JPS6229377B2 - - Google Patents

Info

Publication number
JPS6229377B2
JPS6229377B2 JP55072551A JP7255180A JPS6229377B2 JP S6229377 B2 JPS6229377 B2 JP S6229377B2 JP 55072551 A JP55072551 A JP 55072551A JP 7255180 A JP7255180 A JP 7255180A JP S6229377 B2 JPS6229377 B2 JP S6229377B2
Authority
JP
Japan
Prior art keywords
tube
inner diameter
capillary
glass
quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55072551A
Other languages
Japanese (ja)
Other versions
JPS56169136A (en
Inventor
Tsugio Sato
Seiji Shibuya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP7255180A priority Critical patent/JPS56169136A/en
Publication of JPS56169136A publication Critical patent/JPS56169136A/en
Publication of JPS6229377B2 publication Critical patent/JPS6229377B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/60Construction of the column
    • G01N30/6052Construction of the column body
    • G01N30/6073Construction of the column body in open tubular form
    • G01N30/6078Capillaries

Description

【発明の詳細な説明】 本発明はガラスキヤピラリチユーブの製造方法
の改良に係り、特に機械的強度に優れ且つ柔軟性
に富んだ薄肉の石英キヤピラリチユーブの製造方
法を提供せんとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for manufacturing a glass capillary tube, and in particular, it is an object of the present invention to provide a method for manufacturing a thin-walled quartz capillary tube with excellent mechanical strength and flexibility. be.

近時、石英系光フアイバの線引技術を応用して
ガスクロマトグラフイのキヤピラリカラムに使用
される石英キヤピラリチユーブが多量に製造され
ている。
Recently, quartz capillary tubes used in gas chromatography capillary columns have been manufactured in large quantities by applying quartz-based optical fiber drawing technology.

而して従来ガラスキヤピラリーチユーブの製造
方法としては、母材となる石英管の一端を2000℃
以上の温度に加熱溶融し、該管をキヤピラリチユ
ーブとして引出した後、該キヤピラリチユーブの
外径を制御しながらドラムに巻きとして製品とし
ていたものである。然しながらこのような製造方
法においては、その溶融部分において表面張力の
影響により断面積の収縮をおこすため、母材と線
引後との内径/外径比をみると後者の方が小さく
即ち相対的に厚肉になつている。
The conventional method for manufacturing glass capillary reach tubes is to heat one end of the quartz tube, which is the base material, to 2000℃.
After heating and melting to the above temperature and drawing out the tube as a capillary tube, the product was wound around a drum while controlling the outer diameter of the capillary tube. However, in this manufacturing method, the cross-sectional area of the molten part shrinks due to the influence of surface tension, so when looking at the inner diameter/outer diameter ratio of the base material and the drawn wire, the latter is smaller, that is, relatively smaller. It has become thicker.

他方キヤピタリチユーブの特性としては外径よ
りもむしろ内径が精度よくしかも可撓性を有する
ことが極めて重要なのである。この可撓性につい
ては同一内径の場合外径の細い程曲率半径が小さ
く可撓性に優れている。これらの事からキヤピタ
リーチユーブの製造に際しては、断面積の収縮す
るのを抑え且つ内径精度のよいものを線引するこ
とは、特性上極めて重要であり、従来の如く表面
張力の影響を無視して外径を制御することのみを
考慮して線引を行うことは問題であつた。
On the other hand, it is extremely important that the inner diameter, rather than the outer diameter, has good precision and flexibility as a characteristic of the capillary tube. Regarding this flexibility, when the inner diameter is the same, the smaller the outer diameter, the smaller the radius of curvature and the better the flexibility. For these reasons, when manufacturing capitol tubes, it is extremely important to suppress the shrinkage of the cross-sectional area and to draw lines with good inner diameter accuracy, and ignoring the effects of surface tension as in the past. It was a problem to draw the wire with consideration only to controlling the outer diameter.

これらの点を改善する方法として本発明者等は
先に上記の如き表面張力の影響を防止するため石
英管の内面に1〜50mmH2Oの圧力を加えて線引す
る方法を提案した。しかしこの方法は内径の制御
機構については何等考慮していないため圧力の変
動が内径寸法の変動に大きく影響し安定した寸法
のものをうることが出来ないものであつた。
As a method for improving these points, the present inventors previously proposed a method of applying a pressure of 1 to 50 mmH 2 O to the inner surface of a quartz tube to draw the line in order to prevent the effects of surface tension as described above. However, this method does not take into account the control mechanism for the inner diameter, and therefore, pressure fluctuations have a large effect on the inner diameter, making it impossible to obtain stable dimensions.

本発明はかかる現状に鑑み鋭意研究を行つた結
果、内径の制御を行うことにより、内径寸法が安
定し且つ薄肉にして柔軟性に優れた石英キヤピラ
リチユーブの製造方法を見出したものである。即
ち本発明方法は石英などのガラス管の内部を加圧
しつつ加熱溶融し、これを線引きしてガラスキヤ
ピラリチユーブを製造する方法において、該キヤ
ピラリチユーブの内径或は肉厚を測定し、その実
測値と設定値との偏差値を零となるように、上記
ガラス管の内圧を10mmAq〜100mmAqの範囲に制
御して線引を行つて該チユーブの内径を均一にす
ることを特徴とするものである。
The present invention has been made in view of the current situation, and as a result of extensive research, we have discovered a method for manufacturing a quartz capillary tube that has a stable inner diameter, is thin, and has excellent flexibility by controlling the inner diameter. That is, the method of the present invention is a method of manufacturing a glass capillary tube by heating and melting the inside of a glass tube made of quartz or the like while pressurizing it and drawing it into a wire. The inner diameter of the glass tube is made uniform by controlling the internal pressure of the glass tube within a range of 10 mmAq to 100 mmAq and drawing the line so that the deviation value between the actual measurement value and the set value becomes zero. It is.

本発明方法の一実施例を図面にもとづき詳細に
説明する。
An embodiment of the method of the present invention will be described in detail based on the drawings.

第1図に示す如く母材として外径20mm、内径17
mmの石英管1をロツド送り装置2により上下方向
に移行しうるように取付ける。又石英管1の上端
には窒素ガス等のガス送入用管4を取付けたキヤ
ツプ3を接続する。
As shown in Figure 1, the base material has an outer diameter of 20 mm and an inner diameter of 17 mm.
A quartz tube 1 of mm diameter is attached so that it can be moved vertically by a rod feeding device 2. Further, a cap 3 to which a pipe 4 for supplying gas such as nitrogen gas is attached is connected to the upper end of the quartz tube 1.

而して石英管1を線引炉5内に挿入してその下
端を2000℃程度に加熱溶融し、キヤプラリーチユ
ーブとして引出した後、その端末を速度制御機能
を有するドラム回転装置6に取付けた巻取ドラム
7に固定する。次に石英管1を一定速度で送りな
がら引取速度例えば20m/分にて巻取ドラムを回
転せしめて外径300μm、内径220μmのキヤピラ
リーチユーブ8を製造した。
Then, the quartz tube 1 is inserted into a drawing furnace 5, its lower end is heated and melted to about 2000°C, and after being pulled out as a capillary leech tube, the end thereof is attached to a drum rotating device 6 having a speed control function. It is fixed to the winding drum 7. Next, while feeding the quartz tube 1 at a constant speed, the winding drum was rotated at a take-up speed of 20 m/min, for example, to produce a capillary reach tube 8 having an outer diameter of 300 μm and an inner diameter of 220 μm.

かかる製造方法において外径制御機構について
はキヤピラリーチユーブ8の外径を外径測定器9
にて測定して予め設定した外径値と測定値との偏
差値をドラム回転装置6のモータ出力にフイード
バツクして行うものである。なお10は増巾器で
ある。
In this manufacturing method, for the outer diameter control mechanism, the outer diameter of the capillary reach tube 8 is measured using an outer diameter measuring device 9.
This is done by feeding back the deviation value between the outer diameter value measured and set in advance and the measured value to the motor output of the drum rotating device 6. Note that 10 is an amplifier.

又、本発明方法は特に内径を制御する機構を設
けることを特徴とするものであり、線引中のキヤ
ピラリチユーブ8の内径を内径測定器11で測定
し、予め設定した内径値と測定値との偏差値をマ
ノスタースイツチを組込んだ圧力調節装置12を
通して石英管1の内圧を調整することにより常時
一定の内径に制御するものである。即ち外径が一
定にして内径が小さい場合には所定量のガスを石
英管1内に送入して増圧しながら線引する。又内
径が大きい場合には大気中にガスを放出せしめて
減圧しながら線引するものである。この場合の石
英管内の圧力調整範囲を10mmAq〜100mmAqに限
定するものである。
Furthermore, the method of the present invention is particularly characterized by providing a mechanism for controlling the inner diameter, in which the inner diameter of the capillary tube 8 during drawing is measured with an inner diameter measuring device 11, and a preset inner diameter value and the measured value are measured. By adjusting the internal pressure of the quartz tube 1 through a pressure regulating device 12 incorporating a Manostar switch, the internal diameter is always kept constant. That is, when the outer diameter is constant and the inner diameter is small, a predetermined amount of gas is fed into the quartz tube 1 and drawn while increasing the pressure. If the inner diameter is large, the gas is released into the atmosphere and the wire is drawn while reducing the pressure. In this case, the pressure adjustment range inside the quartz tube is limited to 10 mmAq to 100 mmAq.

而して本発明方法による場合と従来方法による
場合(内径制御を行はないもの)について夫夫キ
ヤピラリチユーブを製造し、その寸法変動を記録
計にチヤートした。その結果は第2図及び第3図
に示す通りである。
Capillary tubes were manufactured using the method of the present invention and using the conventional method (inner diameter control was not performed), and dimensional variations were charted using a recorder. The results are shown in FIGS. 2 and 3.

第2図及び第3図のAは外径変動を示すもので
あるが、外径については本発明方法及び従来方法
ともに均一な外径のキヤピラリーチユーブをうる
ことが出来る。しかし第2図及び第3図のBの如
く内径変動については、従来方法による場合は±
10μm程度存在するが、本発明方法による場合に
は±2μm以下に著しく低減し極めて安定な方法
のキヤピラリーチユーブをうることが出来るもの
である。
A in FIGS. 2 and 3 shows a variation in the outer diameter, and both the method of the present invention and the conventional method can provide a capillary reach tube with a uniform outer diameter. However, as shown in B in Figures 2 and 3, when using the conventional method, ±
Although it exists in the order of 10 μm, in the method of the present invention, it is significantly reduced to ±2 μm or less, and an extremely stable capillary reach tube can be obtained.

なお線引を行つたキヤピラリーチユーブの機能
的強度を増大せしめるために合成樹脂をコーテイ
ングしてもよい、又母材として石英ガラスに限定
するものではなく、細径可能なガラスであれば如
何なるものを使用してもよい。
In order to increase the functional strength of the drawn capillary reach tube, it may be coated with a synthetic resin, and the base material is not limited to quartz glass, but any glass that can be made to have a small diameter can be used. may be used.

以上詳述した如く本発明方法によれば優れた精
度の内径寸法を有するキヤピラリーチユーブをう
るためガスクロマトグラフ用カラムとして極めて
有用なものである。
As detailed above, according to the method of the present invention, a capillary reach tube having an inner diameter with excellent accuracy can be obtained, and thus it is extremely useful as a column for gas chromatography.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の一実施例を実施するため
の概略説明図、第2図及び第3図は管径の寸法変
動説明図であり、第2図は従来方法による場合、
第3図は本発明方法による場合であり、Aは外
径、Bは内径を示すものである。 1…ガラス管、2…ロツド送り装置、3…キヤ
ツプ、4…ガス送入用管、5…線引炉、6…ドラ
ム回転装置、7…巻取りドラム、8…キヤピラリ
チユーブ、9…外径測定器、10…増巾器、11
…内径測定器、12…圧力調整装置。
FIG. 1 is a schematic explanatory diagram for implementing one embodiment of the method of the present invention, FIGS. 2 and 3 are diagrams explanatory of dimensional fluctuations in pipe diameter, and FIG.
FIG. 3 shows the case according to the method of the present invention, where A indicates the outer diameter and B indicates the inner diameter. DESCRIPTION OF SYMBOLS 1... Glass tube, 2... Rod feeding device, 3... Cap, 4... Gas feeding tube, 5... Wire drawing furnace, 6... Drum rotation device, 7... Winding drum, 8... Capillary tube, 9... Outside Diameter measuring device, 10... Magnifier, 11
...Inner diameter measuring device, 12...Pressure adjustment device.

Claims (1)

【特許請求の範囲】[Claims] 1 石英などのガラス管の内部を加圧しつつ加熱
溶融し、これを線引きしてガラスキヤピラリチユ
ーブを製造する方法において、該キヤピラリチユ
ーブの内径或は肉厚を測定し、その実測値と設定
値との偏差値が零となるように上記ガラス管の内
圧を10mmAq〜100mmAqの範囲に制御しつつ線引
を行つて該チユーブの内径を均一にすることを特
徴とするガラスキヤピラリチユーブの製造方法。
1. In a method of manufacturing a glass capillary tube by heating and melting the inside of a glass tube made of quartz or the like while pressurizing it and drawing it into a wire, the inner diameter or wall thickness of the capillary tube is measured, and the actual value and setting are determined. Manufacturing a glass capillary tube characterized in that the inner diameter of the tube is made uniform by drawing a line while controlling the inner pressure of the glass tube within the range of 10 mmAq to 100 mmAq so that the deviation value from the above value is zero. Method.
JP7255180A 1980-05-30 1980-05-30 Manufacture of glass capillary tube Granted JPS56169136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7255180A JPS56169136A (en) 1980-05-30 1980-05-30 Manufacture of glass capillary tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7255180A JPS56169136A (en) 1980-05-30 1980-05-30 Manufacture of glass capillary tube

Publications (2)

Publication Number Publication Date
JPS56169136A JPS56169136A (en) 1981-12-25
JPS6229377B2 true JPS6229377B2 (en) 1987-06-25

Family

ID=13492600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7255180A Granted JPS56169136A (en) 1980-05-30 1980-05-30 Manufacture of glass capillary tube

Country Status (1)

Country Link
JP (1) JPS56169136A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136931A (en) * 1984-12-07 1986-06-24 Sumitomo Electric Ind Ltd Manufacture of glass capillary tube
EP0192204A1 (en) * 1985-02-19 1986-08-27 The Perkin-Elmer Corporation Flexible capillary chromatographic column
JP2003048732A (en) * 2001-07-31 2003-02-21 Nippon Electric Glass Co Ltd Method for forming precision glass tube
JP2007320803A (en) * 2006-05-31 2007-12-13 Sumitomo Electric Ind Ltd Method for manufacturing glass pipe
MX2018015161A (en) * 2016-06-07 2019-08-16 Corning Inc Method and apparatus for forming glass tubing from glass preforms.
EP3636607B1 (en) * 2018-10-09 2021-01-13 Heraeus Quarzglas GmbH & Co. KG Method for manufacturing a capillary tube
CN111995231A (en) * 2020-09-03 2020-11-27 江苏亨通光纤科技有限公司 Drawing equipment and method for deep fluorine-doped capillary tube for beam combiner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5136207A (en) * 1974-06-25 1976-03-27 Heraeus Schott Quarzschmelze Sekieigarasu mataha sekieizairyokara chiisanasunhosaojusurukudaoseizosurutameno hoho oyobi sochi
JPS5338089A (en) * 1976-09-18 1978-04-07 Mitsubishi Heavy Ind Ltd Seal device for sealing hatch cover panels
JPS56140033A (en) * 1980-03-31 1981-11-02 Furukawa Electric Co Ltd:The Manufacture of glass column

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5136207A (en) * 1974-06-25 1976-03-27 Heraeus Schott Quarzschmelze Sekieigarasu mataha sekieizairyokara chiisanasunhosaojusurukudaoseizosurutameno hoho oyobi sochi
JPS5338089A (en) * 1976-09-18 1978-04-07 Mitsubishi Heavy Ind Ltd Seal device for sealing hatch cover panels
JPS56140033A (en) * 1980-03-31 1981-11-02 Furukawa Electric Co Ltd:The Manufacture of glass column

Also Published As

Publication number Publication date
JPS56169136A (en) 1981-12-25

Similar Documents

Publication Publication Date Title
JP2765033B2 (en) Optical fiber drawing method
JPS6229377B2 (en)
US7197898B2 (en) Robust diameter-controlled optical fiber during optical fiber drawing process
JPH09132424A (en) Method for drawing optical fiber
JP2682603B2 (en) Inorganic coated optical fiber manufacturing apparatus and manufacturing method
JPS60260439A (en) Forming device of parent material for optical fiber
JPH033616B2 (en)
JPH0535094B2 (en)
JP3127176B2 (en) Manufacturing method of preform for optical fiber
JPH0337129A (en) Production of optical glass fiber
JPH0629149B2 (en) Porous base material sintering machine for optical fiber
JPS6250419B2 (en)
JPS569231A (en) Manufacture of glass rod or pipe
JPS61158838A (en) Production of quartz hollow fiber
JPS6229450Y2 (en)
JPS5929531B2 (en) Optical fiber diameter control method
JP2612928B2 (en) Glass fiber manufacturing method
JPS5843338B2 (en) Optical fiber manufacturing method
JPH0251439A (en) Production of optical fiber
JPS60112638A (en) Manufacture of optical fiber
JPH0253375B2 (en)
JPS5941936B2 (en) Optical fiber coating method
JP3715159B2 (en) Spinning furnace for optical fiber production
JPS61155859A (en) Production of metal coated quartz column for chromatographic device
JP3495395B2 (en) Optical fiber drawing method