JPH0211790B2 - - Google Patents

Info

Publication number
JPH0211790B2
JPH0211790B2 JP59058553A JP5855384A JPH0211790B2 JP H0211790 B2 JPH0211790 B2 JP H0211790B2 JP 59058553 A JP59058553 A JP 59058553A JP 5855384 A JP5855384 A JP 5855384A JP H0211790 B2 JPH0211790 B2 JP H0211790B2
Authority
JP
Japan
Prior art keywords
oxide
oxides
groups
densely sintered
aluminum nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59058553A
Other languages
Japanese (ja)
Other versions
JPS59194183A (en
Inventor
Uerudetsukaa Uarutorauto
Arudeingaa Furitsutsu
Nitsuche Rainaa
Shifu Kurausuuruutoihi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WC Heraus GmbH and Co KG
Original Assignee
WC Heraus GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WC Heraus GmbH and Co KG filed Critical WC Heraus GmbH and Co KG
Publication of JPS59194183A publication Critical patent/JPS59194183A/en
Publication of JPH0211790B2 publication Critical patent/JPH0211790B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/0305Selection of materials for the tube or the coatings thereon

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Ceramic Products (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Lasers (AREA)

Description

【発明の詳細な説明】 発明の分野 本発明は緻密に焼結されたセラミツク材料から
なるレーザー管部材に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to laser tube members made of densely sintered ceramic material.

従来技術 良好な熱伝導性と大きな電気抵抗をもつために
酸化アルミニウムは管部材として使用され、必要
条件が酸化アルミニウムセラミツクによつてはも
はや満されない場合には管部材用に緻密に焼結さ
れた酸化ベリリウムが使用される(ウルマン・エ
ンシクロペデイア・デル・テヒニツシエン・ヘミ
ー第4版、1979年、17巻、525−527頁)。
Prior Art Due to its good thermal conductivity and high electrical resistance, aluminum oxide is used as tube parts and densely sintered for tube parts when the requirements are no longer met by aluminum oxide ceramics. Beryllium oxide is used (Ullmann Encyclopédia der Technicien Chemie 4th edition, 1979, Vol. 17, pp. 525-527).

緻密に焼結された酸化ベリリウムは非常に良好
な諸性質をもつが、高価であり且つ酸化ベリリウ
ム紛末が有毒であるために、広く使用されるには
至つていない。
Although densely sintered beryllium oxide has very good properties, it has not been widely used because it is expensive and beryllium oxide powder is toxic.

発明の目的 本発明の目的は緻密に焼結した酸化ベリリウム
と同様な良好な諸性質をもち、しかもコスト的に
有利で健康上の危害なく製造、加工できるレーザ
ー管部材用材料を見出すにある。
OBJECTS OF THE INVENTION The object of the present invention is to find a material for laser tube members that has the same good properties as densely sintered beryllium oxide, is cost-effective, and can be manufactured and processed without causing health hazards.

発明の概要 この本発明の目的はアルカリ土類金属の酸化
物、希土類金属の酸化物、周期表族、族およ
び族の遷移元素の酸化物、酸化アルミニウムま
たは酸化ケイ素から選択された1種または2種以
上の酸化物添加物を0.1〜10重量%含む緻密に焼
結された窒化アルミニウムからなるレーザー管部
材により達成される。
SUMMARY OF THE INVENTION The object of the present invention is to provide one or two selected from oxides of alkaline earth metals, oxides of rare earth metals, oxides of transition elements of groups, groups and groups of the periodic table, aluminum oxide or silicon oxide. This is accomplished with a laser tube component made of densely sintered aluminum nitride containing 0.1-10% by weight of one or more oxide additives.

本発明による緻密に焼結された窒化アルミニウ
ムからなる管部材は高強度、良好な温度変化安定
性、高電気抵抗及び良好な誘電特性をもつ。緻密
に焼結された窒化アルミニウム管部材は酸化ベリ
リウムからなる管部材と異つて高温度においても
良好な熱伝導性を保持するから、この部材はレー
ザー管に特に適する。
The tube member made of densely sintered aluminum nitride according to the present invention has high strength, good temperature change stability, high electrical resistance and good dielectric properties. Densely sintered aluminum nitride tubes, unlike tubes made of beryllium oxide, retain good thermal conductivity even at high temperatures, making them particularly suitable for laser tubes.

本発明による管部材は緻密に焼結された窒化ア
ルミニウム比較的大きい熱膨張率をもつために金
属とよく結合する。
The tube member according to the present invention is made of densely sintered aluminum nitride and has a relatively high coefficient of thermal expansion, so it bonds well with metal.

本発明による管部材を製造するための原料は好
ましくは窒化アルミニウムと0.1〜10重量%の酸
化物添化物との紛未状混合物である。この混合物
を冷間プレスにより生成形体を造り、この生成形
体を不活性雰囲気、好ましくは窒素雰囲気下で緻
密焼結体に焼結する。
The raw material for producing the tubular member according to the invention is preferably a neat mixture of aluminum nitride and 0.1 to 10% by weight of oxide additives. This mixture is cold pressed to form a green body, and this green body is sintered into a dense sintered body under an inert atmosphere, preferably a nitrogen atmosphere.

緻密に焼結された窒化アルミニウムの熱膨張係
数及び熱伝導性は酸化物添加物の種類及び量によ
つて所望のように変えることができる。
The coefficient of thermal expansion and thermal conductivity of densely sintered aluminum nitride can be varied as desired by the type and amount of oxide additives.

酸化物添加物としてはアルカリ土類金属の酸化
物、希土類金属(スカンジウム、イツトリウム、
及びランタンないしルテシウムの金属)の酸化
物、周期表第族、第族及び第族の遷移金属
の酸化物、酸化アルミニウム及び酸化ケイ素を単
独または複数種使用できる。
Oxide additives include alkaline earth metal oxides, rare earth metals (scandium, yttrium,
and lanthanum or lutetium), oxides of transition metals of Groups 1 and 3 of the periodic table, aluminum oxide, and silicon oxide may be used singly or in combination.

特に酸化イツトリウムが好適である。 Yttrium oxide is particularly suitable.

酸化イツトリウムを含有する緻密に焼結された
窒化アルミニウムは意外にも湿気に対して特に安
定である。
Densely sintered aluminum nitride containing yttrium oxide is surprisingly particularly stable against moisture.

本発明による管部材は有利には下記の実施例に
記載のようにして行われる。
The tube element according to the invention is advantageously produced as described in the examples below.

実施例 紛末状窒化アルミニウム99重量%と紛末状酸化
イツトリウム1重量%とからなる混合物5000gを
ボールミル中で磁器磨砕材を用いて保護ガスとし
てアルゴンを用いて40時間磨砕し、次いで100μ
のふるい目のふるいで分級した。
EXAMPLE 5000 g of a mixture consisting of 99% by weight of powdered aluminum nitride and 1% by weight of powdered yttrium oxide were milled in a ball mill with a porcelain grinding material for 40 hours using argon as protective gas, and then 100μ
It was classified using a sieve with a mesh size.

分級により得た100μ未満の粒子寸法の紛末を
等圧冷間プレス(圧力2500バール)により管状圧
さく体を造り、電熱焼結炉中に置いた。10-5ミリ
バール(mbar)に減圧後に焼結炉中に窒素を圧
力5ミリバールになるまで導入した。この圧力を
保ちながら焼結炉を3時間以内に1200℃に達する
まで加熱した。次いで窒素圧力を140ミリバール
に、温度を1時間以内に1850℃に高めた。この時
点で窒素圧力は180ミリバールに高まつた。
The powder with particle size less than 100μ obtained by classification was made into tubular compacts by isobaric cold pressing (pressure 2500 bar) and placed in an electric sintering furnace. After reducing the pressure to 10 -5 mbar, nitrogen was introduced into the sintering furnace until a pressure of 5 mbar was reached. While maintaining this pressure, the sintering furnace was heated to 1200° C. within 3 hours. The nitrogen pressure was then increased to 140 mbar and the temperature to 1850° C. within 1 hour. At this point the nitrogen pressure increased to 180 mbar.

この温度と圧力を2時間にわたつて保ち、次い
で冷却した。焼結炉を換気後、緻密に焼結した管
部材を取出した。
This temperature and pressure was maintained for 2 hours and then cooled. After ventilating the sintering furnace, the densely sintered pipe member was taken out.

こうして製造した管部材は熱膨張係数が4×
10-6/キログラム(K)で、熱伝導率が200W/mK
で、曲げ強さが320N/mm2であつた。
The tube member manufactured in this way has a coefficient of thermal expansion of 4×
10 -6 / kilogram (K), thermal conductivity is 200W/mK
The bending strength was 320N/ mm2 .

Claims (1)

【特許請求の範囲】 1 アルカリ土類金属の酸化物、希土類金属の酸
化物、周期表族、族および族の遷移元素の
酸化物、酸化アルミニウムまたは酸化ケイ素から
選択された1種または2種以上の酸化物添加物を
0.1〜10重量%含む緻密に焼結された窒化アルミ
ニウムからなるレーザー管部材。 2 酸化物添加物が酸化イツトリウムである特許
請求の範囲第1項記載のレーザー管部材。
[Scope of Claims] 1. One or more selected from oxides of alkaline earth metals, oxides of rare earth metals, oxides of transition elements of groups, groups, and groups of the periodic table, aluminum oxide, or silicon oxide. oxide additives
Laser tube member made of densely sintered aluminum nitride containing 0.1 to 10% by weight. 2. The laser tube member according to claim 1, wherein the oxide additive is yttrium oxide.
JP59058553A 1983-04-16 1984-03-28 Pipe member Granted JPS59194183A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3313836.2 1983-04-16
DE19833313836 DE3313836C2 (en) 1983-04-16 1983-04-16 Use of aluminum nitride for laser tube components

Publications (2)

Publication Number Publication Date
JPS59194183A JPS59194183A (en) 1984-11-02
JPH0211790B2 true JPH0211790B2 (en) 1990-03-15

Family

ID=6196574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59058553A Granted JPS59194183A (en) 1983-04-16 1984-03-28 Pipe member

Country Status (5)

Country Link
JP (1) JPS59194183A (en)
CH (1) CH658855A5 (en)
DE (1) DE3313836C2 (en)
FR (1) FR2544305B1 (en)
GB (1) GB2140458B (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3247985C2 (en) * 1982-12-24 1992-04-16 W.C. Heraeus Gmbh, 6450 Hanau Ceramic carrier
US4547471A (en) * 1983-11-18 1985-10-15 General Electric Company High thermal conductivity aluminum nitride ceramic body
US4578234A (en) * 1984-10-01 1986-03-25 General Electric Company Process of pressureless sintering to produce dense high thermal conductivity ceramic body of deoxidized aluminum nitride
US4578233A (en) * 1984-11-01 1986-03-25 General Electric Company Pressureless sintering process to produce high thermal conductivity ceramic body of aluminum nitride
JPH0649613B2 (en) * 1984-11-08 1994-06-29 株式会社東芝 Aluminum nitride sintered body and manufacturing method thereof
US4746637A (en) * 1984-11-08 1988-05-24 Kabushiki Kaisha Toshiba Aluminum nitride sintered body and process for producing the same
US4578365A (en) * 1984-11-26 1986-03-25 General Electric Company High thermal conductivity ceramic body of aluminum nitride
US4578364A (en) * 1984-12-07 1986-03-25 General Electric Company High thermal conductivity ceramic body of aluminum nitride
US4578232A (en) * 1984-12-17 1986-03-25 General Electric Company Pressureless sintering process to produce high thermal conductivity ceramic body of aluminum nitride
DE3627317A1 (en) * 1985-08-13 1987-02-19 Tokuyama Soda Kk SINTERABLE ALUMINUM NITRIDE COMPOSITION, SINTER BODY FROM THIS COMPOSITION AND METHOD FOR THE PRODUCTION THEREOF
GB2213500B (en) * 1985-08-13 1990-05-30 Tokuyama Soda Kk Sinterable aluminum nitride composition
US4897372A (en) * 1985-12-18 1990-01-30 General Electric Company High thermal conductivity ceramic body
FR2595876A1 (en) * 1986-03-13 1987-09-18 Roulot Maurice Tube for a laser generator of the ionised gas type
US4764321A (en) * 1986-03-28 1988-08-16 General Electric Company High thermal conductivity ceramic body
US4818455A (en) * 1986-05-30 1989-04-04 General Electric Company High thermal conductivity ceramic body
US5242872A (en) * 1986-07-18 1993-09-07 Tokuyama Soda Kabushiki Kaisha Process for producing aluminum nitride sintered body
JPH0717455B2 (en) * 1986-07-18 1995-03-01 株式会社トクヤマ Method for manufacturing aluminum nitride sintered body
JP2524185B2 (en) * 1988-02-29 1996-08-14 京セラ株式会社 Aluminum nitride sintered body and manufacturing method thereof
JPH0226872A (en) * 1988-07-12 1990-01-29 Sumitomo Electric Ind Ltd Window for transmitting high-frequency wave
JP2962466B2 (en) * 1997-01-06 1999-10-12 株式会社東芝 Aluminum nitride sintered body

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5554793A (en) * 1978-10-12 1980-04-22 Campbell Frank Jun Shaped piece of refractory ceramic fibers
JPS57179080A (en) * 1981-04-27 1982-11-04 Nippon Kagaku Togyo Kk Sintered ceramic pipe end sealing method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3108887A (en) * 1959-05-06 1963-10-29 Carborundum Co Refractory articles and method of making same
DE1209409B (en) * 1959-12-24 1966-01-20 Deutsche Edelstahlwerke Ag Hot press mold
BE620323A (en) * 1961-07-21
US3436179A (en) * 1964-07-27 1969-04-01 Tokyo Shibaura Electric Co Method of preparing sintered masses of aluminum nitride
DE1906522B2 (en) * 1968-02-10 1972-01-13 Tokyo Shibaura Electric Co. Ltd., Kawasaki, Kanagawa (Japan) METHOD OF MANUFACTURING A Sintered ALUMINUM NITRIDE YTTRIUM OXIDE ARTICLE
JPS48100407A (en) * 1972-03-31 1973-12-18
JPS5855377A (en) * 1981-09-28 1983-04-01 株式会社東芝 Manufacture of aluminum nitride sintered body
DE3347862C2 (en) * 1982-09-17 1988-05-11 Tokuyama Soda K.K., Tokuyama, Yamaguchi, Jp

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5554793A (en) * 1978-10-12 1980-04-22 Campbell Frank Jun Shaped piece of refractory ceramic fibers
JPS57179080A (en) * 1981-04-27 1982-11-04 Nippon Kagaku Togyo Kk Sintered ceramic pipe end sealing method

Also Published As

Publication number Publication date
FR2544305B1 (en) 1990-05-04
DE3313836A1 (en) 1984-10-18
DE3313836C2 (en) 1985-08-29
FR2544305A1 (en) 1984-10-19
GB2140458B (en) 1986-03-19
CH658855A5 (en) 1986-12-15
JPS59194183A (en) 1984-11-02
GB8406819D0 (en) 1984-04-18
GB2140458A (en) 1984-11-28

Similar Documents

Publication Publication Date Title
JPH0211790B2 (en)
JPH0217508B2 (en)
JPS6353151B2 (en)
CN108675795A (en) A kind of method that SPS sintering prepares high heat conduction and high intensity aluminium nitride ceramics
JP2020167265A (en) Thermoelectric conversion material and manufacturing method thereof
JPH0617270B2 (en) Boron nitride atmospheric pressure sintered body
JPH07273374A (en) Bi2 te3 group thermoelectric material composition having p-ntransition-preventive property
KR100404815B1 (en) Ceramic material substrate
US3483439A (en) Semi-conductor device
JP3611345B2 (en) Ceramic and its use
JPH0522670B2 (en)
JP3340644B2 (en) Composite PTC material
JPH01212268A (en) Superconducting sintered body
JPH01252584A (en) Sintered composite ceramic compact and production thereof
JP2587854B2 (en) Method for producing aluminum nitride sintered body with improved thermal conductivity
JP2772580B2 (en) Method for producing aluminum nitride sintered body
JP2007070197A (en) Boron nitride burned substance and method for producing the same
JPH075378B2 (en) Black aluminum nitride sintered body and manufacturing method thereof
KR960006249B1 (en) Process for producing an aluminium sintered product
JP2006037149A (en) Raw material for thermoelectric conversion material, method for producing thermoelectric conversion material, and thermoelectric conversion material
JPH07165472A (en) Radiating base
JPH02107569A (en) Production of aluminum nitride sintered body
JP2704194B2 (en) Black aluminum nitride sintered body
JPS593436B2 (en) Charcoal-fired silicon powder composition for sintering
JPS63215569A (en) Manufacture of high heat-conductive aluminum nitride sintered body