum sulfide sintered body and manufacturing method thereof
JP2985090B2 (en) High temperature electric insulating filler and sheath heater filled with the same
US3051924A (en) Sintered electric resistance heating elements and methods of producing such elements
JP6621170B2 (en) PTC thermistor member and PTC thermistor element
WO2003057625A1 (en) Graphite material for synthesizing semiconductor diamond and semiconductor diamond produced by using the same
US4299631A (en) Silicon carbide bodies and their production
JPS6042272A (en) Magnesia blend
WO1992013811A1 (en) Method for manufacturing thermoelectric element
Benkaddour et al. The influence of particle size on sintering and conductivity of Bi0. 85Pr0. 105V0. 045O1. 545 ceramics
JP3588240B2 (en) Ceramic heater
JP2001163674A (en) Silicon nitride sintered compact and method of producing the same
CN112408946B (en) Cold sintering preparation method of zero-second quick-heating high-temperature ceramic heating body
JPS6146403B2 (en)
KR970001524B1 (en) Process for the preparation of silicon carbide powder
JPH04123784A (en) Sheathed heater
JP3301097B2 (en) Heat resistant material
JPS6212191B2 (en)
JPH03210705A (en) Manufacture of electric insulation filler material for high temperature and sheath heater where same is filled
JPS604898B2 (en) Molybdenum-based alloy
JP3674929B2 (en) Low temperature fired substrate composition
KR890002157B1 (en) Magnesia powder for use as an electrical insulating material and a process for producing the same