JPH0444384B2 - - Google Patents

Info

Publication number
JPH0444384B2
JPH0444384B2 JP59048090A JP4809084A JPH0444384B2 JP H0444384 B2 JPH0444384 B2 JP H0444384B2 JP 59048090 A JP59048090 A JP 59048090A JP 4809084 A JP4809084 A JP 4809084A JP H0444384 B2 JPH0444384 B2 JP H0444384B2
Authority
JP
Japan
Prior art keywords
aluminum nitride
sintered body
weight
nitride sintered
hollow tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59048090A
Other languages
Japanese (ja)
Other versions
JPS60193254A (en
Inventor
Nobuyuki Kuramoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP59048090A priority Critical patent/JPS60193254A/en
Publication of JPS60193254A publication Critical patent/JPS60193254A/en
Publication of JPH0444384B2 publication Critical patent/JPH0444384B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • H01J61/302Vessels; Containers characterised by the material of the vessel

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 本発明は新規な発光管を提供する。詳しくは機
械的な破断面が明瞭な輪郭によつて互に区別され
る微細な結晶粒の緊密な充填状態によつて形成さ
れており、該微細な結晶粒の該破断面における該
明瞭な輪郭は多角形状であり、該微細な結晶は該
明瞭な輪郭によつて規定される該破断面における
平均粒子径をD(μm)で定義するとき0.3D〜
1.8Dの範囲の粒子径を持つ結晶粒の個数が少な
くとも70%を占めることによつて構成されている
窒化アルミニウム焼結体よりなる中空管で、該中
空管はその中空部に発光源を内臓して密閉され且
つその両端に電極端子を設けてなる発光管であ
る。 従来発光管例えば高圧ナトリウムランプは広く
使用されている。これら公知の発光管素材は透光
性にすぐれた性状を要求されることから一般に透
光性アルミナが使用されている。透光性アルミナ
はすぐれた透光性を有する点ですぐれた発光管素
材であるが熱膨張率が小さいため電源を切つたと
き高温例えば高圧ナトリウムランプにあつては
1000℃前後の温度から急激に室温まで冷却される
ような熱シヨツク性に弱い欠陥がある。従つて熱
シヨツク性に強く、すぐれた透光性を有する素材
の開発が望まれて来た。 本発明者等は透光性セラミツクの開発を鋭意続
けて来た結果、新規な特定の窒化アルミニウム粉
末を焼結させた焼結体がすぐれた透光性を有する
ことを見出し既に提案した。更に研究を続けた結
果、上記新規な窒化アルミニウム粉末を使用した
発光管がすぐれた透光性を有するだけでなく、す
ぐれた熱シヨツク性を発揮することを見出し本発
明を完成しここに提案するに至つた。 即ち、本発明は機械的な破断面が明瞭な輪郭に
よつて互に区別される微細な結晶粒の緊密な充填
状態によつて形成されており、該微細な結晶粒の
該破断面における該明瞭な輪郭は多角形状であ
り、該微細な結晶は該明瞭な輪郭によつて規定さ
れる該破断面における平均粒子径をD(μm)で
定義するとき0.3D〜1.8Dの範囲の粒子径を持つ
結晶粒の個数が少なくとも70%を占めることによ
つて構成されている窒化アルミニウム焼結体より
なる中空管で、該中空管はその中空部に発光源を
内臓して密閉され且つその両端に電極端子を設け
てなる発光管である。 本発明の発光管を構成する中空管の素材は次ぎ
のような特徴を有している。 添付図面第1図は後述する実施例1で得られた
窒化アルミニウム焼結体よりなる中空管の素材と
なつた同じ窒化アルミニウム粉末を実施例1と同
様に焼結させた窒化アルミニウム焼結体を機械的
に破断した破断面の顕微鏡写真である。該第1図
から明らかなように機械的な破断面は明瞭な輪郭
によつて互に区別される微細な結晶粒の緊密な充
填状態によつて形成されている。そして該微細な
結晶粒の該破断面における該明瞭な輪郭は多角形
状である。また該微細な結晶は該明瞭な輪郭によ
つて規定される該破断面における平均粒子径をD
(μm)で定義するとき、0.3D〜1.8D好ましくは
0.5D〜1.5Dの範囲の粒子径を持つ結晶粒が少な
くとも70%を占める必要がある。このように非常
に粒度分布が揃つている窒化アルミニウム焼結体
(例えば第1図では平均粒子径(D)が5.3μmで
あり0.3D〜1.8D即ち1.6μm〜9.5μmの粒子径の粒
子は98%を占める。)は従来提案されていた窒化
アルミニウム焼結体に比べると非常に特徴なもの
である。また該窒化アルミニウム焼結体は純度が
99.5%以上好ましくは99.9%以上で且つ陽イオン
不純物の含有量が0.3重量%以下好ましくは0.1重
量%以下のものを使用すると好適である。尚上記
窒化アルミニウム中の陽イオン不純物とは焼結前
の窒化アルミニウム粉末中に混入された来る金属
成分例えば珪素、マンガン、鉄、クロム、ニツケ
ル、コバルト、銅、亜鉛、チタン等を陽イオン成
分とする化合物を云い、該陽イオン不純物の含有
量は該陽イオン成分の化合物を金属として算出し
た含有量で算出するものである。 前記新規な窒化アルミニウム焼結体は非常に高
密度のものであり、一般には密度が2.9g/cm2
上、好ましくは3.0g/cm2、更に好ましくは3.2
g/cm2の性状を有するものである。 前記窒化アルミニウム焼結体のうち窒化アルミ
ニウム純度が99.5%以上好ましくは99.9%以上で
且つ陽イオン不純物の含有量が0.3重量%以下好
ましくは0.1重量%以下特に不純物成分の金属の
うち、鉄、クロム、ニツケル、コバルト、銅、亜
鉛又はチタン成分が金属として全含有量で0.1重
量%以下の窒化アルミニウム焼結体は特にすぐれ
た透明性を有する焼結体となる。この意味では上
記性状を有する窒化アルミニウム焼結体は本発明
の中空管の素材として特に好適である。 前記新規な窒化アルミニウム焼結体はX−線回
析によれば回折角(2θ)30°〜70°間に六方晶形窒
化アルミニウム結晶に由来する6本の明瞭な回析
線すなわち、33.3°±0.5°、36.2°±0.5°、38.1°±
0.5°、49.8°±0.5°、59.6°±0.5および66.3°±0.5
°の回
析角を有する回析線を示す。これらの回析線はブ
ラツグの式で面間隔(d、A)に換算すると、そ
れぞれ、2.69±0.04A、2.48±0.03A、2.36±
0.03A、1.83±0.02A、1.55±0.01Aおよび1.41±
0.01Aに相当する。 従来の窒化アルミニウム焼結体は焼結性を向上
させるために加える多量の焼結助剤(例えば、
CoO、Y2O3等)および原料窒化アルミニウム自
体の高い酸素含有量に基因して、窒化アルミニウ
ムの六方晶に由来する回析線の他に、例えば、
CaO・6Al2O3、CaO・2Al2O3あるいはY3Al5O12
等の結晶に由来する回析線を与えることが報告さ
れている。前記窒化アルミニウム焼結体によれ
ば、このような焼結助剤を焼結に用いた時でさえ
焼結助剤に由来する上記のごとき結晶の回析線を
実質的に示さない高純度且つ高密度窒化アルミニ
ウム焼結体である。 前記窒化アルミニウム焼結体よりなる中空体の
製法は特に限定されず如何なる方法を採用しても
よいが、通常は焼結に供される窒化アルミニウム
粉末によつてその性状及び焼結性が左右される。
前記性状を与える代表的な窒化アルミニウム粉末
及びその製法の代表的なものを例示すれば次ぎの
通りである。 先ず窒化アルミニウム粉末としては平均粒子径
が2μm以下で、3μ以下の粒子径を有する粒子の
占める割合が全窒化アルミニウム粉末の70重量%
以上であり、且つ酸素含有量が3.0重量%以下好
ましくは1.5重量%以下で、窒化アルミニウム純
度が95%以上好ましくは97%以上の性状を有する
窒化アルミニウム粉末である。このような窒化ア
ルミニウム粉末は例えば次ぎのようにして得るこ
とが出来る。 即ち、 (1) 平均粒子径が2μm以下のアルミニウム微粒
子と灰分含量0.2重量%で平均粒子径が1μm以
下のカーボン微粉末とを水、アルコール類、炭
化水素類等の液体分散媒体中で緊密に混合し、
そのさい該アルミニウム微粉末対該カーボン微
粉末の重量比は1:0.36〜1:1であり; (2) 得られた緊密混合物を、適宜乾燥し、窒素又
はアンモニアの雰囲気下で1400〜1700℃の温度
で焼成し; (3) 次いで得られた微粉末を酸素を含む雰囲気下
で600〜900℃の温度で加熱して未反応のカーボ
ンを加熱除去し、窒化アルミニウム含量が少く
とも95重量%であり、結合酸素の含量が最大
3.0重量%好ましくは1.5重量%であり、且つ不
純物としての金属化合物の含量が金属として最
大0.3重量%である平均粒子径が2μm以下で、
3μm以下の粒子径を有する粒子が70重量%以
上の割合を占める窒化アルミニウム粉末を生成
せしめる、 ことによつて製造することができる。 上記によつて得られた窒化アルミニウム粉末
は、その焼結体に透明性を与えるために、前記窒
化アルミニウム焼結体について記述したように、
陽イオン不純物の含有量が0.3重量%以下好まし
くは0.1重量%以下特に不純物成分として鉄、ク
ロム、ニツケル、コバルト、銅、亜鉛又はチタン
成分が金属として全含有量で0.1重量%以下のも
のを使用するのが特に好適である。窒化アルミニ
ウム粉末は必要に応じて焼結助剤、結合剤、等を
混合して成形加工、焼結に供するとしばしば好適
である。 前記窒化アルミニウム焼結体よりなる中空管の
製法は特に限定されず如何なる手段を採用して実
施してもよい。一般に好適に採用される中空管の
製法の代表的な方法を例示すれば次ぎの方法があ
る。 即ち金属芯例えば鉄芯の周囲が一定の間隙とな
るように外側を弾性物質で囲つて固定する。この
間隙に前記窒化アルミニウム粉末を必要に応じて
周期律第a族又は第a族の金属化合物からな
る焼結助剤を混合して充填する。その後外側から
例えば300〜3000Kg/cm2の圧をかけ所謂ラバープ
レス法によつて加圧成形する。この成形物から前
記弾性物質即ちラバー及び金属芯を取り除くこと
によつて中空管の原形が得られる。次いで該中空
管は不活性ガス例えば窒素ガスの存在下に高温下
例えば1600〜2100℃の温度下で焼結することによ
り高密度、高強度、高透光性の中空管が得られ
る。 このように常圧焼結によつて中空管を製造出来
ることは従来の窒化アルミニウム粉末から考える
と全く予想外で、まして透光性の中空管が窒化ア
ルミニウム素材で製造出来ることは全く予想さえ
出来なかつたことである。これらの効果は専ら前
記窒化アルミニウム粉末の特性に基因するものが
大きいものと考えられる。 前記中空管にはその内部に発光源を内臓して密
閉し且つその中空管の両端に電極端子を設けるこ
とによつて本発明の発光管となる。上記発光源は
特に限定されず電極端子に電気を導通することに
よつて発光するようなものを使用するとよい。ま
た該発光源を上記中空管に内臓し密閉する方法は
特に限定されず公知の透光性アルミナを素材とす
る中空管を用いる発光管と同様に実施すればよ
い。一般には該発光源及び不活性ガス例えばネオ
ンガス、キヤノンガス等を内存させ、該中空管の
両端を導電性のリード部を有すし且つ窒化アルミ
ニウム焼結体を素材としたキヤツプをガラスで封
着することによつて実施すればよい。 添付図面第2図は本発明の発光管をナトリウム
ランプに使用した場合の使用例を示す説明図であ
る。第2図は、窒化アルミニウム焼結体よりなる
中空管1の内部2にNa−Hgアマルガムとキヤノ
ンガスを入れ、該中空管の両端部3,3′をリー
ド部5を有し、窒化アルミニウム焼結体よりなる
キヤツプ4,4′を用い低熱膨張ガラス(図示せ
ず)で融着したものである。このリード部には電
源から導電性を連結し、中空管両端のリード部に
導通する。この導通により中空管内でナトリウム
が発光しナトリウムランプとなる。 本発明の発光管を使用するときは窒化アルミニ
ウム焼結体がすぐれた熱伝導性を有するため温度
差による影響が小さく、熱シヨツクによつて破砕
されることはない。しかも後述する実施例で明ら
かなように該発光管はすぐれた透光性を示すので
発光管として好適に使用される。 本発明を更に具体的に説明するため以下実施例
を挙げて説明するが本発明はこれらの実施例に限
定されるものではない。 実施例 1 純度99.99%(不純物分析値を表1に示す)で
平均粒子径が0.52μmで3μm以下の粒子の割合が
95vol%のアルミナ100重量部と、灰分0.08wt%で
平均粒子径が0.45μmのカーボンブラツク50重量
部とを、ナイロン製ポツトとナイロンコーテイン
グしたボールを用いエタノールを分散媒体として
均一にボールミル混合した。得られた混合物を乾
燥後、高純度黒鉛製平皿に入れ電気炉内に窒素ガ
スを3/minで連続的に供給しながら1600℃の
温度で6時間加熱した。得られた反応混合物を空
気中で750℃の温度で4時間加熱し、未反応のカ
ーボンを酸化除去した。得られた白色の粉末はX
線回折分析(Xray diffraction analysis)の結
果、単相(single phase)のAlNであり、Al2O3
の回折ピークは無かつた。また該粉末の平均粒子
径を粒度分布測定器(堀場製作所製(APA−
500)を用いて測定したところ1.31μmであり、3μ
m以下が90容量%を占めた。走査型電子顕微鏡に
よる観察ではこの粉末は平均0.7μm程度の均一な
粒子であつた。また比表面積の測定値は4.0m2
gであつた。この粉末の分析値を表2に示す。 表1 Al2O3粉末分析値 Al2O3含有量 99.99% 元素 含有量(PPM) Mg <5 Cr <10 Si 30 Zn <5 Fe 22 Cu <5 Ca <20 Ni 15 Ti <5 表2 AlN粉末分析値 AlN含有量 97.8% 元素 含有量 Mg <5(PPM) Cr 21(〃) Si 125(〃) Zn 9(〃) Fe 20(〃) Cu <5(〃) Mn 5(〃) Ni 27(〃) Ti <5(〃) Co <5(〃) Al 64.8(wt%) N 33.4(〃) O 1.1(〃) C 0.11(〃) このようにして得られた窒化アルミニウム粉末
に硝酸カルシウム、Ca(NO32・4H2OをCaO換
算で1.0重量%となるよう添加し、エタノールを
分散媒として均一に混合した。混合後撹拌しなが
ら徐々にエタノールを飛ばして乾燥した。この混
合粉末を1500Kg/cm2の圧力で管状にラバープレス
し、加工した後1気圧の窒素雰囲気下、1900℃の
温度で4時間焼成した。得られた密度3.25g/cm3
の管状の焼結体を研磨して外径10mm、内径8mm、
長さ100mmの管とした。この管について、0.55〜
0.65μmの光の直線透過率及び全透過率を求めた
ところ各々35%、84%であつた。この管にNa−
Hgアマルガム及びキヤノンガスを封入して両端
を電極およびニオブのリード部を有するAlN製
キヤツプを低熱膨張ガラスで封着して発光管を作
製した。電極先端長11mmの場合、100Vの電圧に
よるくり返し発光テストにおいて機械的破損はな
くまた発光効率の低下は見られなかつた。 また前記窒化アルミニウム焼結体の機械的破断
面の電子顕微鏡写真(倍率1200倍)を第1図に示
す。この写真によると焼結体は明瞭な輪郭をもつ
多角形状の均一な粒子から構成されている。結晶
粒子の大きさを長径と短径の平均値で求めると図
1の写真における平均粒子径(D)は5.0μmであ
り0.3D〜1.8D(1.5μm〜9.0μm)の範囲に入る粒
子の個数の割合は97%である。 実施例 2 実施例1と同じ窒化アルミニウム粉末を用い、
焼結助剤および焼結条件を変化させて作成した透
光管の平均粒子径とその分布が透光性に与える影
響について調べた結果を表1に示す。表1の中の
No.3、4は比較例である。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a novel arc tube. Specifically, the mechanical fracture surface is formed by a tightly packed state of fine crystal grains that are distinguished from each other by clear contours, and the clear contours of the fine crystal grains on the fracture surface has a polygonal shape, and the fine crystals have an average particle size of 0.3D to 0.3D when the average particle diameter at the fracture surface defined by the clear outline is defined as D (μm).
A hollow tube made of an aluminum nitride sintered body in which at least 70% of the crystal grains have a particle size in the range of 1.8D, and the hollow tube has a light emitting source in its hollow part. It is an arc tube that is sealed and has electrode terminals at both ends. Conventional arc tubes, such as high pressure sodium lamps, are widely used. These known arc tube materials are generally made of translucent alumina because they are required to have excellent translucency. Translucent alumina is an excellent material for arc tubes in that it has excellent translucency, but because of its low coefficient of thermal expansion, it does not reach high temperatures when the power is turned off, such as in the case of high-pressure sodium lamps.
It has a defect in its thermal shock properties, such as being rapidly cooled from around 1000℃ to room temperature. Therefore, there has been a desire to develop a material that is resistant to heat shock and has excellent translucency. As a result of diligent efforts to develop translucent ceramics, the present inventors have discovered that a sintered body obtained by sintering a new specific aluminum nitride powder has excellent translucency and has already proposed. As a result of further research, we discovered that an arc tube using the above-mentioned novel aluminum nitride powder not only has excellent light transmittance, but also exhibits excellent thermal shock properties, and we have completed the present invention and hereby propose it. It came to this. That is, in the present invention, the mechanical fracture surface is formed by a tightly packed state of fine crystal grains that are distinguished from each other by clear contours, and the mechanical fracture surface of the fine crystal grains on the fracture surface is The clear outline has a polygonal shape, and the fine crystals have a particle size in the range of 0.3D to 1.8D when the average particle size at the fracture surface defined by the clear outline is defined as D (μm). A hollow tube made of an aluminum nitride sintered body in which at least 70% of the crystal grains have a It is an arc tube with electrode terminals provided at both ends. The material of the hollow tube constituting the arc tube of the present invention has the following characteristics. Figure 1 of the accompanying drawings shows an aluminum nitride sintered body obtained by sintering the same aluminum nitride powder as in Example 1, which is the material for the hollow tube made of the aluminum nitride sintered body obtained in Example 1, which will be described later. This is a microscopic photograph of a fractured surface obtained by mechanically rupturing. As is clear from FIG. 1, the mechanical fracture surface is formed by a close packing of fine grains separated from each other by clear contours. The clear outline of the fracture surface of the fine crystal grains has a polygonal shape. In addition, the fine crystals have an average particle diameter of D at the fracture surface defined by the clear outline.
(μm), preferably 0.3D to 1.8D
At least 70% of the grains should have a grain size in the range 0.5D to 1.5D. In this way, an aluminum nitride sintered body with a very uniform particle size distribution (for example, in Figure 1, the average particle size (D) is 5.3 μm, and the particles with a particle size of 0.3D to 1.8D, that is, 1.6 μm to 9.5 μm) (accounting for 98%) is very unique compared to the previously proposed aluminum nitride sintered bodies. In addition, the aluminum nitride sintered body has a high purity.
It is preferable to use one having a content of cationic impurities of 99.5% or more, preferably 99.9% or more, and 0.3% by weight or less, preferably 0.1% by weight or less. The above-mentioned cationic impurities in aluminum nitride are metal components such as silicon, manganese, iron, chromium, nickel, cobalt, copper, zinc, titanium, etc. that are mixed into the aluminum nitride powder before sintering. The content of the cationic impurity is calculated based on the content calculated assuming that the compound of the cationic component is a metal. The novel aluminum nitride sintered body has a very high density, generally having a density of 2.9 g/cm 2 or more, preferably 3.0 g/cm 2 , and more preferably 3.2 g/cm 2 .
It has a property of g/cm 2 . Among the aluminum nitride sintered bodies, the aluminum nitride purity is 99.5% or more, preferably 99.9% or more, and the content of cationic impurities is 0.3% by weight or less, preferably 0.1% by weight or less. Particularly, among the metals as impurity components, iron, chromium An aluminum nitride sintered body having a total metal content of nickel, cobalt, copper, zinc or titanium of 0.1% by weight or less has particularly excellent transparency. In this sense, the aluminum nitride sintered body having the above properties is particularly suitable as a material for the hollow tube of the present invention. According to X-ray diffraction, the novel aluminum nitride sintered body has six distinct diffraction lines originating from hexagonal aluminum nitride crystals between diffraction angles (2θ) of 30° and 70°, that is, 33.3°± 0.5°, 36.2°±0.5°, 38.1°±
0.5°, 49.8°±0.5°, 59.6°±0.5 and 66.3°±0.5
The diffraction lines are shown with a diffraction angle of °. When these diffraction lines are converted into interplanar spacings (d, A) using Bragg's equation, they are 2.69±0.04A, 2.48±0.03A, and 2.36±, respectively.
0.03A, 1.83±0.02A, 1.55±0.01A and 1.41±
Equivalent to 0.01A. Conventional aluminum nitride sintered bodies require a large amount of sintering aids (for example,
CoO, Y2O3 , etc.) and the high oxygen content of the raw aluminum nitride itself, in addition to the diffraction lines originating from the hexagonal crystal of aluminum nitride, e.g.
CaO・6Al 2 O 3 , CaO・2Al 2 O 3 or Y 3 Al 5 O 12
It has been reported that diffraction lines derived from crystals such as According to the aluminum nitride sintered body, even when such a sintering aid is used for sintering, the aluminum nitride sintered body is of high purity and does not substantially exhibit the above-mentioned crystal diffraction lines derived from the sintering aid. It is a high-density aluminum nitride sintered body. The method for manufacturing the hollow body made of the aluminum nitride sintered body is not particularly limited and any method may be used, but the properties and sinterability of the aluminum nitride powder usually depend on the aluminum nitride powder used for sintering. Ru.
Typical aluminum nitride powders that provide the above-mentioned properties and typical methods for producing the same are as follows. First, the aluminum nitride powder has an average particle size of 2 μm or less, and the proportion of particles with a particle size of 3 μm or less is 70% by weight of the total aluminum nitride powder.
The aluminum nitride powder has the above properties, and has an oxygen content of 3.0% by weight or less, preferably 1.5% by weight or less, and an aluminum nitride purity of 95% or more, preferably 97% or more. Such aluminum nitride powder can be obtained, for example, as follows. That is, (1) Fine aluminum particles with an average particle size of 2 μm or less and fine carbon powder with an ash content of 0.2% by weight and an average particle size of 1 μm or less are tightly mixed in a liquid dispersion medium such as water, alcohol, or hydrocarbon. mix,
At that time, the weight ratio of the fine aluminum powder to the fine carbon powder is 1:0.36 to 1:1; (2) The intimate mixture obtained is suitably dried and heated at 1400 to 1700°C under an atmosphere of nitrogen or ammonia. (3) The resulting fine powder is then heated in an oxygen-containing atmosphere at a temperature of 600 to 900°C to remove unreacted carbon so that the aluminum nitride content is at least 95% by weight. and the content of bound oxygen is maximum
3.0% by weight, preferably 1.5% by weight, and the content of metal compounds as impurities is a maximum of 0.3% by weight as metal, and the average particle size is 2 μm or less,
It can be produced by producing aluminum nitride powder in which particles having a particle size of 3 μm or less account for 70% by weight or more. In order to impart transparency to the aluminum nitride powder obtained above, as described for the aluminum nitride sintered body,
The content of cationic impurities is 0.3% by weight or less, preferably 0.1% by weight or less. Particularly, the impurity components used include iron, chromium, nickel, cobalt, copper, zinc, or titanium, whose total metal content is 0.1% by weight or less. It is particularly suitable to do so. It is often preferable to mix the aluminum nitride powder with a sintering aid, a binder, etc., if necessary, and then subject it to shaping and sintering. The method for manufacturing the hollow tube made of the aluminum nitride sintered body is not particularly limited, and any method may be employed. Typical methods for manufacturing hollow tubes that are generally suitably employed include the following methods. That is, a metal core, for example, an iron core, is fixed by surrounding the outside with an elastic material so that a certain gap is left around the periphery. This gap is filled with the aluminum nitride powder, mixed with a sintering aid consisting of a metal compound of group a or group a of the periodic table, if necessary. Thereafter, a pressure of, for example, 300 to 3000 kg/cm 2 is applied from the outside to form the material by a so-called rubber press method. By removing the elastic material, i.e., rubber, and the metal core from this molding, the original shape of the hollow tube is obtained. The hollow tube is then sintered in the presence of an inert gas, such as nitrogen gas, at a high temperature, for example, 1,600 to 2,100° C., to obtain a hollow tube with high density, high strength, and high translucency. It was completely unexpected that hollow tubes could be manufactured using pressureless sintering when considering conventional aluminum nitride powder, and it was even more unexpected that transparent hollow tubes could be manufactured from aluminum nitride material. I couldn't even do it. It is considered that these effects are largely due to the characteristics of the aluminum nitride powder. The luminescent tube of the present invention is obtained by housing a light emitting source inside the hollow tube, sealing it, and providing electrode terminals at both ends of the hollow tube. The light emitting source is not particularly limited, and it is preferable to use one that emits light by conducting electricity to an electrode terminal. Further, the method of incorporating the light emitting source into the hollow tube and sealing it is not particularly limited, and may be carried out in the same manner as in the case of a light emitting tube using a hollow tube made of known translucent alumina. Generally, the light emitting source and an inert gas such as neon gas or Canon gas are contained therein, and both ends of the hollow tube have conductive lead parts, and a cap made of aluminum nitride sintered body is sealed with glass. This can be done by doing the following: FIG. 2 of the accompanying drawings is an explanatory view showing an example of use of the arc tube of the present invention in a sodium lamp. Fig. 2 shows that Na-Hg amalgam and Canon gas are put into the interior 2 of a hollow tube 1 made of an aluminum nitride sintered body, and both ends 3 and 3' of the hollow tube are provided with lead portions 5. Caps 4 and 4' made of sintered aluminum are fused with low thermal expansion glass (not shown). A conductive wire from a power source is connected to this lead portion, and electrical conductivity is established between the lead portions at both ends of the hollow tube. This conduction causes sodium to emit light within the hollow tube, creating a sodium lamp. When using the arc tube of the present invention, since the aluminum nitride sintered body has excellent thermal conductivity, it is less affected by temperature differences and will not be crushed by thermal shock. Furthermore, as will be clear from the examples described later, the arc tube exhibits excellent light transmittance and is therefore suitably used as an arc tube. EXAMPLES In order to explain the present invention more specifically, the present invention will be described below with reference to Examples, but the present invention is not limited to these Examples. Example 1 The purity is 99.99% (impurity analysis values are shown in Table 1), the average particle diameter is 0.52 μm, and the proportion of particles of 3 μm or less is
100 parts by weight of 95 vol% alumina and 50 parts by weight of carbon black having an ash content of 0.08 wt% and an average particle diameter of 0.45 μm were uniformly mixed in a ball mill using a nylon pot and a nylon-coated ball using ethanol as a dispersion medium. After drying the resulting mixture, it was placed in a flat plate made of high-purity graphite and heated at a temperature of 1600° C. for 6 hours while continuously supplying nitrogen gas at 3/min in an electric furnace. The resulting reaction mixture was heated in air at a temperature of 750° C. for 4 hours to oxidize and remove unreacted carbon. The white powder obtained is
As a result of Xray diffraction analysis, it is single phase AlN, Al 2 O 3
There was no diffraction peak. In addition, the average particle diameter of the powder was measured using a particle size distribution analyzer (manufactured by Horiba, Ltd. (APA-
500), it was 1.31μm, and 3μm
m or less accounted for 90% of the capacity. When observed using a scanning electron microscope, this powder was found to be uniform particles with an average size of about 0.7 μm. Also, the measured value of specific surface area is 4.0m 2 /
It was hot at g. The analytical values of this powder are shown in Table 2. Table 1 Al 2 O 3 powder analysis values Al 2 O 3 content 99.99% Element Content (PPM) Mg <5 Cr <10 Si 30 Zn <5 Fe 22 Cu <5 Ca <20 Ni 15 Ti <5 Table 2 AlN Powder analysis value AlN content 97.8% Element Content Mg <5 (PPM) Cr 21 (〃) Si 125 (〃) Zn 9 (〃) Fe 20 (〃) Cu <5 (〃) Mn 5 (〃) Ni 27 (〃) Ti <5 (〃) Co <5 (〃) Al 64.8 (wt%) N 33.4 (〃) O 1.1 (〃) C 0.11 (〃) Calcium nitrate, Ca(NO 3 ) 2 ·4H 2 O was added to give a concentration of 1.0% by weight in terms of CaO, and the mixture was uniformly mixed using ethanol as a dispersion medium. After mixing, the mixture was dried by gradually removing ethanol while stirring. This mixed powder was rubber pressed into a tubular shape at a pressure of 1500 kg/cm 2 , processed, and then fired at a temperature of 1900° C. for 4 hours under a nitrogen atmosphere of 1 atm. Obtained density 3.25g/cm 3
The tubular sintered body is polished to have an outer diameter of 10 mm, an inner diameter of 8 mm,
A tube with a length of 100 mm was used. For this tube, 0.55~
The linear transmittance and total transmittance of light at 0.65 μm were determined to be 35% and 84%, respectively. This tube contains Na−
An arc tube was fabricated by sealing an AlN cap filled with Hg amalgam and Canon gas and having electrodes and niobium leads at both ends with low thermal expansion glass. When the electrode tip length was 11 mm, no mechanical damage was observed in repeated light emission tests using a voltage of 100 V, and no decrease in luminous efficiency was observed. Further, an electron micrograph (magnification: 1200 times) of the mechanically fractured surface of the aluminum nitride sintered body is shown in FIG. This photograph shows that the sintered body is composed of uniform polygonal particles with clear outlines. When the size of crystal grains is determined by the average value of the major axis and minor axis, the average particle diameter (D) in the photograph in Figure 1 is 5.0 μm, which is the average particle diameter (D) of particles in the range of 0.3D to 1.8D (1.5μm to 9.0μm). The number ratio is 97%. Example 2 Using the same aluminum nitride powder as in Example 1,
Table 1 shows the results of investigating the influence of the average particle diameter and its distribution on translucency in transparent tubes made by varying the sintering aid and sintering conditions. In Table 1
Nos. 3 and 4 are comparative examples. 【table】

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1の窒化アルミニウム焼結体の
機械的破断面の焼結体の粒子構造を示す顕微鏡写
真であり、第2図は本発明の発光管の実施態様の
説明図である。第2図中、各数値は次ぎの内容を
示す。 1……中空管、2……中空管の内部、3,3′
……中空管の端部、4,4′……キヤツプ、5…
…リード部。
FIG. 1 is a micrograph showing the grain structure of the mechanically fractured surface of the aluminum nitride sintered body of Example 1, and FIG. 2 is an explanatory diagram of an embodiment of the arc tube of the present invention. In FIG. 2, each numerical value indicates the following content. 1...Hollow tube, 2...Inside of hollow tube, 3, 3'
...End of hollow tube, 4,4'...Cap, 5...
...Lead section.

Claims (1)

【特許請求の範囲】 1 機械的な破断面が明瞭な輪郭によつて互に区
別される微細な結晶粒の緊密な充填状態によつて
形成されており、該微細な結晶粒の該破断面にお
ける該明瞭な輪郭は多角形状であり、該微細な結
晶は該明瞭な輪郭によつて規定される該破断面に
おける平均粒子径をD(μm)で定義するとき
0.3D〜1.8Dの範囲の粒子径を持つ結晶粒の個数
が少なくとも70%を占めることによつて構成され
ている窒化アルミニウム焼結体よりなる中空管
で、該中空管はその中空部に発光源を内臓して密
閉され且つその両端に電極端子を設けてなる発光
管。 2 窒化アルミニウム焼結体が不純物成分を金属
として0.3重量%以下好ましくは0.1重量%以下含
有するものである特許請求の範囲1記載の発光
管。
[Claims] 1. The mechanical fracture surface is formed by a tightly packed state of fine crystal grains that are distinguished from each other by clear contours, and the fracture surface of the fine crystal grains is The clear outline in is a polygonal shape, and the fine crystals have an average particle diameter at the fracture surface defined by the clear outline, where D (μm) is defined as
A hollow tube made of an aluminum nitride sintered body composed of at least 70% of crystal grains having a particle size in the range of 0.3D to 1.8D, the hollow tube having a hollow portion A luminous tube that is sealed with a built-in luminous source and has electrode terminals at both ends. 2. The arc tube according to claim 1, wherein the aluminum nitride sintered body contains an impurity component of 0.3% by weight or less, preferably 0.1% by weight or less as metal.
JP59048090A 1984-03-15 1984-03-15 Emission tube Granted JPS60193254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59048090A JPS60193254A (en) 1984-03-15 1984-03-15 Emission tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59048090A JPS60193254A (en) 1984-03-15 1984-03-15 Emission tube

Publications (2)

Publication Number Publication Date
JPS60193254A JPS60193254A (en) 1985-10-01
JPH0444384B2 true JPH0444384B2 (en) 1992-07-21

Family

ID=12793618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59048090A Granted JPS60193254A (en) 1984-03-15 1984-03-15 Emission tube

Country Status (1)

Country Link
JP (1) JPS60193254A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3840577A1 (en) * 1988-12-01 1990-06-07 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh DISCHARGE VESSEL FOR A HIGH PRESSURE DISCHARGE LAMP AND METHOD FOR THE PRODUCTION THEREOF
JPH04223037A (en) * 1990-03-23 1992-08-12 Philips Gloeilampenfab:Nv High-pressure discharge lamp
JP2005175039A (en) * 2003-12-09 2005-06-30 Kenichiro Miyahara Light emitting element and substrate for mounting the same
KR100970155B1 (en) 2005-08-11 2010-07-14 가부시끼가이샤 도꾸야마 Aluminum nitride sintered body
EP1903598A3 (en) * 2006-09-22 2010-01-06 Toshiba Lighting & Technology Corporation High-pressure discharge lamp, high-pressure discharge lamp operating apparatus, and illuminating apparatus.
US20080076658A1 (en) 2006-09-26 2008-03-27 Tokuyama Corporation Aluminum nitride sintered body
JP2009054333A (en) * 2007-08-24 2009-03-12 Toshiba Lighting & Technology Corp High-pressure discharge lamp and luminaire
KR20110040814A (en) * 2008-07-01 2011-04-20 스미토모덴키고교가부시키가이샤 Process for production of alxga(1-x)n single crystal, alxga(1-x)n single crystal, and optics

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5477481A (en) * 1977-12-02 1979-06-20 Ngk Insulators Ltd Polycrystal transparent alumina light emitting tube and high voltage vapor discharge lamp using same
JPS5679847A (en) * 1979-12-04 1981-06-30 Toshiba Ceramics Co Ltd Light transmittable alumina tube and high pressure sodium vapor discharge lamp
JPS5874577A (en) * 1981-08-31 1983-05-06 レイセオン カンパニ− Transparent aluminum oxynitride and manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5477481A (en) * 1977-12-02 1979-06-20 Ngk Insulators Ltd Polycrystal transparent alumina light emitting tube and high voltage vapor discharge lamp using same
JPS5679847A (en) * 1979-12-04 1981-06-30 Toshiba Ceramics Co Ltd Light transmittable alumina tube and high pressure sodium vapor discharge lamp
JPS5874577A (en) * 1981-08-31 1983-05-06 レイセオン カンパニ− Transparent aluminum oxynitride and manufacture

Also Published As

Publication number Publication date
JPS60193254A (en) 1985-10-01

Similar Documents

Publication Publication Date Title
EP0028885B1 (en) An electrically conducting cermet, its production and use
US4150317A (en) Polycrystalline alumina material
GB1571084A (en) Electric lamps and components and materials therefor
CN101023194A (en) Electrically conductive cermet and method of making
DE3122188A1 (en) GETTER MATERIAL AND STRUCTURE FOR PREFERRED USE AT LOW TEMPERATURES AND GAUGE DEVICES MADE THEREOF FOR VACUUM OR FILLED GAS FILLED CONTAINERS
CA1123019A (en) Ceramic compositions and articles prepared therefrom
JPH0444384B2 (en)
CA1082909A (en) Electric lamps and components and materials therefor
US3834915A (en) Fine grain translucent alumina
US4169875A (en) Method of producing a tubular body of polycrystalline alumina
US3567472A (en) Magnesium-aluminatespinel member having calcium oxide addition and method for preparing
CN106981824A (en) Spark plug
US4021255A (en) Sintered beta-alumina article permeable to sodium and potassium ions and methods for producing same
FI78796B (en) METALLKERAMIK OCH HOEGTRYCKSNATRIUMURLADDNINGSLAMPA.
EP0142202B1 (en) High-pressure gas discharge lamp
CA1193683A (en) Arc limiting refractory resistive element and method of fabricating
JP3340024B2 (en) Method for manufacturing light-transmitting tube used for arc tube for discharge lamp
JPH06168704A (en) Electrode material and high-pressure discharge lamp using thereof
US4330629A (en) Heat-resistant sealing materials
GB2138802A (en) Ceramic translucent material
JPS6112868B2 (en)
JPS60191064A (en) Manufacture of light permeable sialon
WO2012157462A1 (en) Method for producing member containing conductive mayenite compound
CA1175259A (en) Molybdenum-tantalum lead wire and method for making
JP2638052B2 (en) High temperature electrical insulating filler and method for producing the same