FR2544305A1 - CONSTITUENT ELEMENTS OF SINTERED ALUMINUM NITRIDE TUBES FOR USE IN LASER TUBES - Google Patents
CONSTITUENT ELEMENTS OF SINTERED ALUMINUM NITRIDE TUBES FOR USE IN LASER TUBES Download PDFInfo
- Publication number
- FR2544305A1 FR2544305A1 FR8405985A FR8405985A FR2544305A1 FR 2544305 A1 FR2544305 A1 FR 2544305A1 FR 8405985 A FR8405985 A FR 8405985A FR 8405985 A FR8405985 A FR 8405985A FR 2544305 A1 FR2544305 A1 FR 2544305A1
- Authority
- FR
- France
- Prior art keywords
- tubes
- aluminum nitride
- constituent elements
- oxide
- maximum density
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/581—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/02—Constructional details
- H01S3/03—Constructional details of gas laser discharge tubes
- H01S3/0305—Selection of materials for the tube or the coatings thereon
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Electromagnetism (AREA)
- Ceramic Engineering (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Ceramic Products (AREA)
- Lasers (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
Abstract
LE NITRURE D'ALUMINIUM FRITTE A LA DENSITE MAXIMALE POSSEDE UNE BONNE CONDUCTIBILITE THERMIQUE, UNE RESISTANCE ELECTRIQUE ELEVEE, DE BONNES PROPRIETES DIELECTRIQUES AINSI QU'UNE RESISTANCE MECANIQUE ELEVEE ET EST PAR CONSEQUENT UNE MATIERE APPROPRIEE POUR DES ELEMENTS CONSTITUTIFS DE TUBES.MAXIMUM DENSITY SINTERED ALUMINUM NITRIDE HAS GOOD THERMAL CONDUCTIVITY, HIGH ELECTRICAL STRENGTH, GOOD DIELECTRIC PROPERTIES AS WELL AS HIGH MECHANICAL RESISTANCE AND IS THEREFORE A CONSTITUENT OF APPROPRIATE MATERIAL.
Description
L'invention concerne des éléments constitutifs de tubes en matièreThe invention relates to components of tubes made of material
céramique frittée àsintered ceramic
la densité maximale.the maximum density.
En raison de leur bonne conductibilité thermique et de leur résistance électrique élevée, on utilise, pour des éléments constitutifs de tubes, de l'oxyde d'aluminium fritté à la densité maximale et, Owing to their good thermal conductivity and their high electrical resistance, sintered aluminum oxide is used for the constituent elements of the tubes and,
dans les cas ou l'on ne remplit plus les conditions re- in cases where the conditions no longer meet
quises pour la céramique-oxyde d'aluminium, de l'oxyde de béryllium fritté h la densité maximale (Ullmanns Encyklopddie der technischen Chemie, 4 e édition, 1979, quises for ceramic-aluminum oxide, sintered beryllium oxide at maximum density (Ullmanns Encyklopddie der technischen Chemie, 4th edition, 1979,
volume 17, pages 525 à 527).volume 17, pages 525 to 527).
Bien que l'oxyde de béryllium fritté à la densité maximale possède de très bonnes propriétés, son prix élevé et la toxicité de la poussière d'oxyde de béryllium font obstacle à une large utilisation de cette matière. L'invention se donne par conséquent pour but de trouver une matière céramique appropriée pour des éléments constitutifs de tubes qui possède des propriétés aussi bonnes que celles de l'oxyde de bdryllium fritté à la densité maximale mais qui puisse Although beryllium oxide sintered at maximum density has very good properties, its high price and the toxicity of beryllium oxide dust prevent widespread use of this material. The object of the invention is therefore to find a ceramic material suitable for component parts of tubes which has properties as good as those of bdryllium oxide sintered at maximum density but which can
être fabriquée et mise en oeuvre de manière plus écono- be manufactured and implemented in a more economical way
mique et sans présenter de risque pour la santé. and without presenting a risk to health.
Ce but est réalisé suivant l'invention This object is achieved according to the invention
par du nitrure d'aluminium fritté à la densité maximale. with aluminum nitride sintered at maximum density.
Les éléments constitutifs de tubes en nitrure d'aluminium fritté à la densité maximale selon l'invention possèdent une résistance mécanique élevée, une bonne résistance aux chocs thermiques, une résistance électrique élevée et de bonnes propriétés diélectriques Dufait que à l'inverse de ceux en oxyde de béryllium ils gardent leur bonne conductibilité thermique même aux températures élevées, ces éléments constitutifs sont particulièrement appropriés pour les tubes laser Les éléments constitutifs de tubes selon l'invention peuvent être assemblés de façon satisfaisante à des métaux en raison du coefficient de The constituent elements of tubes made of aluminum nitride sintered at the maximum density according to the invention have a high mechanical resistance, a good resistance to thermal shocks, a high electrical resistance and good dielectric properties. beryllium oxide they keep their good thermal conductivity even at high temperatures, these components are particularly suitable for laser tubes The components of tubes according to the invention can be satisfactorily assembled with metals due to the coefficient of
dilatation thermique relativement élevé du nitrure d'alu- relatively high thermal expansion of aluminum nitride
minium fritté à la densité maximale. La matière de départ pour la fabrication des éléments constitutifs de tubes consiste de préférence en mélanges pulvérulents de nitrure d'aluminium et d'une addition d'oxydes représentant un pourcentage en poids de 0,1 à 10 % Ces mélanges sont mis en oeuvre par compression à froid pour donner des corps moulés verts qui sont frittés à la densité maximale en atmosphère minimum sintered at maximum density. The starting material for the manufacture of the constituent elements of tubes preferably consists of powdery mixtures of aluminum nitride and of an addition of oxides representing a percentage by weight of 0.1 to 10%. These mixtures are used by cold compression to give green molded bodies which are sintered at maximum density in the atmosphere
inerte, de préférence, sous azote. inert, preferably under nitrogen.
On peut influer de la façon souhaitée sur le coefficient de dilatation thermique et sur la conductibilité thermique du nitrure d'aluminium fritté à la densité maximale par la nature et la quantité de The coefficient of thermal expansion and the thermal conductivity of sintered aluminum nitride can be influenced as desired at the maximum density by the nature and quantity of
l'addition d'oxydes.addition of oxides.
Comme additions d'oxydes, on utilisera les oxydes des métaux alcalinoterreux, des métaux des terres rares (le scandium, l'yttrium et le lanthame jusqu'au luténium), les oxydes des éléments de transition du groupe IV, V et VI de la classification périodique des éléments, l'oxyde d'aluminium et l'oxyde de silicium, As oxides additions, the oxides of alkaline earth metals, rare earth metals (scandium, yttrium and lanthame up to lutenium), the oxides of the transition elements of group IV, V and VI of the periodic table of the elements, aluminum oxide and silicon oxide,
soit un seul ou plusieurs d'entre eux. either one or more of them.
L'oxyde d'yttrium a donné en particulier Yttrium oxide has given in particular
de bons résultats.good results.
Le nitrure d'aluminium fritté à la densité maximale qui contient de l'oxyde d'yttrium, est, de façon étonnante, extraordinairement résistant à l'humidité. D'autres caractéristiques et avantages de l'invention seront mieux compris à la lecture de la Surprisingly moisture resistant, the highest density sintered aluminum nitride, which contains yttrium oxide. Other characteristics and advantages of the invention will be better understood on reading the
description qui va suivre d'un exemple de fabrication description which follows of a manufacturing example
d'éléments constitutifs de tubes selon l'invention. of constituent elements of tubes according to the invention.
ExempleExample
On broie pendant 40 heures sous argon comme gaz protecteur 5000 g d'un mélange composé de 99 % en poids de nitrure d'aluminium pulvérulent et de 1 % en poids d'oxyde d'yttrium pulvérulent dans un broyeur à boulets avec des éléments broyeurs en céramique, puis on met le mélange sur un tamis ayant une largeur de maille 5000 g of a mixture composed of 99% by weight of powdered aluminum nitride and 1% by weight of powdered yttrium oxide are ground for 40 hours under argon as a protective gas in a ball mill with grinding elements ceramic, then put the mixture on a sieve with a mesh width
de 100 microns.100 microns.
Avec la poudre obtenue par le tamisage qui a une grosseur de grain inférieure à 100 microns, on fabrique par compression isostatique à froid (la pression étant de 2500 bar) des pièces moulées tubulaires qu'on met dans un four de frittage électrique Après évacuation de l'air jusqu'à 10 5 mbar, on insuffle de l'azote dans le four de frittage jusqu'à ce que la pression atteigne 5 mbar Cette pression étant maintenue, on chauffe le four de frittage jusqu'à ce qu'on atteigne With the powder obtained by sieving which has a grain size less than 100 microns, tubular molded parts are produced by cold isostatic compression (the pressure being 2500 bar) which are placed in an electric sintering oven After evacuation of air up to 10 5 mbar, nitrogen is blown into the sintering oven until the pressure reaches 5 mbar This pressure being maintained, the sintering oven is heated until it reaches
dans un temps de 3 heures une température de 1200 'C. within 3 hours a temperature of 1200 'C.
Puis la pression de l'azote est augmentée à 140 mbar et Then the nitrogen pressure is increased to 140 mbar and
la température portée en l'espace d'une heure à 1850 'C - the temperature increased within one hour to 1850 'C -
la pression de l'azote est alors de 180 mbar -. the nitrogen pressure is then 180 mbar -.
On maintient cette température etWe maintain this temperature and
cette pression pendant 2 heures; puis on refroidit. this pressure for 2 hours; then we cool.
Après aération du four de frittage, on retire les éléments After aeration of the sintering furnace, the elements are removed
constitutifs de tubes, frittésà la densité maximale. made of tubes, sintered at maximum density.
Les éléments constitutifs de tubes fabriqués de cette façon possèdent un coefficient de 6 K-1 dilatation thermique de 4 10 K, une conductibilité thermique de 200 W/m K et une résistance à la flexion de 320 N/mm The elements of tubes manufactured in this way have a coefficient of 6 K-1 thermal expansion of 4 10 K, a thermal conductivity of 200 W / m K and a flexural strength of 320 N / mm
Claims (6)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19833313836 DE3313836C2 (en) | 1983-04-16 | 1983-04-16 | Use of aluminum nitride for laser tube components |
Publications (2)
Publication Number | Publication Date |
---|---|
FR2544305A1 true FR2544305A1 (en) | 1984-10-19 |
FR2544305B1 FR2544305B1 (en) | 1990-05-04 |
Family
ID=6196574
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR8405985A Expired - Lifetime FR2544305B1 (en) | 1983-04-16 | 1984-04-16 | CONSTITUENT ELEMENTS OF SINTERED ALUMINUM NITRIDE TUBES FOR USE IN LASER TUBES |
Country Status (5)
Country | Link |
---|---|
JP (1) | JPS59194183A (en) |
CH (1) | CH658855A5 (en) |
DE (1) | DE3313836C2 (en) |
FR (1) | FR2544305B1 (en) |
GB (1) | GB2140458B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2595876A1 (en) * | 1986-03-13 | 1987-09-18 | Roulot Maurice | Tube for a laser generator of the ionised gas type |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3247985C2 (en) * | 1982-12-24 | 1992-04-16 | W.C. Heraeus Gmbh, 6450 Hanau | Ceramic carrier |
US4547471A (en) * | 1983-11-18 | 1985-10-15 | General Electric Company | High thermal conductivity aluminum nitride ceramic body |
US4578234A (en) * | 1984-10-01 | 1986-03-25 | General Electric Company | Process of pressureless sintering to produce dense high thermal conductivity ceramic body of deoxidized aluminum nitride |
US4578233A (en) * | 1984-11-01 | 1986-03-25 | General Electric Company | Pressureless sintering process to produce high thermal conductivity ceramic body of aluminum nitride |
JPH0649613B2 (en) * | 1984-11-08 | 1994-06-29 | 株式会社東芝 | Aluminum nitride sintered body and manufacturing method thereof |
US4746637A (en) * | 1984-11-08 | 1988-05-24 | Kabushiki Kaisha Toshiba | Aluminum nitride sintered body and process for producing the same |
US4578365A (en) * | 1984-11-26 | 1986-03-25 | General Electric Company | High thermal conductivity ceramic body of aluminum nitride |
US4578364A (en) * | 1984-12-07 | 1986-03-25 | General Electric Company | High thermal conductivity ceramic body of aluminum nitride |
US4578232A (en) * | 1984-12-17 | 1986-03-25 | General Electric Company | Pressureless sintering process to produce high thermal conductivity ceramic body of aluminum nitride |
GB2213500B (en) * | 1985-08-13 | 1990-05-30 | Tokuyama Soda Kk | Sinterable aluminum nitride composition |
DE3627317A1 (en) * | 1985-08-13 | 1987-02-19 | Tokuyama Soda Kk | SINTERABLE ALUMINUM NITRIDE COMPOSITION, SINTER BODY FROM THIS COMPOSITION AND METHOD FOR THE PRODUCTION THEREOF |
US4897372A (en) * | 1985-12-18 | 1990-01-30 | General Electric Company | High thermal conductivity ceramic body |
US4764321A (en) * | 1986-03-28 | 1988-08-16 | General Electric Company | High thermal conductivity ceramic body |
US4818455A (en) * | 1986-05-30 | 1989-04-04 | General Electric Company | High thermal conductivity ceramic body |
US5242872A (en) * | 1986-07-18 | 1993-09-07 | Tokuyama Soda Kabushiki Kaisha | Process for producing aluminum nitride sintered body |
JPH0717455B2 (en) * | 1986-07-18 | 1995-03-01 | 株式会社トクヤマ | Method for manufacturing aluminum nitride sintered body |
JP2524185B2 (en) * | 1988-02-29 | 1996-08-14 | 京セラ株式会社 | Aluminum nitride sintered body and manufacturing method thereof |
JPH0226872A (en) * | 1988-07-12 | 1990-01-29 | Sumitomo Electric Ind Ltd | Window for transmitting high-frequency wave |
JP2962466B2 (en) * | 1997-01-06 | 1999-10-12 | 株式会社東芝 | Aluminum nitride sintered body |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS48100407A (en) * | 1972-03-31 | 1973-12-18 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3108887A (en) * | 1959-05-06 | 1963-10-29 | Carborundum Co | Refractory articles and method of making same |
DE1209409B (en) * | 1959-12-24 | 1966-01-20 | Deutsche Edelstahlwerke Ag | Hot press mold |
BE620323A (en) * | 1961-07-21 | |||
US3436179A (en) * | 1964-07-27 | 1969-04-01 | Tokyo Shibaura Electric Co | Method of preparing sintered masses of aluminum nitride |
DE1906522B2 (en) * | 1968-02-10 | 1972-01-13 | Tokyo Shibaura Electric Co. Ltd., Kawasaki, Kanagawa (Japan) | METHOD OF MANUFACTURING A Sintered ALUMINUM NITRIDE YTTRIUM OXIDE ARTICLE |
US4228826A (en) * | 1978-10-12 | 1980-10-21 | Campbell Frank Jun | Interlocking, laminated refractory for covering a pipe |
JPS57179080A (en) * | 1981-04-27 | 1982-11-04 | Nippon Kagaku Togyo Kk | Sintered ceramic pipe end sealing method |
JPS5855377A (en) * | 1981-09-28 | 1983-04-01 | 株式会社東芝 | Manufacture of aluminum nitride sintered body |
DE3333406A1 (en) * | 1982-09-17 | 1984-03-22 | Tokuyama Soda K.K., Tokuyama, Yamaguchi | FINE ALUMINUM NITRIDE POWDER, METHOD FOR THE PRODUCTION THEREOF AND MEANS CONTAINING IT |
-
1983
- 1983-04-16 DE DE19833313836 patent/DE3313836C2/en not_active Expired
-
1984
- 1984-02-14 CH CH71484A patent/CH658855A5/en not_active IP Right Cessation
- 1984-03-15 GB GB08406819A patent/GB2140458B/en not_active Expired
- 1984-03-28 JP JP59058553A patent/JPS59194183A/en active Granted
- 1984-04-16 FR FR8405985A patent/FR2544305B1/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS48100407A (en) * | 1972-03-31 | 1973-12-18 |
Non-Patent Citations (4)
Title |
---|
CHEMICAL ABSTRACTS, vol. 81, no. 4, 29 juillet 1974, réf. no. 16117b, page 181, Columbus Ohio (US); & JP - A - 73 100 407 (TOKYO SHIBAURA ELECTRIC CO. LTD.) (18.12.1973) * |
CHEMICAL ABSTRACTS, vol. 95, no. 1, 13 juillet 1981, réf. no. 11386t, page 267, Columbus Ohio (US); & Tr. - Mosk. Khim.-Tekhnol. Inst. im D.I. Mendeleeva 1979, 108, 84-6. * |
CHEMICAL ABSTRACTS, vol. 97, no. 26, 27 décembre 1982, réf. no. 226909t, page 737, Columbus Ohio (US); & Kvantovaya Elektron. (Moscow) 1981, 8(8), 1697-701. * |
REVUE INTERNATIONALE DES HAUTES TEMPERATURES ET DES REFRACTAIRES, vol. 18, no. 2, 1981, Paris (FR); S. YEFSAH et al.: "Réalisation de pièces céramiques en nitrure d'aluminium par frittage classique", pages 167-172. * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2595876A1 (en) * | 1986-03-13 | 1987-09-18 | Roulot Maurice | Tube for a laser generator of the ionised gas type |
Also Published As
Publication number | Publication date |
---|---|
GB2140458A (en) | 1984-11-28 |
DE3313836A1 (en) | 1984-10-18 |
CH658855A5 (en) | 1986-12-15 |
GB2140458B (en) | 1986-03-19 |
JPH0211790B2 (en) | 1990-03-15 |
JPS59194183A (en) | 1984-11-02 |
FR2544305B1 (en) | 1990-05-04 |
DE3313836C2 (en) | 1985-08-29 |
GB8406819D0 (en) | 1984-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FR2544305A1 (en) | CONSTITUENT ELEMENTS OF SINTERED ALUMINUM NITRIDE TUBES FOR USE IN LASER TUBES | |
US4752334A (en) | Dispersion strengthened metal composites | |
US6102979A (en) | Oxide strengthened molybdenum-rhenium alloy | |
EP1382700A1 (en) | Improved oxidation resistant molybdenum alloy | |
Gunjishima et al. | Characterization of directionally solidified B4C-TiB2 composites prepared by a floating zone method | |
JP4854215B2 (en) | Thermoelectric material and manufacturing method thereof | |
US4370299A (en) | Molybdenum-based alloy | |
JP3245893B2 (en) | Fine grain tungsten alloy and method for producing the same | |
EP0601042A1 (en) | Powder-metallurgical composition having good soft magnetic properties | |
JP7359412B2 (en) | Polycrystalline magnesium silicide, sintered body and its use | |
JP2991557B2 (en) | Fe-cr-al powder alloy | |
JP2003247039A (en) | Ni-BASE ALLOY WITH EXCELLENT OXIDATION RESISTANCE, HIGH- TEMPERATURE STRENGTH AND HOT WORKABILITY | |
US3012883A (en) | Niobium base alloy | |
CN115786794B (en) | N-type half heusler alloy thermoelectric material and preparation method thereof | |
JP2005223237A (en) | Highly strong thermoelectric material | |
US5415831A (en) | Method of producing a material based on a doped intermetallic compound | |
JPH02118041A (en) | High strength and high toughness cu-base sintered alloy having excellent wear resistance | |
JPH0325499B2 (en) | ||
JPH04202736A (en) | Hyper-eutectic al-si base alloy powder showing excellent deformability by hot powder metal forging | |
US5779823A (en) | Carbon or boron modified titanium silicide | |
KR101957559B1 (en) | Ti-Fe based hypereutectic alloy | |
US3359082A (en) | Ductile tungsten alloys | |
JP3353484B2 (en) | Method for producing Fe-based sintered alloy valve seat showing excellent wear resistance | |
JPH06212324A (en) | Tic grain dispersed sintered ti alloy and its production | |
JPH09324228A (en) | Metallic member containing dispersed solid lubricant grain, and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
CJ | Change in legal form | ||
ST | Notification of lapse |