JPS5837675B2 - Menhatsnetsutaino Seizouhouhou - Google Patents

Menhatsnetsutaino Seizouhouhou

Info

Publication number
JPS5837675B2
JPS5837675B2 JP49083478A JP8347874A JPS5837675B2 JP S5837675 B2 JPS5837675 B2 JP S5837675B2 JP 49083478 A JP49083478 A JP 49083478A JP 8347874 A JP8347874 A JP 8347874A JP S5837675 B2 JPS5837675 B2 JP S5837675B2
Authority
JP
Japan
Prior art keywords
heating element
metal
ceramic
surface heating
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49083478A
Other languages
Japanese (ja)
Other versions
JPS5112434A (en
Inventor
禎 曳野
真彬 三小田
誠 小川
茂 早川
宏光 多木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP49083478A priority Critical patent/JPS5837675B2/en
Publication of JPS5112434A publication Critical patent/JPS5112434A/en
Publication of JPS5837675B2 publication Critical patent/JPS5837675B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Surface Heating Bodies (AREA)

Description

【発明の詳細な説明】 本発明は面発熱体、特にセラミックス中に金属発熱体を
一体化した面発熱体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a surface heating element, particularly a surface heating element in which a metal heating element is integrated into ceramics.

従来の面発熱体の多くは雲母などの絶縁部材にヒーター
を巻いた構造のものであった。
Most conventional surface heating elements have a structure in which the heater is wrapped around an insulating material such as mica.

しかし通電初期において母体材料に熱が吸収されてしま
い、その温度の立上りが悪いものであった。
However, at the initial stage of energization, heat was absorbed by the base material, resulting in a slow rise in temperature.

またカーボンや酸化錫などを熱源とする発熱体において
は,その熱容量値を比較的任意に設計できるという利点
があるものの、熱容量分布を変えることが困難であり,
発熱体の中央部分の温度が他の部分の温度より高くなる
という問題があった。
Furthermore, although heating elements using carbon, tin oxide, etc. as heat sources have the advantage of being able to design their heat capacity values relatively arbitrarily, it is difficult to change the heat capacity distribution.
There was a problem in that the temperature of the central part of the heating element was higher than the temperature of other parts.

しかもそれらの多くは製造の作業性と生産性の悪いもの
であった。
Moreover, many of them had poor manufacturing workability and productivity.

このような面発熱体以外にもガラス中にヒータを埋込ん
だ構造の面発熱体もある。
In addition to such a surface heating element, there is also a surface heating element having a structure in which a heater is embedded in the glass.

これらは使用可能な温度が300℃程度かそれより低い
という問題をもっている。
These have the problem that the usable temperature is about 300° C. or lower.

そして.これらガラス成分を用いた製品は耐熱スポーリ
ング特性が悪く、また繰返し使用すると急速に機械的強
度の劣化が進み、寿命特性が他の発熱体に比べて悪いも
のであった。
and. Products using these glass components had poor heat-resistant spalling characteristics, rapid deterioration of mechanical strength with repeated use, and poor life characteristics compared to other heating elements.

また再結晶性耐熱ガラスを使用した而発熱体では,安価
なニクロム線や鉄クロl・線などの埋込みが困難で、し
かもこの結晶化ガラスそのものは高価であり、安価な発
熱体を得ることができなかった。
In addition, in a heating element using recrystallized heat-resistant glass, it is difficult to embed inexpensive nichrome wire or iron chloride wire, and the crystallized glass itself is expensive, making it difficult to obtain an inexpensive heating element. could not.

しかしながら本発明の方法によれば、−L記のような欠
点がなく、耐熱性に優れかつ発熱体を保護し寿命特性の
よい面発熱体を得ることができるものである。
However, according to the method of the present invention, it is possible to obtain a surface heating element that does not have the drawbacks mentioned in -L, has excellent heat resistance, protects the heating element, and has good life characteristics.

具体的には、出発材別である混合組成物を仮焼して熱膨
脹係数値が5 0 X 1 0−7/℃(20〜500
゜Cにおいて)以下の特性を有するセラミック質または
ガラス質の焼結体を得、この焼結体を粉砕して得られる
粉末を使用し.それを威型する際に金属発熱体を埋込み
、この金属発熱体の埋込まれた成型体を高温下で焼結す
ることによりセラミックスと金属発熱体とを一体化し、
その素子の表面の一部ないし全面に黒鉛層を形或し、さ
らにその上に熔射法により金属層を形成することを特徴
とする面発熱体の製造方法である。
Specifically, mixed compositions for each starting material are calcined to obtain a coefficient of thermal expansion of 50 x 10-7/°C (20 to 500
℃) A ceramic or glassy sintered body having the following characteristics is obtained, and the powder obtained by pulverizing this sintered body is used. When molding it, a metal heating element is embedded, and the molded body with the metal heating element embedded is sintered at high temperature to integrate the ceramic and the metal heating element,
This method of manufacturing a surface heating element is characterized in that a graphite layer is formed on a part or the entire surface of the element, and a metal layer is further formed thereon by a spraying method.

一般的に、セラミックスと金属との接合性は悪く、特に
金属に通電してこれを発熱させヒークとして利用する場
合には、耐熱衝撃性や、耐熱性,加工性などに多くの問
題があった。
In general, the bonding properties between ceramics and metals are poor, and there are many problems with thermal shock resistance, heat resistance, workability, etc., especially when electricity is applied to metals to generate heat and use it as a heat source. .

しかしながら、本発明においては、上述した特性を有す
る混合物を出発材料に用いることによって、セラミック
スと金属発熱体との接合性がいちぢるしくよくなり面発
熱体に鬼裂を生じたり,彎曲したりするという不良をな
くし、セラミックスと金属線とを一体化することができ
るという特徴がある。
However, in the present invention, by using a mixture having the above-mentioned characteristics as a starting material, the bondability between the ceramic and the metal heating element is significantly improved, and the surface heating element is prevented from cracking or bending. It has the feature that it eliminates the defects caused by metal wires and can integrate ceramics and metal wires.

ここで,出発材料である混合組成物を仮焼して得られる
セラミック質またはガラス質の焼結体において,その熱
膨脹係数値を上述したように限定した理由について述べ
ると、熱膨脹係数値が5 0 X 1 0−7/℃より
太きいと焼結によって金属発熱体との一体化が困難とな
り、さらには通電時においてヒートショックが起り、素
子が破壊されるなどの欠点がある。
Here, the reason why the thermal expansion coefficient value of the ceramic or glassy sintered body obtained by calcining the mixed composition as the starting material is limited as described above is that the thermal expansion coefficient value is 50. If it is thicker than X 1 0-7/°C, it will be difficult to integrate it with a metal heating element due to sintering, and furthermore, there will be drawbacks such as heat shock occurring during energization and destruction of the element.

さらに、面発熱体素子の表面に黒鉛層を介して熔射法に
よって金属層を形或したのは、素子の熱伝導性を向上さ
せるためである。
Furthermore, the reason why a metal layer was formed on the surface of the surface heating element by a spraying method via a graphite layer was to improve the thermal conductivity of the element.

又金属層を設けることにより素子の強度を高め、高温度
に対して安定した特性を得ることができる。
Further, by providing a metal layer, the strength of the element can be increased and stable characteristics against high temperatures can be obtained.

なお、金属層を形或する際、あらかじめ素子の表面に黒
鉛層を形成しておくのは、熔射法によって金属層を形成
する際に金属の一部が黒鉛層まで入り込み、素子の表面
に直接金属層を熔射法によって形成する場合に比べて機
械的強度が向上するためである。
Note that when forming a metal layer, it is important to form a graphite layer on the surface of the element in advance because when forming the metal layer using the spraying method, some of the metal may penetrate into the graphite layer and form on the surface of the element. This is because the mechanical strength is improved compared to the case where the metal layer is directly formed by a spraying method.

しかも,この黒鉛成分はセラミックス表面の凹凸にそっ
て完全に密着した被膜を形或しているため、アルミニウ
ム板等の金属板をセラミックスの表面に接触させるもの
に比べ、間に空気層が存在しない分だけ熱伝導性が向上
する。
Furthermore, this graphite component forms a film that adheres completely along the unevenness of the ceramic surface, so there is no air space between them compared to when a metal plate such as an aluminum plate is brought into contact with the ceramic surface. Thermal conductivity improves accordingly.

なお、黒鉛層の厚みを必要以上に厚くすると熱伝導性が
逆に悪くなるため、2m/m以下にすることが好ましい
Note that if the thickness of the graphite layer is made thicker than necessary, the thermal conductivity will deteriorate, so it is preferable to make the thickness 2 m/m or less.

ここに、熔射法とは金属線又は金属粉末をガス、電気な
どを使用して一度熔解し,素体の表面に強着する方法で
ある。
Here, the melting method is a method in which metal wire or metal powder is once melted using gas, electricity, etc., and then firmly attached to the surface of the element body.

この方法では金属層の厚みを自由に制御することが可能
である。
This method allows the thickness of the metal layer to be freely controlled.

次に本発明の方法について一実施例にもとづき具体的に
説明する。
Next, the method of the present invention will be specifically explained based on an example.

試料の調整工程としては粒度1〜3μ程度の天然シラス
原料粉末CaCO3およびSi02.Li2cO3、A
l203を用い,まず等モルにCaCO3とS t 0
2を、さらに1:1:4にLl2CO3とAl203
とSl02を調合し、1200〜1350・℃の温度で
2時間処理して仮焼成をした。
In the sample preparation process, natural shirasu raw material powder CaCO3 and Si02. Li2cO3,A
Using 1203, first equimolar amounts of CaCO3 and S t 0
2 and further 1:1:4 Ll2CO3 and Al203
and Sl02 were prepared and pre-calcined by treating at a temperature of 1200 to 1350°C for 2 hours.

得られた物質をX線回折で調べ、単一固溶体のCaSi
03およびβスポシュメンになっていることを確認した
The resulting material was examined by X-ray diffraction and was found to be a single solid solution of CaSi.
It was confirmed that it was 03 and β sposhmen.

そして、シラス原料粉末が20重量φ、CaSi03粉
末が30重量φ、βスポシュメンが50重量饅の配合割
合になるように調合し、ゴム内張ポットミルを用いて湿
式混合した。
Then, the ingredients were mixed in such a manner that the raw material powder of whitebait was 20 weight φ, the CaSi03 powder was 30 weight φ, and the β-sposhmen was 50 weight φ, and wet-mixed using a rubber-lined pot mill.

その後水分を蒸発させ,iooo℃の温度で1時間仮焼
をし、さらに粉砕することにより微粉末とした。
Thereafter, water was evaporated, calcined for 1 hour at a temperature of iooo°C, and further ground to obtain a fine powder.

次に濃度6φのポリビニルアルコール溶液を15重量多
添加し、32メッシュのふるいを通して整粒をし、これ
まで一般に行なわれている方法で成型した。
Next, 15 weights of polyvinyl alcohol solution having a concentration of 6φ was added, the particles were sized through a 32-mesh sieve, and molded using a conventional method.

その際、図示するように直径0. 3 5 mm長さ8
0cmのニクロム線または鉄クロム線又はカンタル線を
渦巻状に加工し、120X80X5M1iLの寸法範囲
内に埋込んだ。
At that time, as shown in the figure, the diameter is 0. 3 5 mm length 8
A 0 cm nichrome wire, iron chrome wire, or Kanthal wire was processed into a spiral shape and embedded within a size range of 120×80×5M1iL.

この成型体を、SiC発熱体を有する電気炉で昇温速度
50〜1 5 0 0C/時、温度1080〜1260
℃の間で本焼或を行なった。
This molded body was heated in an electric furnace having a SiC heating element at a heating rate of 50 to 1500C/hour and a temperature of 1080 to 1260C.
The main firing was carried out between ℃.

得られた面発熱体素子において、ガラスセラミック質の
熱膨張係数は1 5 X 1 0−7/℃であった。
In the obtained surface heating element, the coefficient of thermal expansion of the glass ceramic material was 15×10-7/°C.

尚、面発熱体素子の表面に黒鉛粉末とタールの混合物を
2■に塗布し、その後N2 ガスを用い中性雰囲気中で
温度1000℃で硬化処理を行ない、さらに銅層を熔射
法で厚み3駕に形成した。
In addition, a mixture of graphite powder and tar is applied to the surface of the surface heating element 2cm, and then hardened at a temperature of 1000°C in a neutral atmosphere using N2 gas, and then a copper layer is thickened by a hot-spraying method. It was formed into three palanquins.

得られた面発熱体に40Vの電圧を印加すると表面温度
が1分50秒後に500℃に達した。
When a voltage of 40 V was applied to the obtained surface heating element, the surface temperature reached 500° C. after 1 minute and 50 seconds.

尚、図中1はガラスセラミックス、2は金属発熱体、3
は黒鉛層、4は金属層である。
In the figure, 1 is a glass ceramic, 2 is a metal heating element, and 3 is a metal heating element.
is a graphite layer, and 4 is a metal layer.

このように本発明の方法によれば,セラミックス中に金
属発熱体を埋込んだ構造の面発熱体を容易に製造するこ
とができる。
As described above, according to the method of the present invention, a surface heating element having a structure in which a metal heating element is embedded in ceramic can be easily manufactured.

そして、使用する原料は無害なものであり、その取扱い
が非常に容易になる。
Moreover, the raw materials used are harmless, and their handling becomes very easy.

金属発熱体を戒型時粉体中に埋込むために、面発熱体と
しての熱容量や熱分布を使用目的に応じて任意に設定す
ることができる。
Since the metal heating element is embedded in the molding powder, the heat capacity and heat distribution of the surface heating element can be arbitrarily set depending on the purpose of use.

さらにこの方法によって得られる面発熱体は.セラミッ
クスの金属発熱体との接着性がよく、約50〜600℃
の温度範囲で使用することができる。
Furthermore, the surface heating element obtained by this method is. Good adhesion with ceramic metal heating elements, approximately 50-600℃
Can be used in a temperature range of

また発熱した状態で急冷しても破損するようなことがな
く、さらに外気の影響によって発熱体が損傷を受けるお
それがない。
In addition, there is no risk of damage even if the heating element is rapidly cooled in a heated state, and there is no risk of the heating element being damaged by the influence of outside air.

したがって,その経時変化は小さく、寿命特性がよい。Therefore, its change over time is small and its life characteristics are good.

面発熱体そのものは不燃性であり、耐薬品性や耐湿性に
すぐれている。
The surface heating element itself is nonflammable and has excellent chemical and moisture resistance.

また前述したように原料は無害な材料を使用しているた
め、面発熱体を食品衛生機器の分野においても使用でき
,たとえば炊飯器やトースター,オーブン、ポットなど
の面発熱体としてきわめて適したものである。
In addition, as mentioned above, since the raw materials are harmless, surface heating elements can also be used in the field of food hygiene equipment, and are extremely suitable as surface heating elements for rice cookers, toasters, ovens, pots, etc. It is.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の方法により得られる面発熱体の一例を示す
断面図である。 1・・・・・・セラミックス、2・・・・・・金属発熱
体.3・・・・・黒鉛層,4・・・・・・金属層。
The figure is a sectional view showing an example of a surface heating element obtained by the method of the present invention. 1...Ceramics, 2...Metal heating element. 3...graphite layer, 4...metal layer.

Claims (1)

【特許請求の範囲】[Claims] 1 出発材料である混合組或物を仮焼して熱膨脹係数値
が5 0 X 1 0−’/℃以下の特性を有するセラ
ミック質またはガラス質の焼結体を得、この焼結体を粉
砕して得られる粉末を使用し,その戒型時に金属発熱体
を埋込み、この成型体を焼結することによりセラミック
スと金属発熱体とを一体化し、得られた素体の表面に黒
鉛層を形成し、その上に熔射法によりさらに金属層を形
成する事を特徴とする面発熱体の製造方法。
1. Calcinate the starting material mixture to obtain a ceramic or vitreous sintered body having a coefficient of thermal expansion of 50 x 10-'/°C or less, and pulverize this sintered body. A metal heating element is embedded during molding, and the molded body is sintered to integrate the ceramic and the metal heating element, forming a graphite layer on the surface of the resulting element. and further forming a metal layer thereon by a spraying method.
JP49083478A 1974-07-19 1974-07-19 Menhatsnetsutaino Seizouhouhou Expired JPS5837675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP49083478A JPS5837675B2 (en) 1974-07-19 1974-07-19 Menhatsnetsutaino Seizouhouhou

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49083478A JPS5837675B2 (en) 1974-07-19 1974-07-19 Menhatsnetsutaino Seizouhouhou

Publications (2)

Publication Number Publication Date
JPS5112434A JPS5112434A (en) 1976-01-31
JPS5837675B2 true JPS5837675B2 (en) 1983-08-17

Family

ID=13803563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49083478A Expired JPS5837675B2 (en) 1974-07-19 1974-07-19 Menhatsnetsutaino Seizouhouhou

Country Status (1)

Country Link
JP (1) JPS5837675B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0457075B2 (en) * 1987-04-30 1992-09-10 Otsutoo Dankeru Gmbh Fuaburitsuku Fuyuuru Erekutorotekunishe Gereete

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5572388A (en) * 1978-11-25 1980-05-31 Matsushita Electric Ind Co Ltd Heater for electric cooking oven
US5385785A (en) * 1993-08-27 1995-01-31 Tapeswitch Corporation Of America Apparatus and method for providing high temperature conductive-resistant coating, medium and articles

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS41768Y1 (en) * 1964-01-20 1966-01-26

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS41768Y1 (en) * 1964-01-20 1966-01-26

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0457075B2 (en) * 1987-04-30 1992-09-10 Otsutoo Dankeru Gmbh Fuaburitsuku Fuyuuru Erekutorotekunishe Gereete

Also Published As

Publication number Publication date
JPS5112434A (en) 1976-01-31

Similar Documents

Publication Publication Date Title
TW449758B (en) Process for producing piezoelectric ceramics
JP2004108767A (en) Ceramic cooking system and its manufacturing method
JPS5837675B2 (en) Menhatsnetsutaino Seizouhouhou
JPS635340B2 (en)
US2966430A (en) Electric resistance elements
JPH07315915A (en) Orientated alumina sintered compact
JPH0321501B2 (en)
JP4783489B2 (en) Silver sintered body manufacturing method and simple furnace
JP2537606B2 (en) Ceramic Heater
JPH0416439B2 (en)
JPH0487181A (en) Silicon nitride member and its manufacture
US1989824A (en) Method of glazing refractory bodies
JP3618369B2 (en) Ceramic heating element
JPS58151380A (en) Far infrared ray radiator and manufacture
JPH0410717B2 (en)
JP2955127B2 (en) Ceramic heater
US971124A (en) Protective screen for apparatus which are exposed to high temperatures.
US1081542A (en) Glazed refractory article.
JPH08153572A (en) Far infrared radiation heater
WO2023234892A1 (en) Radiant heater
JPS63291382A (en) Ceramic heater
CA1075777A (en) Silicon carbide resistance igniter
SU73049A1 (en) Method of making electrical resistances
KR20010085151A (en) The far infra red ray emissive heater and method for its preparation
JPH0229638B2 (en)