FR2544305A1 - CONSTITUENT ELEMENTS OF SINTERED ALUMINUM NITRIDE TUBES FOR USE IN LASER TUBES - Google Patents

CONSTITUENT ELEMENTS OF SINTERED ALUMINUM NITRIDE TUBES FOR USE IN LASER TUBES Download PDF

Info

Publication number
FR2544305A1
FR2544305A1 FR8405985A FR8405985A FR2544305A1 FR 2544305 A1 FR2544305 A1 FR 2544305A1 FR 8405985 A FR8405985 A FR 8405985A FR 8405985 A FR8405985 A FR 8405985A FR 2544305 A1 FR2544305 A1 FR 2544305A1
Authority
FR
France
Prior art keywords
tubes
aluminum nitride
constituent elements
oxide
maximum density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR8405985A
Other languages
French (fr)
Other versions
FR2544305B1 (en
Inventor
Waltraud Werdecker
Fritz Aldinger
Rainer Nitsche
Klaus-Ludwig Schiff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WC Heraus GmbH and Co KG
Original Assignee
WC Heraus GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WC Heraus GmbH and Co KG filed Critical WC Heraus GmbH and Co KG
Publication of FR2544305A1 publication Critical patent/FR2544305A1/en
Application granted granted Critical
Publication of FR2544305B1 publication Critical patent/FR2544305B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/0305Selection of materials for the tube or the coatings thereon

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Ceramic Products (AREA)
  • Lasers (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

LE NITRURE D'ALUMINIUM FRITTE A LA DENSITE MAXIMALE POSSEDE UNE BONNE CONDUCTIBILITE THERMIQUE, UNE RESISTANCE ELECTRIQUE ELEVEE, DE BONNES PROPRIETES DIELECTRIQUES AINSI QU'UNE RESISTANCE MECANIQUE ELEVEE ET EST PAR CONSEQUENT UNE MATIERE APPROPRIEE POUR DES ELEMENTS CONSTITUTIFS DE TUBES.MAXIMUM DENSITY SINTERED ALUMINUM NITRIDE HAS GOOD THERMAL CONDUCTIVITY, HIGH ELECTRICAL STRENGTH, GOOD DIELECTRIC PROPERTIES AS WELL AS HIGH MECHANICAL RESISTANCE AND IS THEREFORE A CONSTITUENT OF APPROPRIATE MATERIAL.

Description

L'invention concerne des éléments constitutifs de tubes en matièreThe invention relates to components of tubes made of material

céramique frittée àsintered ceramic

la densité maximale.the maximum density.

En raison de leur bonne conductibilité thermique et de leur résistance électrique élevée, on utilise, pour des éléments constitutifs de tubes, de l'oxyde d'aluminium fritté à la densité maximale et,  Owing to their good thermal conductivity and their high electrical resistance, sintered aluminum oxide is used for the constituent elements of the tubes and,

dans les cas ou l'on ne remplit plus les conditions re-  in cases where the conditions no longer meet

quises pour la céramique-oxyde d'aluminium, de l'oxyde de béryllium fritté h la densité maximale (Ullmanns Encyklopddie der technischen Chemie, 4 e édition, 1979,  quises for ceramic-aluminum oxide, sintered beryllium oxide at maximum density (Ullmanns Encyklopddie der technischen Chemie, 4th edition, 1979,

volume 17, pages 525 à 527).volume 17, pages 525 to 527).

Bien que l'oxyde de béryllium fritté à la densité maximale possède de très bonnes propriétés, son prix élevé et la toxicité de la poussière d'oxyde de béryllium font obstacle à une large utilisation de cette matière. L'invention se donne par conséquent pour but de trouver une matière céramique appropriée pour des éléments constitutifs de tubes qui possède des propriétés aussi bonnes que celles de l'oxyde de bdryllium fritté à la densité maximale mais qui puisse  Although beryllium oxide sintered at maximum density has very good properties, its high price and the toxicity of beryllium oxide dust prevent widespread use of this material. The object of the invention is therefore to find a ceramic material suitable for component parts of tubes which has properties as good as those of bdryllium oxide sintered at maximum density but which can

être fabriquée et mise en oeuvre de manière plus écono-  be manufactured and implemented in a more economical way

mique et sans présenter de risque pour la santé.  and without presenting a risk to health.

Ce but est réalisé suivant l'invention  This object is achieved according to the invention

par du nitrure d'aluminium fritté à la densité maximale.  with aluminum nitride sintered at maximum density.

Les éléments constitutifs de tubes en nitrure d'aluminium fritté à la densité maximale selon l'invention possèdent une résistance mécanique élevée, une bonne résistance aux chocs thermiques, une résistance électrique élevée et de bonnes propriétés diélectriques Dufait que à l'inverse de ceux en oxyde de béryllium ils gardent leur bonne conductibilité thermique même aux températures élevées, ces éléments constitutifs sont particulièrement appropriés pour les tubes laser Les éléments constitutifs de tubes selon l'invention peuvent être assemblés de façon satisfaisante à des métaux en raison du coefficient de  The constituent elements of tubes made of aluminum nitride sintered at the maximum density according to the invention have a high mechanical resistance, a good resistance to thermal shocks, a high electrical resistance and good dielectric properties. beryllium oxide they keep their good thermal conductivity even at high temperatures, these components are particularly suitable for laser tubes The components of tubes according to the invention can be satisfactorily assembled with metals due to the coefficient of

dilatation thermique relativement élevé du nitrure d'alu-  relatively high thermal expansion of aluminum nitride

minium fritté à la densité maximale. La matière de départ pour la fabrication des éléments constitutifs de tubes consiste de préférence en mélanges pulvérulents de nitrure d'aluminium et d'une addition d'oxydes représentant un pourcentage en poids de 0,1 à 10 % Ces mélanges sont mis en oeuvre par compression à froid pour donner des corps moulés verts qui sont frittés à la densité maximale en atmosphère  minimum sintered at maximum density. The starting material for the manufacture of the constituent elements of tubes preferably consists of powdery mixtures of aluminum nitride and of an addition of oxides representing a percentage by weight of 0.1 to 10%. These mixtures are used by cold compression to give green molded bodies which are sintered at maximum density in the atmosphere

inerte, de préférence, sous azote.  inert, preferably under nitrogen.

On peut influer de la façon souhaitée sur le coefficient de dilatation thermique et sur la conductibilité thermique du nitrure d'aluminium fritté à la densité maximale par la nature et la quantité de  The coefficient of thermal expansion and the thermal conductivity of sintered aluminum nitride can be influenced as desired at the maximum density by the nature and quantity of

l'addition d'oxydes.addition of oxides.

Comme additions d'oxydes, on utilisera les oxydes des métaux alcalinoterreux, des métaux des terres rares (le scandium, l'yttrium et le lanthame jusqu'au luténium), les oxydes des éléments de transition du groupe IV, V et VI de la classification périodique des éléments, l'oxyde d'aluminium et l'oxyde de silicium,  As oxides additions, the oxides of alkaline earth metals, rare earth metals (scandium, yttrium and lanthame up to lutenium), the oxides of the transition elements of group IV, V and VI of the periodic table of the elements, aluminum oxide and silicon oxide,

soit un seul ou plusieurs d'entre eux.  either one or more of them.

L'oxyde d'yttrium a donné en particulier  Yttrium oxide has given in particular

de bons résultats.good results.

Le nitrure d'aluminium fritté à la densité maximale qui contient de l'oxyde d'yttrium, est, de façon étonnante, extraordinairement résistant à l'humidité. D'autres caractéristiques et avantages de l'invention seront mieux compris à la lecture de la  Surprisingly moisture resistant, the highest density sintered aluminum nitride, which contains yttrium oxide. Other characteristics and advantages of the invention will be better understood on reading the

description qui va suivre d'un exemple de fabrication  description which follows of a manufacturing example

d'éléments constitutifs de tubes selon l'invention.  of constituent elements of tubes according to the invention.

ExempleExample

On broie pendant 40 heures sous argon comme gaz protecteur 5000 g d'un mélange composé de 99 % en poids de nitrure d'aluminium pulvérulent et de 1 % en poids d'oxyde d'yttrium pulvérulent dans un broyeur à boulets avec des éléments broyeurs en céramique, puis on met le mélange sur un tamis ayant une largeur de maille  5000 g of a mixture composed of 99% by weight of powdered aluminum nitride and 1% by weight of powdered yttrium oxide are ground for 40 hours under argon as a protective gas in a ball mill with grinding elements ceramic, then put the mixture on a sieve with a mesh width

de 100 microns.100 microns.

Avec la poudre obtenue par le tamisage qui a une grosseur de grain inférieure à 100 microns, on fabrique par compression isostatique à froid (la pression étant de 2500 bar) des pièces moulées tubulaires qu'on met dans un four de frittage électrique Après évacuation de l'air jusqu'à 10 5 mbar, on insuffle de l'azote dans le four de frittage jusqu'à ce que la pression atteigne 5 mbar Cette pression étant maintenue, on chauffe le four de frittage jusqu'à ce qu'on atteigne  With the powder obtained by sieving which has a grain size less than 100 microns, tubular molded parts are produced by cold isostatic compression (the pressure being 2500 bar) which are placed in an electric sintering oven After evacuation of air up to 10 5 mbar, nitrogen is blown into the sintering oven until the pressure reaches 5 mbar This pressure being maintained, the sintering oven is heated until it reaches

dans un temps de 3 heures une température de 1200 'C.  within 3 hours a temperature of 1200 'C.

Puis la pression de l'azote est augmentée à 140 mbar et  Then the nitrogen pressure is increased to 140 mbar and

la température portée en l'espace d'une heure à 1850 'C -  the temperature increased within one hour to 1850 'C -

la pression de l'azote est alors de 180 mbar -.  the nitrogen pressure is then 180 mbar -.

On maintient cette température etWe maintain this temperature and

cette pression pendant 2 heures; puis on refroidit.  this pressure for 2 hours; then we cool.

Après aération du four de frittage, on retire les éléments  After aeration of the sintering furnace, the elements are removed

constitutifs de tubes, frittésà la densité maximale.  made of tubes, sintered at maximum density.

Les éléments constitutifs de tubes fabriqués de cette façon possèdent un coefficient de 6 K-1 dilatation thermique de 4 10 K, une conductibilité thermique de 200 W/m K et une résistance à la flexion de 320 N/mm  The elements of tubes manufactured in this way have a coefficient of 6 K-1 thermal expansion of 4 10 K, a thermal conductivity of 200 W / m K and a flexural strength of 320 N / mm

Claims (6)

REVENDICATIONS 1 Eléments constitutifs de tubes en matière céramique frittée à la densité maximale, caractérisés en ce qu'ils se composent de nitrure d'aluminium fritté à la densité maximale.  1 Components of tubes made of sintered ceramic material at maximum density, characterized in that they consist of aluminum nitride sintered at maximum density. 2 Eléments constitutifs de tubes selon.  2 Components of tubes according to. la revendication 1, caractérisés par une ou plusieurs  claim 1, characterized by one or more additions d'oxyde(s).oxide (s) additions. 3 Eléments constitutifs de tubes selon la revendication 2, caractérisés en ce que les additions sont des oxydes des métaux alcalino-terreux, des métaux des terres rares, des oxydes des éléments de transition du groupe IV, V ou VI de la classification périodique des élgments, de l'oxyde d'aluminium ou de l'oxyde  3 constituent elements of tubes according to claim 2, characterized in that the additions are oxides of alkaline earth metals, rare earth metals, oxides of the transition elements of group IV, V or VI of the periodic classification of segments , aluminum oxide or oxide de silicium.of silicon. 4 Elémënts constitutifs de tubes selon la revendication 2 ou 3, caractérisés en ce que la teneur en additions représente un pourcentage en poids compris  4 constituent elements of tubes according to claim 2 or 3, characterized in that the content of additions represents a percentage by weight included entre 0,1 et 10 %.between 0.1 and 10%. 5 Eléments constitutifs de tubes selon  5 Components of tubes according to l'une des revendications 2 X 4, caractérisés en ce que  one of claims 2 X 4, characterized in that l'addition consiste en oxyde d'yttrium.  the addition consists of yttrium oxide. 6 Elêments constitutifs de tubes selon  6 Elements constituting tubes according to l'une des revendications 1 à 5, caractérisés en ce qu'ils  one of claims 1 to 5, characterized in that they sont des éléments constitutifs de tubes laser.  are components of laser tubes.
FR8405985A 1983-04-16 1984-04-16 CONSTITUENT ELEMENTS OF SINTERED ALUMINUM NITRIDE TUBES FOR USE IN LASER TUBES Expired - Lifetime FR2544305B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19833313836 DE3313836C2 (en) 1983-04-16 1983-04-16 Use of aluminum nitride for laser tube components

Publications (2)

Publication Number Publication Date
FR2544305A1 true FR2544305A1 (en) 1984-10-19
FR2544305B1 FR2544305B1 (en) 1990-05-04

Family

ID=6196574

Family Applications (1)

Application Number Title Priority Date Filing Date
FR8405985A Expired - Lifetime FR2544305B1 (en) 1983-04-16 1984-04-16 CONSTITUENT ELEMENTS OF SINTERED ALUMINUM NITRIDE TUBES FOR USE IN LASER TUBES

Country Status (5)

Country Link
JP (1) JPS59194183A (en)
CH (1) CH658855A5 (en)
DE (1) DE3313836C2 (en)
FR (1) FR2544305B1 (en)
GB (1) GB2140458B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2595876A1 (en) * 1986-03-13 1987-09-18 Roulot Maurice Tube for a laser generator of the ionised gas type

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3247985C2 (en) * 1982-12-24 1992-04-16 W.C. Heraeus Gmbh, 6450 Hanau Ceramic carrier
US4547471A (en) * 1983-11-18 1985-10-15 General Electric Company High thermal conductivity aluminum nitride ceramic body
US4578234A (en) * 1984-10-01 1986-03-25 General Electric Company Process of pressureless sintering to produce dense high thermal conductivity ceramic body of deoxidized aluminum nitride
US4578233A (en) * 1984-11-01 1986-03-25 General Electric Company Pressureless sintering process to produce high thermal conductivity ceramic body of aluminum nitride
JPH0649613B2 (en) * 1984-11-08 1994-06-29 株式会社東芝 Aluminum nitride sintered body and manufacturing method thereof
US4746637A (en) * 1984-11-08 1988-05-24 Kabushiki Kaisha Toshiba Aluminum nitride sintered body and process for producing the same
US4578365A (en) * 1984-11-26 1986-03-25 General Electric Company High thermal conductivity ceramic body of aluminum nitride
US4578364A (en) * 1984-12-07 1986-03-25 General Electric Company High thermal conductivity ceramic body of aluminum nitride
US4578232A (en) * 1984-12-17 1986-03-25 General Electric Company Pressureless sintering process to produce high thermal conductivity ceramic body of aluminum nitride
GB2213500B (en) * 1985-08-13 1990-05-30 Tokuyama Soda Kk Sinterable aluminum nitride composition
DE3627317A1 (en) * 1985-08-13 1987-02-19 Tokuyama Soda Kk SINTERABLE ALUMINUM NITRIDE COMPOSITION, SINTER BODY FROM THIS COMPOSITION AND METHOD FOR THE PRODUCTION THEREOF
US4897372A (en) * 1985-12-18 1990-01-30 General Electric Company High thermal conductivity ceramic body
US4764321A (en) * 1986-03-28 1988-08-16 General Electric Company High thermal conductivity ceramic body
US4818455A (en) * 1986-05-30 1989-04-04 General Electric Company High thermal conductivity ceramic body
US5242872A (en) * 1986-07-18 1993-09-07 Tokuyama Soda Kabushiki Kaisha Process for producing aluminum nitride sintered body
JPH0717455B2 (en) * 1986-07-18 1995-03-01 株式会社トクヤマ Method for manufacturing aluminum nitride sintered body
JP2524185B2 (en) * 1988-02-29 1996-08-14 京セラ株式会社 Aluminum nitride sintered body and manufacturing method thereof
JPH0226872A (en) * 1988-07-12 1990-01-29 Sumitomo Electric Ind Ltd Window for transmitting high-frequency wave
JP2962466B2 (en) * 1997-01-06 1999-10-12 株式会社東芝 Aluminum nitride sintered body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48100407A (en) * 1972-03-31 1973-12-18

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3108887A (en) * 1959-05-06 1963-10-29 Carborundum Co Refractory articles and method of making same
DE1209409B (en) * 1959-12-24 1966-01-20 Deutsche Edelstahlwerke Ag Hot press mold
BE620323A (en) * 1961-07-21
US3436179A (en) * 1964-07-27 1969-04-01 Tokyo Shibaura Electric Co Method of preparing sintered masses of aluminum nitride
DE1906522B2 (en) * 1968-02-10 1972-01-13 Tokyo Shibaura Electric Co. Ltd., Kawasaki, Kanagawa (Japan) METHOD OF MANUFACTURING A Sintered ALUMINUM NITRIDE YTTRIUM OXIDE ARTICLE
US4228826A (en) * 1978-10-12 1980-10-21 Campbell Frank Jun Interlocking, laminated refractory for covering a pipe
JPS57179080A (en) * 1981-04-27 1982-11-04 Nippon Kagaku Togyo Kk Sintered ceramic pipe end sealing method
JPS5855377A (en) * 1981-09-28 1983-04-01 株式会社東芝 Manufacture of aluminum nitride sintered body
DE3333406A1 (en) * 1982-09-17 1984-03-22 Tokuyama Soda K.K., Tokuyama, Yamaguchi FINE ALUMINUM NITRIDE POWDER, METHOD FOR THE PRODUCTION THEREOF AND MEANS CONTAINING IT

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48100407A (en) * 1972-03-31 1973-12-18

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 81, no. 4, 29 juillet 1974, réf. no. 16117b, page 181, Columbus Ohio (US); & JP - A - 73 100 407 (TOKYO SHIBAURA ELECTRIC CO. LTD.) (18.12.1973) *
CHEMICAL ABSTRACTS, vol. 95, no. 1, 13 juillet 1981, réf. no. 11386t, page 267, Columbus Ohio (US); & Tr. - Mosk. Khim.-Tekhnol. Inst. im D.I. Mendeleeva 1979, 108, 84-6. *
CHEMICAL ABSTRACTS, vol. 97, no. 26, 27 décembre 1982, réf. no. 226909t, page 737, Columbus Ohio (US); & Kvantovaya Elektron. (Moscow) 1981, 8(8), 1697-701. *
REVUE INTERNATIONALE DES HAUTES TEMPERATURES ET DES REFRACTAIRES, vol. 18, no. 2, 1981, Paris (FR); S. YEFSAH et al.: "Réalisation de pièces céramiques en nitrure d'aluminium par frittage classique", pages 167-172. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2595876A1 (en) * 1986-03-13 1987-09-18 Roulot Maurice Tube for a laser generator of the ionised gas type

Also Published As

Publication number Publication date
GB2140458A (en) 1984-11-28
DE3313836A1 (en) 1984-10-18
CH658855A5 (en) 1986-12-15
GB2140458B (en) 1986-03-19
JPH0211790B2 (en) 1990-03-15
JPS59194183A (en) 1984-11-02
FR2544305B1 (en) 1990-05-04
DE3313836C2 (en) 1985-08-29
GB8406819D0 (en) 1984-04-18

Similar Documents

Publication Publication Date Title
FR2544305A1 (en) CONSTITUENT ELEMENTS OF SINTERED ALUMINUM NITRIDE TUBES FOR USE IN LASER TUBES
US4752334A (en) Dispersion strengthened metal composites
US6102979A (en) Oxide strengthened molybdenum-rhenium alloy
EP1382700A1 (en) Improved oxidation resistant molybdenum alloy
Gunjishima et al. Characterization of directionally solidified B4C-TiB2 composites prepared by a floating zone method
JP4854215B2 (en) Thermoelectric material and manufacturing method thereof
US4370299A (en) Molybdenum-based alloy
JP3245893B2 (en) Fine grain tungsten alloy and method for producing the same
EP0601042A1 (en) Powder-metallurgical composition having good soft magnetic properties
JP7359412B2 (en) Polycrystalline magnesium silicide, sintered body and its use
JP2991557B2 (en) Fe-cr-al powder alloy
JP2003247039A (en) Ni-BASE ALLOY WITH EXCELLENT OXIDATION RESISTANCE, HIGH- TEMPERATURE STRENGTH AND HOT WORKABILITY
US3012883A (en) Niobium base alloy
CN115786794B (en) N-type half heusler alloy thermoelectric material and preparation method thereof
JP2005223237A (en) Highly strong thermoelectric material
US5415831A (en) Method of producing a material based on a doped intermetallic compound
JPH02118041A (en) High strength and high toughness cu-base sintered alloy having excellent wear resistance
JPH0325499B2 (en)
JPH04202736A (en) Hyper-eutectic al-si base alloy powder showing excellent deformability by hot powder metal forging
US5779823A (en) Carbon or boron modified titanium silicide
KR101957559B1 (en) Ti-Fe based hypereutectic alloy
US3359082A (en) Ductile tungsten alloys
JP3353484B2 (en) Method for producing Fe-based sintered alloy valve seat showing excellent wear resistance
JPH06212324A (en) Tic grain dispersed sintered ti alloy and its production
JPH09324228A (en) Metallic member containing dispersed solid lubricant grain, and its production

Legal Events

Date Code Title Description
CJ Change in legal form
ST Notification of lapse