JP2020167265A - Thermoelectric conversion material and manufacturing method thereof - Google Patents

Thermoelectric conversion material and manufacturing method thereof Download PDF

Info

Publication number
JP2020167265A
JP2020167265A JP2019065948A JP2019065948A JP2020167265A JP 2020167265 A JP2020167265 A JP 2020167265A JP 2019065948 A JP2019065948 A JP 2019065948A JP 2019065948 A JP2019065948 A JP 2019065948A JP 2020167265 A JP2020167265 A JP 2020167265A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion material
microns
temperature
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019065948A
Other languages
Japanese (ja)
Other versions
JP7344531B2 (en
Inventor
李 哲虎
Tetsuko Ri
哲虎 李
弘隆 西当
Hirotaka Saito
弘隆 西当
邦宏 木方
Kunihiro Kikata
邦宏 木方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2019065948A priority Critical patent/JP7344531B2/en
Publication of JP2020167265A publication Critical patent/JP2020167265A/en
Application granted granted Critical
Publication of JP7344531B2 publication Critical patent/JP7344531B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

To provide a novel thermoelectric conversion material which may be expected to have thermoelectric conversion performance comparable to or better than the prior art.SOLUTION: A thermoelectric conversion material represented by the general formula Mg3-x+dYxSb2-yBiy (where 0<x≤0.1, 0≤y≤1, and -0.1≤d≤1) has a carrier injected by substituting an atom at an ionic bond site of Mg3Sb2, and specifically, is doped with electrons by substituting an Mg ion with a Y ion. The grain size is of the order of tens of microns.SELECTED DRAWING: Figure 2

Description

本発明は、新規な熱電変換材料、及びその製造方法に関する。 The present invention relates to a novel thermoelectric conversion material and a method for producing the same.

熱電変換材料とは温度差をつけることによって電力を取り出せる材料をいう。可動部分がなく故障しにくいため、メンテナンスフリーの排熱回収技術として注目されている。熱電変換材料の性能は以下の無次元性能指数ZTで表すことができ、この値が高いものが優れた特性を示すものとされる。
ZT=S2T/ρκ
[S:ゼーベック係数(V/K)、T:温度(K)、ρ:電気抵抗率(Ω・m)、κ:熱伝導率(w/m・K)]
A thermoelectric conversion material is a material that can extract electric power by making a temperature difference. Since there are no moving parts and it is hard to break down, it is attracting attention as a maintenance-free waste heat recovery technology. The performance of the thermoelectric conversion material can be represented by the following dimensionless performance index ZT, and those having a high value are considered to exhibit excellent characteristics.
ZT = S 2 T / ρκ
[S: Seebeck coefficient (V / K), T: Temperature (K), ρ: Electrical resistivity (Ω · m), κ: Thermal conductivity (w / m · K)]

これまでに実用化された熱電変換材料としては、ビスマス・テルル系材料、鉛・テルル系材料、シリコン・ゲルマニウム系材料などが挙げられる。
また、このような熱電変換材料の一つとして、Mg3Sb2を基本構造とするものが研究されている。例えば、Mg3Sb2のSbサイトにTeを置換することによってMg3Sb2に電子ドープすることで、熱電変換性能の高い、n型の熱電変換材料が得られる。しかしながら、この材料では、SbはMgと共有結合しており、Sb原子をTeにより原子置換することによって電子の移動が妨げられるため、より高い熱電変換性能を得るには、共有結合に乱れを導入することなくキャリアーを注入することが求められる。
これについて、最近、Mg3Sb2のSbサイトにTeを置換するのではなく、MgサイトにYをドープすることにより、n型の熱電変換材料を得ることが報告された(非特許文献1)。
Examples of thermoelectric conversion materials that have been put into practical use so far include bismuth-tellurium-based materials, lead-tellurium-based materials, and silicon-germanium-based materials.
Further, as one of such thermoelectric conversion materials, a material having Mg 3 Sb 2 as a basic structure has been studied. For example, by electron doped Mg 3 Sb 2 by replacing Te to Sb site Mg 3 Sb 2, high thermoelectric conversion performance, n-type thermoelectric conversion material is obtained. However, in this material, Sb is covalently bonded to Mg, and electron transfer is hindered by substituting the Sb atom with Te. Therefore, in order to obtain higher thermoelectric conversion performance, a disorder is introduced into the covalent bond. It is required to inject the carrier without doing it.
Regarding this, it has recently been reported that an n-type thermoelectric conversion material can be obtained by doping the Mg site with Y instead of substituting Te at the Sb site of Mg 3 Sb 2 (Non-Patent Document 1). ..

S. W. Song et al., Materials Today Physics 8 (2019) 25-33S. W. Song et al., Materials Today Physics 8 (2019) 25-33

上述のように多くの材料が開発されているにも関わらず、熱電変換材料が広く世の中に普及するには至っていない。その理由の一つとして、従来の材料では性能がまだ不十分であることが挙げられる。そのため、従来の熱電変換材料以上の性能が期待できる新規な熱電変換材料が求められている。
本発明は、上述のような従来技術やその問題点を背景としたものであり、従来以上の熱電変換性能が期待できる熱電変換材料を提供することを課題とする。
Despite the fact that many materials have been developed as described above, thermoelectric conversion materials have not yet become widespread in the world. One of the reasons is that the performance of conventional materials is still insufficient. Therefore, there is a demand for a new thermoelectric conversion material that can be expected to have higher performance than the conventional thermoelectric conversion material.
The present invention is based on the above-mentioned prior art and its problems, and an object of the present invention is to provide a thermoelectric conversion material that can be expected to have thermoelectric conversion performance higher than that of the prior art.

本発明者らは、上述の従来の熱電変換材料のうち、Mg3Sb2を基本構造とするものについて、従来から研究を行ってきており、その中で、Mg3Sb2の共有結合サイトであるSbサイトにTeを置換するのではなく、イオン結合サイトの原子を置換することによってキャリアーを注入すること、具体的にはMgイオンをYイオンで置換することによって電子をドープすることにより、良好な熱電変換性能を有する熱電変換材料が得られることを、見出した。 The present inventors have been conducting research on the above-mentioned conventional thermoelectric conversion materials having Mg 3 Sb 2 as a basic structure, and among them, at the covalent bond site of Mg 3 Sb 2. Good by injecting carriers by substituting atoms at ionic bond sites, rather than substituting Te for certain Sb sites, specifically by doping electrons by substituting Mg ions with Y ions. It has been found that a thermoelectric conversion material having excellent thermoelectric conversion performance can be obtained.

本発明者らによる上記研究は、非特許文献1の研究とは別個に、独自になされたものであり、例えば、非特許文献1においては、上記熱電変換材料を、各金属成分をボールミルにより粉砕し、得られた粉末をホットプレスすることにより製造しているのに対し、本発明においては、各金属成分を加熱溶融し、これを粉砕した後、ホットプレスすることにより製造する。また、非特許文献1においては、グレインサイズが500nm〜1μm程度の熱電変換材料が得られているのに対し、本発明においては、数十ミクロンオーダーのグレインサイズの熱電変換材料が得られる。
そして、本発明によれば、このようにして得られた熱電変換材料については、図1に示すようなZT値と温度との関係が得られるところ、これを非特許文献1において得られているZT値と温度との関係(非特許文献中のFig.4(d)及びFig.5(f))と対比すると明らかなとおり、700〜800K(427〜527℃)の高温領域では、多くの場合、非特許文献1の方が高いZT値を示しているものの、より低温の300〜400または450K(27〜127または177℃)の領域では、本発明の方が、ZT値が高い。
The above-mentioned research by the present inventors was independently performed separately from the research of Non-Patent Document 1. For example, in Non-Patent Document 1, the above-mentioned thermoelectric conversion material is pulverized by a ball mill for each metal component. Then, while the obtained powder is produced by hot-pressing, in the present invention, each metal component is heated and melted, pulverized, and then hot-pressed. Further, in Non-Patent Document 1, a thermoelectric conversion material having a grain size of about 500 nm to 1 μm is obtained, whereas in the present invention, a thermoelectric conversion material having a grain size on the order of several tens of microns can be obtained.
According to the present invention, the thermoelectric conversion material thus obtained has a relationship between the ZT value and the temperature as shown in FIG. 1, which is obtained in Non-Patent Document 1. In the high temperature region of 700 to 800 K (427 to 527 ° C.), many In this case, although Non-Patent Document 1 shows a higher ZT value, the present invention has a higher ZT value in the lower temperature region of 300 to 400 or 450 K (27 to 127 or 177 ° C.).

本発明は、上記のような試験、研究過程で得られた知見に基づいて完成するに至ったものであり、本件では以下のような発明が提供される。
<1>次の一般式で表される熱電変換材料であって、
Mg3-x+dxSb2-yBiy
(式中、0<x≦0.1、0≦y≦1、−0.1≦d≦1である)
グレイン径が数十ミクロンのオーダーであることを特徴とする、熱電変換材料。
<2>次の一般式で表される、グレイン径が数十ミクロンのオーダーである熱電変換材料の製造方法であって、
Mg3-x+dxSb2-yBiy
(式中、0<x≦0.1、0≦y≦1、−0.1≦d≦1である)
それぞれ上記一般式で規定する組成となるように秤量したMg、Y、Sb及びBiを混合し、加熱して、溶融させた後、冷却し、得られた溶融体を粉砕し、ホットプレスにより焼結することによって、緻密な焼結体として得ることを特徴とする、熱電変換材料の製造方法。
<3><1>に記載の熱電変換材料を含む熱電変換素子。
The present invention has been completed based on the findings obtained in the above-mentioned tests and research processes, and the following inventions are provided in this case.
<1> A thermoelectric conversion material represented by the following general formula.
Mg 3-x + d Y x Sb 2-y By y
(In the formula, 0 <x ≦ 0.1, 0 ≦ y ≦ 1, −0.1 ≦ d ≦ 1)
A thermoelectric conversion material characterized by a grain diameter on the order of several tens of microns.
<2> A method for producing a thermoelectric conversion material having a grain diameter on the order of several tens of microns, which is represented by the following general formula.
Mg 3-x + d Y x Sb 2-y By y
(In the formula, 0 <x ≦ 0.1, 0 ≦ y ≦ 1, −0.1 ≦ d ≦ 1)
Mg, Y, Sb and Bi weighed so as to have the compositions specified by the above general formulas are mixed, heated and melted, then cooled, the obtained melt is crushed and baked by hot pressing. A method for producing a thermoelectric conversion material, which comprises obtaining a dense sintered body by binding.
<3> A thermoelectric conversion element containing the thermoelectric conversion material according to <1>.

本発明の製造方法により、従来技術による同様の組成の焼結体よりもグレインサイズが大きい焼結体からなる熱電変換材料が得られる。本発明の熱電変換材料は、150℃程度以下の比較的低い温度領域において、当該従来技術の熱電変換材料よりも、より高いZT値を有し、当該温度領域において、熱電変換材料として、より優れた特性を有するものであり、特に環境からの排熱や人体の体温などの日常的な熱から電力を回収し、有効利用する上で、優れた効果を有するものである。 According to the production method of the present invention, a thermoelectric conversion material made of a sintered body having a larger grain size than a sintered body having a similar composition according to the prior art can be obtained. The thermoelectric conversion material of the present invention has a higher ZT value than the thermoelectric conversion material of the prior art in a relatively low temperature region of about 150 ° C. or less, and is more excellent as a thermoelectric conversion material in the temperature region. It has the above-mentioned characteristics, and in particular, it has an excellent effect in recovering electric power from daily heat such as exhaust heat from the environment and body temperature of the human body and effectively using it.

本発明による熱電変換材料の光学顕微鏡写真。Optical micrograph of thermoelectric conversion material according to the present invention. 本発明による熱電変換材料における、ZTと温度との関係を示す図面。The drawing which shows the relationship between ZT and temperature in the thermoelectric conversion material by this invention.

本発明の熱電変換材料は、従来のMg3Sb2を基本構造とする熱電変換材料におけるMgイオンサイトの一部をYイオンで置換することによって電子をドープすることにより得られる、グレイン径が数十ミクロンのオーダーの焼結体からなるものであり、その組成は、次の一般式で表される。
Mg3-x+dxSb2-yBiy
(式中、0<x≦0.1、0≦y≦1、−0.1≦d≦1である)
The thermoelectric conversion material of the present invention has a number of grain diameters, which is obtained by doping electrons by substituting a part of Mg ion sites with Y ions in a conventional thermoelectric conversion material having a basic structure of Mg 3 Sb 2. It is composed of sintered bodies on the order of 10 microns, and its composition is expressed by the following general formula.
Mg 3-x + d Y x Sb 2-y By y
(In the formula, 0 <x ≦ 0.1, 0 ≦ y ≦ 1, −0.1 ≦ d ≦ 1)

本発明の熱電変換材料は、出発原料として各構成元素の単体金属を前記の化学組成となるように混合した混合物を加熱溶融して、溶融体を得、これを粉砕後、得られた粉体を焼結して製造することができる。 The thermoelectric conversion material of the present invention is obtained by heating and melting a mixture of elemental metals of each constituent element as a starting material so as to have the above chemical composition to obtain a melt, which is pulverized, and then the obtained powder. Can be produced by sintering.

具体的には、前記化学組成となるように混合された混合粉末を高温に加熱して、溶融体を得る。得られた溶融体を粉砕し、再度ホットプレス装置などを用いて焼結体とする。
前記混合粉末の加熱温度は、混合粉末が溶融し、溶融体が得られる温度であり、各単体金属の混合比率によって変化するが、600℃以上、例えば1000℃〜1400℃程度の温度であることが適切である。
また、前記ホットプレスの条件は、30MPa以上、例えば30MPa〜90MPa程度の圧力、400〜700℃程度の温度で、20分以上、例えば1〜4時間程度の時間、行うことが好ましい。
Specifically, the mixed powder mixed so as to have the above chemical composition is heated to a high temperature to obtain a melt. The obtained melt is crushed and again used in a hot press or the like to obtain a sintered body.
The heating temperature of the mixed powder is a temperature at which the mixed powder is melted to obtain a melt, and varies depending on the mixing ratio of each elemental metal, but is 600 ° C. or higher, for example, about 1000 ° C. to 1400 ° C. Is appropriate.
The hot press conditions are preferably 30 MPa or more, for example, a pressure of about 30 MPa to 90 MPa, a temperature of about 400 to 700 ° C., and 20 minutes or more, for example, about 1 to 4 hours.

次に、実施例により本発明を更に詳細に説明するが、本発明はこれらの実施例により何ら限定されない。 Next, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

<実施例1>熱電変換材料Mg3-x+dxSb2-yBiyの製造
本実施例では、熱電変換材料の合成の出発原料としてアルカリ土類金属を取り扱うため、基本的なハンドリングは全てアルゴン雰囲気のグローブボックス内で行った。
<Example 1> Manufacture of thermoelectric conversion material Mg 3-x + d Y x Sb 2-y Biy In this example, alkaline earth metals are used as a starting material for the synthesis of thermoelectric conversion materials, so the basic handling is All went in a glove box with an argon atmosphere.

(Mg3-x+dxSb2-yBiyの合成)
本実施例では、出発原料として、純度99.9%のMg(粒径3−7mm)、純度99.9999%のSb(ショット)、純度99.9999%のBi(ショット)及び純度99.9%のY(−20mesh)を使用した。これらを後述の表1に示す各仕込み組成となるように秤量して、各秤量物を調製した。Mgのみアルミナタンマン管への充填密度の向上を目的に軽く粉砕を行っている。各秤量物をアルミナタンマン管の中に入れ、それをSUS316Lのステンレス鋼パイプ中に密封した。パイプ中に密封した出発原料をマッフル炉に入れ、900℃で5時間熱処理を行なった後、1180℃まで温度を上げ10分保持後、10℃/Hrの降温レートにて室温まで温度を下げた。
得られた溶融体をそれぞれ粉末状に粉砕した後、70MPa、600℃、1時間保持の条件でホットプレスして緻密な焼結体を得た。
図1に、得られた焼結体の光学顕微鏡写真像を示す。図1から、当該焼結体が、平均20〜40ミクロン程度の、数十ミクロンオーダーのグレイン径を有する粒子が焼結してなるものであることが観察される。
(Synthesis of Mg 3-x + d Y x Sb 2-y Biy)
In this example, as starting materials, Mg with a purity of 99.9% (particle size 3-7 mm), Sb (shot) with a purity of 99.99999%, Bi (shot) with a purity of 99.99999%, and purity 99.9 % Y (-20 mesh) was used. These were weighed so as to have each of the charged compositions shown in Table 1 described later, and each weighed product was prepared. Only Mg is lightly pulverized for the purpose of improving the filling density of the alumina tanman tube. Each weighing material was placed in an alumina tanman tube and sealed in a SUS316L stainless steel pipe. The starting material sealed in the pipe was placed in a muffle furnace, heat-treated at 900 ° C. for 5 hours, then raised to 1180 ° C. and held for 10 minutes, and then lowered to room temperature at a temperature lowering rate of 10 ° C./Hr. ..
The obtained melts were pulverized into powders and then hot-pressed under the conditions of holding at 70 MPa, 600 ° C. for 1 hour to obtain a dense sintered body.
FIG. 1 shows an optical micrograph image of the obtained sintered body. From FIG. 1, it is observed that the sintered body is obtained by sintering particles having a grain diameter on the order of several tens of microns, which is about 20 to 40 microns on average.

<実施例2>熱電変換材料Mg3-x+dxSb2-yBiyの熱電特性の測定
得られた各焼結体について熱電特性を測定した。
電気抵抗及びゼーベック係数はアドバンス理工(株)のZEM-3を用いて測定した。測定温度範囲は室温から500℃、測定中のガス雰囲気はアルゴンガス雰囲気、電流50mA、試料両端にかかる温度差は約5℃とした。測定試料の形状はおよそ1.5mm×2.0mm×8.0mmである。
熱伝導率はNETZSCHのLFA457を用いてレーザーフラッシュ法により測定した。測定温度範囲は室温から700℃、ガス雰囲気はアルゴンガスとした。測定試料の形状は直径10mm、厚さ2.0mmである。
各焼結体について得られた電気抵抗、ゼーベック係数及び熱伝導率からZTを導出した。
表1に、本発明の方法により得られた各焼結体における各金属成分の仕込み組成、及び得られた焼結体のZTの最大値を示す。
<Example 2> Measurement of thermoelectric characteristics of thermoelectric conversion material Mg 3-x + d Y x Sb 2-y Biy The thermoelectric characteristics of each of the obtained sintered bodies were measured.
The electrical resistance and Seebeck coefficient were measured using ZEM-3 of Advance Riko Co., Ltd. The measurement temperature range was room temperature to 500 ° C., the gas atmosphere during measurement was an argon gas atmosphere, the current was 50 mA, and the temperature difference between both ends of the sample was about 5 ° C. The shape of the measurement sample is approximately 1.5 mm × 2.0 mm × 8.0 mm.
The thermal conductivity was measured by the laser flash method using LFA457 of NETZSCH. The measurement temperature range was room temperature to 700 ° C., and the gas atmosphere was argon gas. The shape of the measurement sample is 10 mm in diameter and 2.0 mm in thickness.
ZT was derived from the electrical resistance, Seebeck coefficient and thermal conductivity obtained for each sintered body.
Table 1 shows the charged composition of each metal component in each sintered body obtained by the method of the present invention, and the maximum value of ZT of the obtained sintered body.

Figure 2020167265
Figure 2020167265

また、図2に、表1において最大のZT値が得られた仕込み組成Mg3.50.02Sb1.5Bi0.5の焼結体における、各測定温度に対するZT値の変化の様子を示す。 Further, FIG. 2 shows the change in the ZT value with respect to each measurement temperature in the sintered body having the charged composition Mg 3.5 Y 0.02 Sb 1.5 Bi 0.5 in which the maximum ZT value was obtained in Table 1.

Claims (3)

次の一般式で表される熱電変換材料であって、
Mg3-x+dxSb2-yBiy
(式中、0<x≦0.1、0≦y≦1、−0.1≦d≦1である)
グレイン径が数十ミクロンのオーダーであることを特徴とする、熱電変換材料。
It is a thermoelectric conversion material represented by the following general formula.
Mg 3-x + d Y x Sb 2-y By y
(In the formula, 0 <x ≦ 0.1, 0 ≦ y ≦ 1, −0.1 ≦ d ≦ 1)
A thermoelectric conversion material characterized by a grain diameter on the order of several tens of microns.
次の一般式で表される、グレイン径が数十ミクロンのオーダーである熱電変換材料の製造方法であって、
Mg3-x+dxSb2-yBiy
(式中、0<x≦0.1、0≦y≦1、−0.1≦d≦1である)
それぞれ上記一般式で規定する組成となるように秤量したMg、Y、Sb及びBiを混合し、加熱して、溶融させた後、冷却し、得られた溶融体を粉砕し、ホットプレスにより焼結することによって、緻密な焼結体として得ることを特徴とする、上記熱電変換材料の製造方法。
A method for producing a thermoelectric conversion material having a grain diameter on the order of several tens of microns, which is expressed by the following general formula.
Mg 3-x + d Y x Sb 2-y By y
(In the formula, 0 <x ≦ 0.1, 0 ≦ y ≦ 1, −0.1 ≦ d ≦ 1)
Mg, Y, Sb and Bi weighed so as to have the compositions specified by the above general formulas are mixed, heated and melted, then cooled, the obtained melt is crushed and baked by hot pressing. The method for producing a thermoelectric conversion material, which comprises obtaining a dense sintered body by binding.
請求項1に記載の熱電変換材料を含む熱電変換素子。 A thermoelectric conversion element comprising the thermoelectric conversion material according to claim 1.
JP2019065948A 2019-03-29 2019-03-29 Thermoelectric conversion material and its manufacturing method Active JP7344531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019065948A JP7344531B2 (en) 2019-03-29 2019-03-29 Thermoelectric conversion material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019065948A JP7344531B2 (en) 2019-03-29 2019-03-29 Thermoelectric conversion material and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2020167265A true JP2020167265A (en) 2020-10-08
JP7344531B2 JP7344531B2 (en) 2023-09-14

Family

ID=72716391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019065948A Active JP7344531B2 (en) 2019-03-29 2019-03-29 Thermoelectric conversion material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7344531B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112921205A (en) * 2021-01-26 2021-06-08 广西大学 Rapid preparation of high thermoelectric property n-type Mg3Sb2Method for producing base material
CN113121234A (en) * 2021-04-09 2021-07-16 中国科学院电工研究所 Mg3Sb 2-based thermoelectric material with high-temperature stability and preparation method thereof
CN113488578A (en) * 2021-06-29 2021-10-08 同济大学 Low-grade waste heat recovery antimonide thermoelectric module with high conversion efficiency and preparation method thereof
CN114807655A (en) * 2022-04-28 2022-07-29 武汉科技大学 Preparation method of n-type magnesium antimony bismuth based polycrystalline bulk thermoelectric material
WO2023145340A1 (en) * 2022-01-28 2023-08-03 パナソニックIpマネジメント株式会社 Thermoelectric conversion module and thermoelectric conversion system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017152691A (en) * 2016-02-24 2017-08-31 三菱マテリアル株式会社 Method of manufacturing magnesium-based thermoelectric conversion material, method of manufacturing magnesium-based thermoelectric conversion element, magnesium-based thermoelectric conversion material, magnesium-based thermoelectric conversion element, and thermoelectric converter
JP2018190953A (en) * 2017-05-08 2018-11-29 パナソニックIpマネジメント株式会社 Zintl phase thermoelectric conversion material
JP2019036623A (en) * 2017-08-15 2019-03-07 三菱マテリアル株式会社 Magnesium-based thermoelectric conversion material, magnesium-based thermoelectric conversion element, and, manufacturing method of magnesium-based thermoelectric conversion material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017152691A (en) * 2016-02-24 2017-08-31 三菱マテリアル株式会社 Method of manufacturing magnesium-based thermoelectric conversion material, method of manufacturing magnesium-based thermoelectric conversion element, magnesium-based thermoelectric conversion material, magnesium-based thermoelectric conversion element, and thermoelectric converter
JP2018190953A (en) * 2017-05-08 2018-11-29 パナソニックIpマネジメント株式会社 Zintl phase thermoelectric conversion material
JP2019036623A (en) * 2017-08-15 2019-03-07 三菱マテリアル株式会社 Magnesium-based thermoelectric conversion material, magnesium-based thermoelectric conversion element, and, manufacturing method of magnesium-based thermoelectric conversion material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112921205A (en) * 2021-01-26 2021-06-08 广西大学 Rapid preparation of high thermoelectric property n-type Mg3Sb2Method for producing base material
CN112921205B (en) * 2021-01-26 2022-06-14 广西大学 High thermoelectric property n-type Mg3Sb2Base thermoelectric material and preparation method thereof
CN113121234A (en) * 2021-04-09 2021-07-16 中国科学院电工研究所 Mg3Sb 2-based thermoelectric material with high-temperature stability and preparation method thereof
CN113488578A (en) * 2021-06-29 2021-10-08 同济大学 Low-grade waste heat recovery antimonide thermoelectric module with high conversion efficiency and preparation method thereof
CN113488578B (en) * 2021-06-29 2023-02-07 同济大学 Low-grade waste heat recovery antimonide thermoelectric module with high conversion efficiency and preparation method thereof
WO2023145340A1 (en) * 2022-01-28 2023-08-03 パナソニックIpマネジメント株式会社 Thermoelectric conversion module and thermoelectric conversion system
CN114807655A (en) * 2022-04-28 2022-07-29 武汉科技大学 Preparation method of n-type magnesium antimony bismuth based polycrystalline bulk thermoelectric material
CN114807655B (en) * 2022-04-28 2024-03-22 武汉科技大学 Preparation method of n-type magnesium-antimony-bismuth-based polycrystalline block thermoelectric material

Also Published As

Publication number Publication date
JP7344531B2 (en) 2023-09-14

Similar Documents

Publication Publication Date Title
JP2020167265A (en) Thermoelectric conversion material and manufacturing method thereof
JP6414137B2 (en) Thermoelectric conversion element
US6403875B1 (en) Process for producing thermoelectric material
JP7251187B2 (en) Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and method for producing thermoelectric conversion material
JP5376273B2 (en) Boron-doped diamond sintered body and method for producing the same
CN110268107B (en) Chalcogen-containing compound, method for producing the same, and thermoelectric element comprising the same
CN110088924B (en) Chalcogen-containing compound, method for producing the same, and thermoelectric element comprising the same
CN110892537B (en) Magnesium thermoelectric conversion material, magnesium thermoelectric conversion element, and method for producing magnesium thermoelectric conversion material
US3285019A (en) Two-phase thermoelectric body comprising a lead-tellurium matrix
JP3541549B2 (en) Thermoelectric material for high temperature and method for producing the same
JP6865951B2 (en) P-type thermoelectric semiconductor, its manufacturing method and thermoelectric power generation element using it
CN112670395B (en) Germanium telluride based thermoelectric single-leg device with high conversion efficiency and power density and preparation thereof
TWI417248B (en) Thermoelectric material, method for fabricating the same, and thermoelectric module employing the same
JP7291461B2 (en) Thermoelectric conversion material, thermoelectric conversion element, and thermoelectric conversion module
JPH10102160A (en) Production of cobalt triantimonide type composite material
JP2019218592A (en) Silicide alloy material and element including the same
JP2015038984A (en) Thermoelectric conversion material and method for manufacturing the same
WO2018212441A1 (en) Chalcogenide, preparation method therefor, and thermoelectric element comprising same
JP3544922B2 (en) N-type thermoelectric conversion material and thermoelectric conversion device using the same
JP6755566B2 (en) Chalcogen compounds, their production methods, and thermoelectric devices containing them
JP2019125676A (en) Polycrystalline magnesium silicide and use of the same
KR102573731B1 (en) Chalcogen-containing compound, its preparation method and thermoelectric element comprising the same
JP5653654B2 (en) Method for manufacturing thermoelectric material
JP2001313427A (en) Method for manufacturing thermoelectric conversion material
JPH09289339A (en) Thermoelectric transducer material and manufacture thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190515

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230124

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230828

R150 Certificate of patent or registration of utility model

Ref document number: 7344531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150