JPS5929531B2 - Optical fiber diameter control method - Google Patents

Optical fiber diameter control method

Info

Publication number
JPS5929531B2
JPS5929531B2 JP9318776A JP9318776A JPS5929531B2 JP S5929531 B2 JPS5929531 B2 JP S5929531B2 JP 9318776 A JP9318776 A JP 9318776A JP 9318776 A JP9318776 A JP 9318776A JP S5929531 B2 JPS5929531 B2 JP S5929531B2
Authority
JP
Japan
Prior art keywords
optical fiber
diameter
wire diameter
cross
preform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9318776A
Other languages
Japanese (ja)
Other versions
JPS5319037A (en
Inventor
克之 井本
聰 青木
正雄 角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9318776A priority Critical patent/JPS5929531B2/en
Publication of JPS5319037A publication Critical patent/JPS5319037A/en
Publication of JPS5929531B2 publication Critical patent/JPS5929531B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/0253Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/90Manipulating the gas flow through the furnace other than by use of upper or lower seals, e.g. by modification of the core tube shape or by using baffles
    • C03B2205/91Manipulating the gas flow through the furnace other than by use of upper or lower seals, e.g. by modification of the core tube shape or by using baffles by controlling the furnace gas flow rate into or out of the furnace

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】 本発明は光ファイバの線引き時における線径制御方法の
改良に関するもので、より安定に光ファイバの線径を制
御し、品質の良好な光ファイバを得ることにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for controlling the diameter of an optical fiber during drawing, and its purpose is to more stably control the diameter of an optical fiber and obtain an optical fiber of good quality.

光ファイバに関する研究は、ここ数年の間に急速に進展
し、数dB/kmの超低損失値の実現の見通しが得られ
るようになつてきた。
Research on optical fibers has progressed rapidly over the past few years, and it has become possible to realize ultra-low loss values of several dB/km.

それと共に光ファイバ同志の接続の容易性、耐応力特性
、広帯域特性などの実用性に直面した諸特性が次第に議
論される段階に入つてきて(・る。これらの諸特性を解
明、評価する一つの重要なカギをにぎつているものの一
つに光ファイバの線径の均一性がある。この光ファイバ
の線径の均一性は光ファイバの線引き装置に依存して(
・る。従来、上記超低損失光ファイバの線引きは、第1
図に示すように光ファイパラリブオーム1(外径D)を
一定速度Vpで加熱源2によつて加熱された炉芯管3内
に挿入し、加熱、溶融されたそのプリフオームの下端部
を引き出してドラム6に取り付け、モータコントローラ
8でドラム6を一定速度Vfで回転させながら光ファイ
バ9にする方法が用(・られて(・る。そして、光ファ
イバ9の線径dは光学式非触型検出器4で光ファイバ断
面の一軸方向ある(・は二軸方向から光ファイバの外径
(線径)が検出され、線径測定装置5に表示されるよう
になつて(・る。また線径変動がある場合には線径測定
装置5のアナログ出力を制御回路7に送り込み、制御回
路の出力信号をモータコントローラ8にフィードバック
してドラム6の回転数を変えながら光ファイバの巻き取
り速度Vfを変えて線径制御が行なわれている。以上の
ような従来の線引き法に対して、本発明者は先に、プリ
フオームの構造の不完全性および外部のじよう乱による
線引き中のプリフオーム溶融温度のゆらぎによつて線径
が変動するのを抑制する方法(特開昭52−65458
)を提案した。
At the same time, we are gradually entering a stage where various characteristics facing practical use, such as ease of connection between optical fibers, stress resistance characteristics, and broadband characteristics, are being discussed. One of the important keys is the uniformity of the diameter of the optical fiber.The uniformity of the diameter of the optical fiber depends on the optical fiber drawing device (
・Ru. Conventionally, the ultra-low loss optical fiber described above is drawn in the first step.
As shown in the figure, an optical fiber pararibe ohm 1 (outer diameter D) is inserted into a furnace core tube 3 heated by a heating source 2 at a constant speed Vp, and the lower end of the preform is heated and melted. A method is used in which the optical fiber 9 is made into an optical fiber 9 by pulling it out, attaching it to the drum 6, and rotating the drum 6 at a constant speed Vf using the motor controller 8.The wire diameter d of the optical fiber 9 is The outer diameter (wire diameter) of the optical fiber is detected by the tactile detector 4 from the uniaxial direction (*) of the optical fiber cross section, and is displayed on the wire diameter measuring device 5 (*). If there is a change in the wire diameter, the analog output of the wire diameter measuring device 5 is sent to the control circuit 7, and the output signal of the control circuit is fed back to the motor controller 8 to wind the optical fiber while changing the number of rotations of the drum 6. The wire diameter is controlled by changing the speed Vf.In contrast to the conventional wire drawing method as described above, the present inventors first investigated the problem of wire drawing due to imperfections in the preform structure and external disturbances. Method for suppressing wire diameter fluctuations due to fluctuations in preform melting temperature (Japanese Patent Laid-Open No. 52-65458
) was proposed.

また、プリフオーム溶融温度のゆらぎによつて線径が変
動するのを抑制しながらプリフオームの外径変動に起因
する光フアイバの線径変動を制御する方法(特開昭52
−76044、特開昭52113747)を提案した。
上記の線径制御方法はその一例を第2図aおよびbに示
すように、炉芯管内へガスを強制的に送り込んで炉芯管
内の流量分布を層流状態に保ち、プリフオームの溶融温
度がゆらぐのを抑えて線径変動ができる限り発生しな(
・ように抑制しながらプリフオームの外径変動に起因す
る線径変動を上記ガス流量を変えて制御し、線径変動の
低域化を行う方法である。この方法を用℃・ると、光フ
ァーハブリブオームの外径変動が±2%前後でも光フア
イパの線径変動を±1%前後に制御することができるこ
とを実験的に確認している。またこの方法では第1図の
方法に比し次のような点がすぐれている。すなわち、溶
融温度の急激なゆらぎがな℃・ために秒オーダの時定数
で変動する線径変動がほとんどな(゛。ところが、プリ
フオームの断面形状が楕円ある℃・は円以外の複雑な円
形構造をしている場合には、このプリフオームを線引き
すると次のような問題点が生じてくることがわかつた。
(1)第3図aに示すような楕円構造のプリフオームを
第2図aの装置で線径制御を行わな(・で線引きすると
、第3図bに示すような光フアイバの線径変動が検出器
4(一軸方向測定)のあとに接続された記録計(図示せ
ず)によつて記録された。
Furthermore, a method for controlling the variation in the wire diameter of an optical fiber caused by the variation in the outer diameter of the preform while suppressing the variation in the wire diameter due to fluctuations in the preform melting temperature (Japanese Patent Laid-Open No. 52
-76044, Japanese Unexamined Patent Publication No. 52113747).
An example of the wire diameter control method described above is shown in Figure 2 a and b, in which gas is forcibly fed into the furnace core tube to maintain the flow distribution in the furnace core tube in a laminar flow state, and the melting temperature of the preform is Suppress fluctuations and prevent wire diameter fluctuations as much as possible (
- This is a method of controlling wire diameter fluctuations caused by fluctuations in the outer diameter of the preform by changing the gas flow rate, thereby reducing the range of wire diameter fluctuations. It has been experimentally confirmed that by using this method, it is possible to control the wire diameter variation of the optical fiber to around ±1% even if the outer diameter fluctuation of the optical fiber hub rib ohm is around ±2%. This method also has the following advantages over the method shown in FIG. In other words, since there is no sudden fluctuation in the melting temperature, there is almost no wire diameter fluctuation that changes with a time constant on the order of seconds (゛. However, when the cross-sectional shape of the preform is elliptical, Celsius has a complex circular structure other than a circle. It has been found that the following problems arise when this preform is delineated.
(1) If a preform with an elliptical structure as shown in Fig. 3a is drawn with the device shown in Fig. 2a, the diameter of the optical fiber will fluctuate as shown in Fig. 3b. It was recorded by a recorder (not shown) connected after the detector 4 (uniaxial measurement).

この線径変動は極めて短い周期で大きな振幅の変動であ
り、プリフオームの外径変動から推定される光フアイバ
の線径変動と全く対応していな℃・結果であり、別の要
因による線径変動であると思われた。そこで光フアイバ
の線径を顕微鏡を用(・て断面観測から求めて見ると、
光フアイバの断面は楕円形状であるが光フアイバの長さ
方向には第3図bに示すような極めて短(・周期で大き
な振幅の変動は存在しなかつた。すなわち、第3図bの
結果は光フアイバ断面の一定方向の軸から測定した光フ
アイバの線径変動と対応しなかつた。そして、第3図b
の線径変動の最大値および最小値を結んで得られる包絡
線は部分的に光フアイパ断面の長軸と短軸の測定結果と
対応して(・ることがわかつた。このことから、これは
光フアイバの断面が真円でなく楕円状のものであつたた
めに、光フアイバ9のドラム6への巻き取られ方が安定
せず不安定となり、ドラム6への光フアイバ9の断面の
接触軸が不規則に変動し、したがつて光ファィバの線径
を検出する検出器4のところで検出器4が光フアイバの
断面の長軸を測つたり、短軸を測つたり、ある℃・はそ
の中間のどこかの軸を測つたり、などとまつたく不規則
に測定したための線径変動であると考えられた。(2)
(1)と同様に第4図aに示すような楕円構造のプリフ
オームを第2図aに示す光フアィバ線径制御装置を用(
・て線引きを行なつた。
This wire diameter fluctuation is a large amplitude fluctuation in an extremely short period, and does not correspond at all to the wire diameter fluctuation of the optical fiber estimated from the preform outer diameter fluctuation.The wire diameter fluctuation is caused by another factor. It seemed to be. Therefore, the diameter of the optical fiber was determined by cross-sectional observation using a microscope.
The cross section of the optical fiber is elliptical, but in the length direction of the optical fiber there is no large amplitude fluctuation with a very short period (as shown in Figure 3b).In other words, the results shown in Figure 3b did not correspond to the variation in the diameter of the optical fiber measured from the axis in a certain direction of the cross section of the optical fiber.
It was found that the envelope obtained by connecting the maximum and minimum values of the wire diameter variation partially corresponds to the measurement results of the long and short axes of the optical fiber cross section. Since the cross section of the optical fiber was not a perfect circle but an ellipse, the way the optical fiber 9 was wound around the drum 6 was unstable and the cross section of the optical fiber 9 came into contact with the drum 6. The axis varies irregularly, so at the detector 4 that detects the diameter of the optical fiber, the detector 4 measures the long axis or short axis of the cross section of the optical fiber. It was thought that this was due to a variation in the wire diameter due to irregular measurements, such as measuring an axis somewhere in between.(2)
Similarly to (1), a preform with an elliptical structure as shown in Fig. 4a is prepared using the optical fiber diameter control device shown in Fig. 2a.
・I drew the line.

第4図bはその場合の光フアイバ線径制御結果を示す線
径変動結果である。第3図bに比し、明らかに線径変動
が抑えられ、線径制御の効果があられれて℃・る。とこ
ろが(1)と同様に光フアイバの断面を顕微鏡で観測し
、光フアイパの長さ方向の線径変動を求めて見ると第4
図bの線径変動特性と部分的に対応して〜・ないことが
わかつた。すなわち、(1)で述べたように、検出器4
が楕円断面形状の光フアイバの長軸、短軸、ある(・は
その中間のどこかの軸から見た線径を測定して(・るた
めに、線径を太くすべきときに細くなるように制御信号
を出したり、その反対に細くすべきときに太くなるよう
に制御信号を出したりしてガス流量制御用バルブ開閉装
置を誤動作させていることがわかつた。本発明は上記(
1)および(2)で述べた問題点を解決し、光フアイバ
の線径変動の少な℃・光フアイバ線径制御方法を提供す
ることにある。
FIG. 4b shows the results of wire diameter variation showing the results of optical fiber wire diameter control in that case. Compared to FIG. 3b, the variation in wire diameter is clearly suppressed, and the effect of wire diameter control is enhanced. However, as in (1), when we observe the cross section of the optical fiber with a microscope and find the variation in the wire diameter in the length direction of the optical fiber, we find that the fourth
It was found that this partially corresponds to the wire diameter variation characteristic shown in Figure b. That is, as stated in (1), the detector 4
are the long and short axes of an optical fiber with an elliptical cross-section, and (・ is the diameter measured from an axis somewhere in between.) It has been found that the valve opening/closing device for gas flow rate control malfunctions by issuing a control signal such that the gas flow rate becomes thicker when it should be narrower, or vice versa.
The object of the present invention is to solve the problems described in 1) and (2) and provide a method for controlling the diameter of an optical fiber at degrees Celsius, which causes less variation in the diameter of the optical fiber.

すなわち、ブリフオームの断面形状が楕円ある〜・は円
以外の複雑な形状をして(・ても、本発明の線径制御方
法によつて線引きすれば、線径変動が少なく、かつ真円
形状に近℃・光フアイバを得ることができる。以下に本
発明の光フアイバの線径制御方法の実施例を述べる。第
5図は本発明の光フアイバ線径制御装置の一実施例の概
略図である。
In other words, even if the cross-sectional shape of the BRIFORM is an ellipse or a complex shape other than a circle, if the wire is drawn using the wire diameter control method of the present invention, there will be little variation in wire diameter and it will be a perfect circle. It is possible to obtain an optical fiber at a temperature close to 100.degree. It is.

本発明は線径測定装置5の出力信号を低域通過フイルタ
16を通して制御回路7に入力し、制御回路7の出力信
号をガス流量制御用バルブ開閉装置12にフイードバツ
クすることを特徴とし、その結果、線径変動が少なく、
かつ真円形状に近〜・光フアイバを得ることにある。以
下、第5図の動作を説明する。プリフオーム1の断面形
状が楕円ある(・は円以外の複雑な円形構造をして(・
るとすると、光フアイバ9が巻き取りドラム6に巻かれ
るとき、不安定な状態にあるために線径検出器(一軸方
向の測定)4は光フアイバ9の断面の長軸、短軸ある(
・はその中間のどこかの軸をまつたく不規則に測定し、
第3図bに示されたような線径変動特性を記録計15に
記録する。そこで本発明では第3図bで示されたような
線径変動特性を低域通過フイルタに入力し、第3図bの
測定軸の変動などによつて検出された線径変動の高周波
成分を減衰させてゆつくりと変動している低周波の線径
変動分を制御回路7に入力する。そして制御回路7であ
らかじめ設定してあつた所望の線径値に相当する電圧(
または電流)と比較し、誤差信号がでたときにはそれを
増幅して制御出力信号とする。そしてこの出力信号でガ
ス流量制御用バルブ開閉装置を駆動して炉芯管3内へ送
り込むガス流量を制御し、制御回路7の誤差信号を零に
近づけるようにするフイードバツク方式である。ここで
、低域通過フイルタのカツトオフ周波数は線径検出器4
がたとえば、光フアイバ9の断面の長軸測定から短軸測
定へ移る時間(すなわち、光フアイバの断面の測定軸の
変移時間)からきまる周波数よりも低く選ぶ必要がある
。そして、低域通過フイルタの出力信号はプリフオーム
1の外径変動に起因する光フアイバの線径変動に相当す
る信号が得られるようにしてある(光フアイバ表面のキ
ズ、泡、測定軸の変移などによる光フアイバ線径検出器
の誤動作は含ませないようにしてある)。以下に、第5
図の装置を用(・た場合の実験結果について述べる。
The present invention is characterized in that the output signal of the wire diameter measuring device 5 is input to the control circuit 7 through the low-pass filter 16, and the output signal of the control circuit 7 is fed back to the valve opening/closing device 12 for controlling the gas flow rate. , less wire diameter variation,
The objective is to obtain an optical fiber having a nearly perfect circular shape. The operation shown in FIG. 5 will be explained below. The cross-sectional shape of preform 1 is an ellipse (・ indicates a complex circular structure other than a circle (・
When the optical fiber 9 is wound around the winding drum 6, the wire diameter detector (uniaxial measurement) 4 detects the long axis and short axis of the cross section of the optical fiber 9 because it is in an unstable state (
・Measure irregularly along an axis somewhere in between,
The wire diameter variation characteristics as shown in FIG. 3b are recorded on the recorder 15. Therefore, in the present invention, the wire diameter fluctuation characteristics as shown in Fig. 3b are input to a low-pass filter, and the high frequency components of the wire diameter fluctuation detected due to the fluctuation of the measurement axis shown in Fig. 3b are extracted. The attenuated and slowly fluctuating low frequency wire diameter variation is input to the control circuit 7. Then, a voltage (
or current), and if an error signal is generated, it is amplified and used as a control output signal. This output signal drives a gas flow rate control valve opening/closing device to control the flow rate of gas sent into the furnace core tube 3, thereby making the error signal of the control circuit 7 close to zero. Here, the cutoff frequency of the low-pass filter is determined by the wire diameter detector 4.
For example, it is necessary to select a frequency lower than the frequency determined by the time of transition from the long axis measurement to the short axis measurement of the cross section of the optical fiber 9 (that is, the transition time of the measurement axis of the cross section of the optical fiber). The output signal of the low-pass filter is designed to obtain a signal corresponding to the variation in the diameter of the optical fiber caused by variation in the outer diameter of the preform 1 (such as scratches, bubbles on the surface of the optical fiber, displacement of the measurement axis, etc.). (This does not include malfunctions of the optical fiber diameter detector due to Below, the fifth
We will discuss the experimental results when using the apparatus shown in the figure.

第6図aは本実験に用℃・た光ファーハブリブオーム1
の外径変動特性である。第7図は本実験に用(・た低域
通過フイルタ16の周波数特性である。そして、第6図
bは光フアイバ線径変動特性の測定結果である。第6図
bの結果は第3図bおよび第4図bの結果よりも明らか
に良好な特性であり、本発明の線径制御方法の効果があ
られれて℃・ることを示して℃・る。また、プリフオー
ムの断面形状が楕円にもかかわらず、本発明の方法によ
つて線引きした光フアイバの断面形状はほぼ真円に近(
・断面形状になると℃・う最も顕著な効果が得られた。
この実験事実に対する明確な説明を現在のところできな
いが、本発明者の推定では次のような解釈で説明づけら
れると考えて℃・る。
Figure 6a shows the ℃・light fur hub rib ohm 1 used in this experiment.
This is the outer diameter variation characteristic of Figure 7 shows the frequency characteristics of the low-pass filter 16 used in this experiment. Figure 6b shows the measurement results of the optical fiber diameter variation characteristics. The characteristics are clearly better than the results shown in Figures b and 4b, indicating that the wire diameter control method of the present invention is effective at °C. Although it is elliptical, the cross-sectional shape of the optical fiber drawn by the method of the present invention is almost a perfect circle (
・When it comes to cross-sectional shape, the most significant effect was obtained at ℃・U.
Although a clear explanation for this experimental fact cannot be provided at present, the inventors believe that it can be explained by the following interpretation.

すなわち、従来法ではプリフオームの溶融部が軸方向に
引張られて楕円型の円錐状に変形して楕円断面形状の光
フアイバになるが、本発明の方法ではプリフオームの溶
融部外周表面に沿つてガスが流されて(・るために等価
的にプリフオーム溶融部に外圧が加わりながら軸方向に
変形して光フアイパになる。しかも外圧が時間的に不規
則に変動して℃・るために楕円断面形状のプリフオーム
溶融部の形状が徐々に安定な円形断面形状のプリフオー
ム溶融部に変形しながら引張られて真円形状に近い光フ
アイバになつて(・るものと推定される。第8図は本発
明の光フアイバ線径制御方法の別の実施例である。
That is, in the conventional method, the molten part of the preform is pulled in the axial direction and deformed into an elliptical cone shape to become an optical fiber with an elliptical cross section, but in the method of the present invention, gas is As the preform melts, it is equivalently deformed in the axial direction while external pressure is applied to the melted part of the preform to form an optical fiber.Furthermore, the external pressure fluctuates irregularly over time, resulting in an elliptical cross section. It is assumed that the shape of the preform melted part gradually deforms into a stable circular cross-sectional preform melted part and is pulled to become an optical fiber with a nearly perfect circular shape. It is another embodiment of the optical fiber wire diameter control method of the invention.

これは炉芯管3内に一定流量のガスを流しておき、線径
検出器4で検出した信号を低域通過フイルタ16、制御
回路7を通してモータコントローラ8にフイードバツク
し、モータコントローラで光フアイバの巻き取り速度を
調節しながら光フアイバの線径変動を小さくするように
制御する方法である。本発明の線径制御方法はプリフオ
ームが円形構造、四角形および多角形構造のものにも適
用できることは明らかである。
This is done by allowing a constant flow of gas to flow through the furnace core tube 3, and feeding back the signal detected by the wire diameter detector 4 to the motor controller 8 through the low-pass filter 16 and control circuit 7. This is a control method that reduces variations in the diameter of the optical fiber while adjusting the winding speed. It is clear that the wire diameter control method of the present invention can also be applied to preforms with circular, square, and polygonal structures.

また本発明の線径制御方法は上記実施例に限定されるも
のではな(・。たとえば本発明者が先に提案した特許(
特開昭52113747、特開昭52−119949、
特開昭52−129532、特開昭52−129533
)にも線径測定装置5と制御回路7の間に低域通過フイ
ルタを入れることによつて適用することができる。以上
述べたように、プリフオームの断面形状が楕円あるいは
円以外の複雑な円形構造をして℃・る場合には、線引き
された光フアイバの断面形状も上記プリフオームの断面
形状に近(・ものになり、それがドラムに巻取られると
きのドラムの表面状態により、光フアイバは径方向に回
転しながら巻きとられる。
Furthermore, the wire diameter control method of the present invention is not limited to the above-mentioned embodiments.
JP 52113747, JP 52-119949,
JP-A-52-129532, JP-A-52-129533
) can also be applied by inserting a low-pass filter between the wire diameter measuring device 5 and the control circuit 7. As mentioned above, when the cross-sectional shape of the preform is an ellipse or a complex circular structure other than a circle, the cross-sectional shape of the drawn optical fiber is also close to the cross-sectional shape of the preform. Depending on the surface condition of the drum when the optical fiber is wound onto the drum, the optical fiber is wound while rotating in the radial direction.

その径方向の回転はランダムであり、光フアイバの線径
検出部では、光フアイバ断面の長軸を測つたり、短軸を
測つたり、ある(・はその中間のどこかの軸を測つたり
、などとまつたく不規則に測定される。また光フアイバ
線径検出器は応答が速いために、光フアイバ長手方向の
わずかな光フアイバ表面のキズ、泡などにも応答して信
号を出し誤動作を生じさせて(・た。このような背景に
対して、光フアイバ線径検出器の応答速度および第2図
aある℃・はbの線径制御装置の制御応答速度は非常に
速℃・ために、低域通過フイルタを挿入しな(・と、上
記光フアイバの断面の長軸、短軸、ある℃・はその中間
部のどこかの軸を不規則に測定する線径検出器の出力信
号に容易に応答する。
The rotation in the radial direction is random, and the diameter detection section of the optical fiber may measure the long axis of the optical fiber cross section, the short axis, or some axis in between. The optical fiber diameter detector has a fast response, so it can respond to slight scratches, bubbles, etc. on the optical fiber surface in the longitudinal direction of the optical fiber and output a signal. Against this background, the response speed of the optical fiber wire diameter detector and the control response speed of the wire diameter control device shown in Figure 2 a and b are extremely fast. For wire diameter detection, insert a low-pass filter to measure the long and short axes of the cross-section of the optical fiber, and irregularly measure the axis somewhere in between. easily respond to the output signal of the device.

また光フアイバ表面のキズ、泡などの非常に速(・イン
パルス的変動にも応答してしまい、線径を太くすべきと
きに細くなるように制御信号を出したり、その反対に細
くすべきときには太くなるように制御信号を出したりし
て誤まつた制御を行なうことがわかつた。その結果、光
フアイバの線径変動を大きくしたり、測定した線径変動
特性のデータが信頼できな℃・という問題があつた。こ
れに対して、本発明は線径検出器と制御回路の間に低域
フイルタを挿入して制御系に低域通過フイルタ特性をも
たせることにより、上記光フアイバ断面の測定軸の変動
、光フアイバ表面のキズ、泡による変動の高周波成分を
減衰させてゆつくりと変動して(・る真の光フアイバ線
径変動だけに応答させるようにしたものである。
It also responds to extremely rapid (impulse-like) fluctuations such as scratches and bubbles on the surface of the optical fiber, and it issues a control signal to make the wire diameter thinner when it should be made thicker, and conversely, when it should be made thinner. It was found that incorrect control was carried out by issuing a control signal to increase the thickness of the optical fiber.As a result, the fluctuation in the diameter of the optical fiber was increased, and the data on the measured wire diameter fluctuation characteristics became unreliable. To solve this problem, the present invention inserts a low-pass filter between the wire diameter detector and the control circuit to give the control system low-pass filter characteristics, thereby making it possible to measure the cross section of the optical fiber. It is designed to respond only to true optical fiber diameter fluctuations by attenuating the high frequency components of fluctuations due to shaft fluctuations, scratches on the optical fiber surface, and bubbles, and slowly fluctuating.

その結果、線径変動の少な℃・、かつ真円に近℃・光フ
アイバを実現させたものである。ここで、低域通過フイ
ルタのカツトオフ周波数を線径検出器がたとえば光フア
イバの断面の長軸沖淀から短軸測定へ移る時間(すなわ
ち、光フアイバの断面の測定軸の変移時間)からきまる
周波数よりも低く、かつ、光フアイバ表面のキズ、泡な
どの非常に速℃・インパルス的変動による応答周波数よ
りも近く選んであるので上記のような本発明の効果を得
ることができる。実施例では線引速度が数+m/龍程度
であることから、カツトオフ周波数は第7図に示すよう
に43Hzに選んだ。上記効果は、低域通過フイルタを
挿入しな(・場合の光フアイバ線径変動特性(第3図b
、第4図b)と、低域通過フイルタを挿入した場合の光
フアイバ線径変動特性(第6図b)を比較すれば明らか
である。
As a result, we have achieved a degree Celsius optical fiber with little variation in wire diameter and a nearly perfect circle. Here, the cutoff frequency of the low-pass filter is determined from the time when the wire diameter detector moves from the long axis of the cross section of the optical fiber to the short axis measurement (i.e., the time of transition of the measurement axis of the cross section of the optical fiber). Since the response frequency is selected to be lower than that and closer to the response frequency caused by extremely rapid C. impulse fluctuations such as scratches and bubbles on the surface of the optical fiber, the effects of the present invention as described above can be obtained. In the example, since the drawing speed was approximately several meters per minute, the cutoff frequency was selected to be 43 Hz as shown in FIG. The above effect can be obtained without inserting a low-pass filter (Fig. 3b)
, FIG. 4b) and the optical fiber diameter variation characteristic when a low-pass filter is inserted (FIG. 6b).

以上述べたように、本発明の線径制御装置は線径変動が
少なく、かつ真円の断面形状に近〜・光フアイバが実現
できると(・う効果をもつており、光フアイバ同志の接
続の容易性、耐応力性および帯域特性の再現性を良くす
る、と(・つた点で大きな効果を有する。
As described above, the wire diameter control device of the present invention has the effect of making it possible to realize an optical fiber with small wire diameter fluctuations and a cross-sectional shape close to a perfect circle, and to connect optical fibers together. It has great effects in terms of ease of processing, improved stress resistance, and better reproducibility of band characteristics.

【図面の簡単な説明】 第1図は従来のプリフオーム法による光フアイバ線引き
装置の概略図、第2図aおよびbは本発明者が先に提案
した光フアイバ線径制御装置の概略図、第3図a、第4
図a、第6図aは本発明者が実験に用(・た光ファーハ
ブリブオームの外径変動特性を示す図、第3図b、第4
図bは本発明者が先に提案した線引き装置で実験を行つ
て得た光フアイバの線径変動特性を示す図、第5図、第
8図は本発明の光フアイバ線径制御方法の実施例の概略
図、第6図bは第5図の装置を用いて得た光フアイバの
線径変動特性の一例を示す図、第7図は本発明の光フア
イバ線径制御装置に用(・た低域通過フイルタの周波数
特性を示す図である。
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a schematic diagram of an optical fiber drawing device using the conventional preform method, FIGS. 2 a and b are schematic diagrams of an optical fiber diameter control device previously proposed by the present inventor, and FIG. Figure 3a, 4th
Figure a, Figure 6a are diagrams showing the outer diameter variation characteristics of the optical fiber hub rib ohm used by the present inventor for experiments, Figures 3b and 4.
Figure b is a diagram showing the optical fiber diameter variation characteristics obtained through experiments with the drawing device previously proposed by the present inventor, and Figures 5 and 8 are implementations of the optical fiber diameter control method of the present invention. A schematic diagram of an example, FIG. 6b is a diagram showing an example of the diameter variation characteristics of an optical fiber obtained using the apparatus of FIG. 5, and FIG. FIG. 3 is a diagram showing frequency characteristics of a low-pass filter.

Claims (1)

【特許請求の範囲】 1 光ファイバ素材を所定の速度で加熱源内に送り込み
光ファイバ素材と加熱源の間に強制的にガスを送り込み
ながら加熱溶融された素材を引き出してドラムに巻きつ
け、ドラムを所定の速度で回転させて光ファイバを所定
の速度で線引きする場合に、光ファイバの線径を検出し
、低域通過フィルタ特性を有する回路を含む制御系を介
して取出した信号によつて上記ガス送り込み量および上
記線引速度の少なくとも一方を制御することを特徴とす
る光ファイバの線径制御方法。 2 上記低域通過フィルタ特性を有する回路を含む制御
系のカットオフ周波数を商用周波数以下に選んだことを
特徴とする特許請求の範囲第1項記載の光ファイバの線
径制御方法。
[Claims] 1. An optical fiber material is fed into a heating source at a predetermined speed, and while gas is forcibly fed between the optical fiber material and the heating source, the heated and melted material is drawn out and wound around a drum, and the drum is When drawing an optical fiber at a predetermined speed by rotating it at a predetermined speed, the wire diameter of the optical fiber is detected and the above-mentioned A method for controlling the diameter of an optical fiber, the method comprising controlling at least one of the amount of gas fed and the drawing speed. 2. The method for controlling the diameter of an optical fiber according to claim 1, wherein the cutoff frequency of the control system including the circuit having the low-pass filter characteristic is selected to be lower than the commercial frequency.
JP9318776A 1976-08-06 1976-08-06 Optical fiber diameter control method Expired JPS5929531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9318776A JPS5929531B2 (en) 1976-08-06 1976-08-06 Optical fiber diameter control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9318776A JPS5929531B2 (en) 1976-08-06 1976-08-06 Optical fiber diameter control method

Publications (2)

Publication Number Publication Date
JPS5319037A JPS5319037A (en) 1978-02-21
JPS5929531B2 true JPS5929531B2 (en) 1984-07-21

Family

ID=14075564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9318776A Expired JPS5929531B2 (en) 1976-08-06 1976-08-06 Optical fiber diameter control method

Country Status (1)

Country Link
JP (1) JPS5929531B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56149339A (en) * 1980-04-21 1981-11-19 Nippon Telegr & Teleph Corp <Ntt> Drawing method for optical fiber
JPS587403A (en) * 1981-07-03 1983-01-17 Sumitomo Rubber Ind Ltd Preparation of improved ethylenic polymer
JP6379598B2 (en) * 2014-04-02 2018-08-29 住友電気工業株式会社 Optical fiber manufacturing method and manufacturing apparatus

Also Published As

Publication number Publication date
JPS5319037A (en) 1978-02-21

Similar Documents

Publication Publication Date Title
US4793840A (en) Optical fibre manufacture
US7197898B2 (en) Robust diameter-controlled optical fiber during optical fiber drawing process
JPH09124336A (en) Melting furnace for apparatus for drawing optical fiber and supporting structure for base material for optical fiber
JPS5929531B2 (en) Optical fiber diameter control method
JPH09132424A (en) Method for drawing optical fiber
JP2876881B2 (en) Measuring device and level measuring device for molten metal
JPS6229377B2 (en)
US5620494A (en) Method for manufacturing optical fiber coupler
JPH06211536A (en) Production of glass fiber
JPS5850938B2 (en) Optical fiber manufacturing method and nozzle for optical fiber manufacturing
JP3147101B2 (en) Method and apparatus for measuring temperature of molten metal
JPH064493B2 (en) Method for producing optical glass fiber
JP3301136B2 (en) Optical fiber manufacturing method and optical fiber manufacturing apparatus
JP2671069B2 (en) Control method of optical fiber drawing furnace
JPH10182181A (en) Production of optical fiber
JPS5843338B2 (en) Optical fiber manufacturing method
JPH0597463A (en) Spinning device for optical fiber
JPS60112638A (en) Manufacture of optical fiber
JPS602254B2 (en) How to draw optical fiber
JPH0797232A (en) Filament drawing of optical fiber
JP2592359B2 (en) Burner control device for forming clad members
JPS6034721B2 (en) Method for reducing optical fiber diameter variation
JPS5948772B2 (en) How to draw optical fiber
JP3495395B2 (en) Optical fiber drawing method
JPH11139843A (en) Method for lowering linear velocity in optical fiber drawing