JPS602254B2 - How to draw optical fiber - Google Patents

How to draw optical fiber

Info

Publication number
JPS602254B2
JPS602254B2 JP52039518A JP3951877A JPS602254B2 JP S602254 B2 JPS602254 B2 JP S602254B2 JP 52039518 A JP52039518 A JP 52039518A JP 3951877 A JP3951877 A JP 3951877A JP S602254 B2 JPS602254 B2 JP S602254B2
Authority
JP
Japan
Prior art keywords
optical fiber
gas
tube
fiber
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52039518A
Other languages
Japanese (ja)
Other versions
JPS53125037A (en
Inventor
克之 井本
聰 青木
正治 新沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Hitachi Ltd
Original Assignee
Hitachi Cable Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Hitachi Ltd filed Critical Hitachi Cable Ltd
Priority to JP52039518A priority Critical patent/JPS602254B2/en
Publication of JPS53125037A publication Critical patent/JPS53125037A/en
Publication of JPS602254B2 publication Critical patent/JPS602254B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02718Thermal treatment of the fibre during the drawing process, e.g. cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Description

【発明の詳細な説明】 本発明は、光輝信用伝送路として用いられる光フアィバ
の線引方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of drawing an optical fiber used as a bright transmission line.

〔従釆技術〕[Subordinate technology]

光フアィバの線引きには、多重るつぼの中のガラス材料
を加熱源で加熱し、溶融されたガラスをるつぼのノズル
から引き出するつぼ法と、別途調製された一層あるいは
多層のガラス質材料からなるパイプあるいはロッド(プ
リフオーム)を加熱し、溶融されたガラスを引き出して
線引きするプリフオーム法がある。
Optical fibers are drawn using the crucible method, in which glass materials in multiple crucibles are heated with a heat source and the molten glass is drawn out from the nozzle of the crucible, and the crucible method, in which a separately prepared single or multi-layer pipe or There is a preform method in which a rod (preform) is heated and the molten glass is pulled out and drawn.

このような線引方法によって得られた光フアィバは局部
的に機械的強度の弱いところがあり、線引後あるいは線
引きと同時に光フアィバ外周表面に高分子材料(以後ポ
リマと略称する)を保護層として被覆(プリコート)し
て補強が行なわれている。このポリマのプリコートによ
り、プリフオームに含まれる気泡や表面のキズに起因す
ると考えられた機械的強度の欠陥はかなり改善されてい
るが、なお、ポリマのプリコートされた光フアィバにお
いても機械的強度のバラッキが存在し、かつポリマ被覆
層も厚さむら、塗りならなどが発生していた。これら欠
点の生ずる原因を探求するべく従来の製造方法、製造装
置を検討して見た。まず、第1図に示すような線引きと
同時に光フアィバ外周表面にポリマを被覆する従釆装置
による製造方法を検討した。第1図からわかるごとくプ
リフオーム1が加熱源2により加熱、溶融されて光フア
ィバ9となり、ドラム6に巻きつけられる。
The optical fiber obtained by such a drawing method has locally weak mechanical strength, so a protective layer of polymeric material (hereinafter referred to as polymer) is applied to the outer peripheral surface of the optical fiber after or at the same time as drawing. Reinforcement is performed by coating (precoating). By precoating this polymer, defects in mechanical strength that were thought to be caused by air bubbles contained in the preform and scratches on the surface have been considerably improved. In addition, the polymer coating layer also had uneven thickness and uneven coating. In order to explore the causes of these defects, conventional manufacturing methods and manufacturing equipment were examined. First, we investigated a manufacturing method using a secondary device that coats the outer peripheral surface of an optical fiber with a polymer simultaneously with drawing as shown in FIG. As can be seen from FIG. 1, the preform 1 is heated and melted by the heat source 2 to become an optical fiber 9, which is wound around the drum 6.

光フアィバはドラムに巻きつけられる前にその線径が検
出器4で検出され、その後ポリマ被覆槽10、加熱装置
12を通して光フアィバ外周表面にポリマが被覆(プリ
コート)されている。この一連の装置を用いて種々実験
を行なった結果、この製造方法には次のような問題点が
含まれていることがわかつた。
The diameter of the optical fiber is detected by a detector 4 before it is wound around a drum, and then the outer peripheral surface of the optical fiber is coated (precoated) with polymer through a polymer coating bath 10 and a heating device 12. As a result of conducting various experiments using this series of devices, it was found that this manufacturing method includes the following problems.

‘1) 光フアィバ9の線径を検出するときに、光フア
ィバの振動を防ぎ、線径の検出精度を上げるために、金
属製(ステンレス製)のガイドローラ4′に光フアィバ
9を接触させた状態で通過するようにしなければならな
かった。
'1) When detecting the diameter of the optical fiber 9, in order to prevent vibration of the optical fiber and increase the detection accuracy of the diameter, the optical fiber 9 is brought into contact with a metal (stainless steel) guide roller 4'. I had to make sure that I was able to pass in the same condition.

また、光フアィバ外周表面にポリマを均一に被覆させる
ためにもガイドローラ4′で光フアイバ9の振動、およ
び光フアィバの位置ずれを最小限にしなければならなか
った。ところが、加熱、溶融された光フアイバ9がこの
ガイドローラ4′を通過するときの光フアイバ表面温度
は100午○以上の温度で十分に冷えきっていなかった
。このような高い表面温度の光フアィバが金属製のガイ
ドローラと摩擦を起こしながら線引きされるために、光
フアィバの表面に傷がついたり変形を起こし、光フアィ
バ自身が機械的にもろくなっていた。また、ガイドロー
ラの軸ずれ、位置ずれなどによる振動が光フアィバに伝
達し、光フアィバの線蚤検出精度を下げると共に、その
振動がプリフオーム熔融部にも伝わりその溶融部の変形
量に変化を生じさせていた。その結果、線径変動量を大
きくしていた。(21 炉芯管3の内部(一般には不活
性雰囲気の場合が多い)で、1900〜230ぴ0に加
熱され線引きされた光フアィバ9は表面温度が非常に高
い状態で開放雰囲気中に引き出され自然空冷されるため
、空気中の水蒸気やアルカリ金属イオン等と接触する機
会が多く、そのために光フアィバのガラス線材が結晶化
したり、もろくなる等の劣化を起し機械的強度が低下し
ていた。
Furthermore, in order to uniformly coat the outer circumferential surface of the optical fiber with the polymer, it is necessary to minimize the vibration of the optical fiber 9 and the displacement of the optical fiber using the guide roller 4'. However, when the heated and melted optical fiber 9 passes through the guide roller 4', the surface temperature of the optical fiber is more than 100 pm and has not been cooled down sufficiently. Because the optical fiber with such a high surface temperature is drawn while creating friction with the metal guide roller, the surface of the optical fiber is scratched or deformed, and the optical fiber itself becomes mechanically brittle. . In addition, vibrations caused by axis misalignment and positional misalignment of the guide rollers are transmitted to the optical fiber, reducing the accuracy of detecting line fleas on the optical fibers, and the vibrations are also transmitted to the preform melting part, causing a change in the amount of deformation of the melting part. I was letting it happen. As a result, the amount of wire diameter variation was increased. (21) The optical fiber 9, which has been heated and drawn to 1900 to 230 mm inside the furnace core tube 3 (generally in an inert atmosphere), is pulled out into the open atmosphere with a very high surface temperature. Due to natural air cooling, there are many opportunities for contact with water vapor and alkali metal ions in the air, which causes the glass wire of the optical fiber to crystallize, become brittle, and otherwise deteriorate, reducing its mechanical strength. .

‘31 前記■と同様に、空気中の塵挨も光フアィバ外
周表面に吸着され易い状態にある。
'31 Similar to the above (■), dust in the air is also likely to be adsorbed to the outer circumferential surface of the optical fiber.

その結果、ポリマ被覆層10、加熱装置12を通過して
出てきた光フアィバ外周表面にはポリマが均一に被覆さ
れておらず、ポリマ被覆層の厚さむら、ぬれむらなどが
生じ、不均一なポリマ被覆の光フアィバ13が得られた
。さらに、光フアィバ外周表面の温度が100q○以上
の状態でポリマ液と接触するために、ポリマ液が加熱さ
れて沸騰し、光フアィバ外周表面に均一にポリマ膜が被
覆されないことがわかった。〔発明の目的〕 本発明は前記問題点を解決することにある。
As a result, the outer circumferential surface of the optical fiber that has passed through the polymer coating layer 10 and the heating device 12 is not uniformly coated with the polymer, resulting in uneven thickness and uneven wetting of the polymer coating layer. A polymer-coated optical fiber 13 was obtained. Furthermore, it has been found that because the optical fiber comes into contact with the polymer liquid at a temperature of 100 q or more, the polymer liquid is heated and boils, and the outer peripheral surface of the optical fiber is not uniformly coated with the polymer film. [Object of the Invention] The present invention aims to solve the above-mentioned problems.

すなわち、光フアィバの線引方法において、機械的強度
の大きい光フアイバを得る方法を提供することにある。
〔発明の総括説明〕 本発明は光フアィバ素材を加熱源で加熱、溶融しつつ線
引きし、ドラムに光フアィバを巻取る際に、加熱源を出
た後の走行中の光フアィバ軸方向に沿って延在する管を
設けてこの管内を光フアィバが通過するようにし、管内
に気体を流し、光フアィバ表面を冷却するようにした光
フアィバの線引方法である。
That is, an object of the present invention is to provide a method for obtaining an optical fiber with high mechanical strength in a method of drawing optical fiber.
[General Description of the Invention] The present invention involves drawing an optical fiber material while heating and melting it with a heating source, and then winding the optical fiber onto a drum. This is a method of drawing an optical fiber in which a tube is provided that extends through the tube, the optical fiber is passed through the tube, and a gas is caused to flow inside the tube to cool the surface of the optical fiber.

このように光フアィバ表面を冷却することにより、空気
中の水蒸気やアルカリ金属イオン等が光フアィバ中へ拡
散するのを抑制し、機械的強度の低下を防ぐことができ
る。
By cooling the surface of the optical fiber in this manner, it is possible to suppress the diffusion of water vapor, alkali metal ions, etc. in the air into the optical fiber, and prevent a decrease in mechanical strength.

さらに光フアイバ表面が低温に保たれるのでポリマを均
一に被覆でき、機械的強度の強い光フアィバを得ること
ができる。
Furthermore, since the surface of the optical fiber is kept at a low temperature, the polymer can be coated uniformly and an optical fiber with strong mechanical strength can be obtained.

以上のように、本発明は、従来問題になっていた点、す
なわち、光フアィバが非常に高い表面温度のまま開放雰
囲気中に引き出され、空気中の水蒸気やアルカリ金属イ
オン等が光フアィバ中へ拡散し、光フアィバのガラス線
村の結晶化を起こさせたり、もろくさせたりするといっ
た点、高温状態でポリマ被覆されることによるポリマの
不均一被覆といった点などが解決できる。
As described above, the present invention solves a conventional problem, that is, when an optical fiber is drawn out into an open atmosphere while its surface temperature is extremely high, water vapor, alkali metal ions, etc. in the air enter the optical fiber. Problems such as diffusion, causing crystallization or brittleness of the glass wire region of the optical fiber, and non-uniform coating of the polymer due to polymer coating at high temperatures can be solved.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を詳細に説明する。 Examples of the present invention will be described in detail below.

第2図は本発明の実施に用いる光フアィバ線引装置の一
例である。
FIG. 2 shows an example of an optical fiber drawing apparatus used for carrying out the present invention.

プリフオーム1は加熱源2内に速度vpで送り込まれる
。加熱源2内で加熱、溶融されたプリフオームは引き延
ばされ巻取りドラム6に速度vfで巻き取られる。光フ
アィバ9の線蓬検出器4で検出され線蓬測定装置5に表
示される。線径検出器4は音叉を用いた光偏向器としン
ズとによって正弦的に走査されるレーザビームをZ軸に
沿って走行中の光フアィバ9に対して×軸方向から照射
し光フアィバ9によって散乱されて生じた方形波パルス
をそれぞれ復調して線径値を得る方法を用いてある。そ
して光フアィバ9のY軸方向への位置ずれに対する線径
測定装置5の光フアィバ線蓬測定精度は第3図のような
特性をもっている。そこで光フアィバ9のY軸方向への
位置ずれを防ぐためにY藤方向から矢印18で示すよう
にガスを流量計19を通して光フアィバ9に吹きつけた
。20はこのガスを光フアィバ9の軸方向に沿って光フ
アィバ9の周囲に流すためのガス管である。
The preform 1 is fed into the heating source 2 at a speed vp. The preform heated and melted in the heat source 2 is stretched and wound onto the winding drum 6 at a speed vf. It is detected by the line width detector 4 of the optical fiber 9 and displayed on the line level measuring device 5. The wire diameter detector 4 irradiates a laser beam sinusoidally scanned by an optical deflector using a tuning fork and lenses from the x-axis direction onto an optical fiber 9 running along the Z-axis. A method is used in which each of the scattered square wave pulses is demodulated to obtain a wire diameter value. The accuracy of optical fiber wire measurement by the wire diameter measuring device 5 with respect to the positional deviation of the optical fiber 9 in the Y-axis direction has characteristics as shown in FIG. Therefore, in order to prevent the optical fiber 9 from shifting in the Y-axis direction, gas was blown onto the optical fiber 9 from the Y-axis direction through a flowmeter 19 as shown by the arrow 18. Reference numeral 20 denotes a gas pipe for flowing this gas around the optical fiber 9 along the axial direction of the optical fiber 9.

そしてこのガス管20の中に線引きされた光フアィバ9
を貫通させ、ガス管20内を光フアィバ9の軸方向に沿
って流れるガス18′,18″によって光フアィバのY
軸方向への位置ずれを抑えつつ光フアィバの線蚤検出を
行なう。さらに上記ガス18″雰囲気に保つたまま光フ
アィバ9をポリマ被覆槽10内、加熱装置12を通過さ
せ、光フアィバ外周表面にポリマ11の被覆されたプリ
コートフアィバ13をドラム6に巻取る。本実施例では
ガス管201こ第4図aを用いた。第4図aにおいて、
ガス導入管26からガスを導入し、光フアイバガィド管
23,25からガスがでていくようにした。ガス導入管
26は外径8側め、内径6.5側めとし、先端部の内径
27を1肋す、1,を5物廠とした。光フアイバガィド
管23,25は外径1仇収め、テーパ部の内径24を2
側めとし、12を45側とした。そして光フアィバ(外
径150仏肌)を線引き中に矢印18から送り込むガス
(本実施例では酸素を用いたが、Ar、N2、空気、な
どでもよい。)流量と光フアィバ9のY軸方向への位置
変位量との関係を測定した。第5図はその結果である。
ただし、ガス流量が0の場合を光フアィバ9のY軸方向
への位置変位量を0とした。同図から明らかなように、
ガス流量によって光フアィバの位置を調整することがで
きた。また走行中の光フアィバ9の振動も低減させるこ
とができた。第6図はプリコートフアィバの引張り破断
強度のヒストグラムの一例である。同図aは従来法、同
図bは実施例方法によって得た結果である。これはポリ
マ11としてシリコーン(商品名KEIO駅TVに5%
の可硫剤を混合したもの)を用い、ポリマ被覆層10の
ノズル蓬約0.2肋◇、加熱装置の長さ約20仇、温度
700℃、vfを約20の/min、光フアィバ9の線
径150山肌とした場合の結果である。そして第6図b
の場合には流量計19の値を5夕/mjnとした結果で
ある。本実施例の方法によって得たブリコートフアィバ
の引張り破断強度がすぐれている。これはガス管20内
を流れるガスにより光フアィバ表面が冷却されたことに
よって、空気中の水蒸気やアルカリ金属イオン等が光フ
アィバ中へ拡散するのを抑制できたことがまず第1の要
因である。また光フアィバが高温状態でガイドローラな
どに接触しなかったことなどによって光フアィバ9自身
の機械的強度の劣化がほとんどなかったためと推定でき
る。さらに、光フアィバ表面が低温で、かつ清浄雰囲気
に保たれているので、ポリマを均一に被覆できたことに
もよると推定できる。なお、第2図において、実線aと
点線bは光フアィバの線蓬制御方法を示したものである
。線径測定装置5の出力信号は制御回路17を通して実
線aのようにドラム駆動回路8にフィードバックした場
合には巻取り速度vfを変えて綾径を制御でき、点線b
のようにガス流量制御用バルブ開閉装置16にフィード
バックした場合には炉芯管3内に送り込むガス流量14
′を変えて線径を制御できる。それ以外の線蓬制御法を
用いた場合でも本発明の線引方法は適用できる。また矢
印18から流量計19を通してガス管20へ送り込んだ
ガスは矢印18′と18″の方向へ流れ出るようにして
ある。21はガス流量調節用し‘まりである。
And an optical fiber 9 drawn into this gas pipe 20
The Y of the optical fiber is
To detect line fleas on an optical fiber while suppressing positional deviation in the axial direction. Furthermore, the optical fiber 9 is passed through a polymer coating tank 10 and a heating device 12 while being maintained in the gas 18'' atmosphere, and the precoated fiber 13 whose outer peripheral surface is coated with the polymer 11 is wound around the drum 6. In this embodiment, the gas pipe 201 shown in FIG. 4a is used. In FIG. 4a,
Gas was introduced from the gas introduction pipe 26, and the gas was made to come out from the optical fiber guide pipes 23 and 25. The gas introduction pipe 26 had an outer diameter of 8 on the side and an inner diameter of 6.5 on the side, with one side of the inner diameter 27 at the tip, and one side of the inner diameter of the tip. The optical fiber guide tubes 23 and 25 have an outer diameter of 1 mm, and an inner diameter 24 of the tapered part of 2 mm.
The 12th side was set as the 45th side. Then, while drawing the optical fiber (outer diameter: 150 cm), the gas (oxygen was used in this example, but Ar, N2, air, etc.) is sent in from the arrow 18.The flow rate and the Y-axis direction of the optical fiber 9 The relationship between the amount of positional displacement and the amount of displacement was measured. Figure 5 shows the results.
However, when the gas flow rate is 0, the amount of positional displacement of the optical fiber 9 in the Y-axis direction is set to 0. As is clear from the figure,
The position of the optical fiber could be adjusted by changing the gas flow rate. Furthermore, the vibration of the optical fiber 9 during running could be reduced. FIG. 6 is an example of a histogram of tensile breaking strength of precoated fibers. Figure a shows the results obtained by the conventional method, and Figure b shows the results obtained by the example method. This is made of silicone as Polymer 11 (product name: KEIO station TV).
sulfurizing agent), the nozzle length of the polymer coating layer 10 is approximately 0.2 mm, the length of the heating device is approximately 20 mm, the temperature is 700 ° C., the VF is approximately 20 mm/min, and the optical fiber 9 is heated. These are the results when the wire diameter is 150 ridges. and Figure 6b
In this case, the value of the flow meter 19 is set to 5/mjn. The bricoat fiber obtained by the method of this example has excellent tensile strength at break. The first reason for this is that the surface of the optical fiber was cooled by the gas flowing inside the gas pipe 20, which suppressed the diffusion of water vapor, alkali metal ions, etc. in the air into the optical fiber. . It can also be assumed that this is because the mechanical strength of the optical fiber 9 itself hardly deteriorated due to the fact that the optical fiber did not come into contact with a guide roller or the like in a high temperature state. Furthermore, since the surface of the optical fiber was kept at a low temperature and in a clean atmosphere, it can be assumed that the polymer could be coated uniformly. In FIG. 2, a solid line a and a dotted line b indicate a method of controlling the line of the optical fiber. When the output signal of the wire diameter measuring device 5 is fed back to the drum drive circuit 8 through the control circuit 17 as shown by the solid line a, the winding speed vf can be changed to control the winding diameter, and as shown by the dotted line b
When fed back to the gas flow rate control valve opening/closing device 16 as shown in the figure, the gas flow rate 14 sent into the furnace core tube 3
The wire diameter can be controlled by changing ′. The line drawing method of the present invention can be applied even when other line drawing control methods are used. Further, the gas sent from the arrow 18 through the flow meter 19 to the gas pipe 20 flows out in the directions of the arrows 18' and 18''. Reference numeral 21 is a stop for adjusting the gas flow rate.

22は炉芯管3内へのガス導入用管である。22 is a tube for introducing gas into the furnace core tube 3.

第4図b,c,dはガス管20の他の実施例である。4b, c, and d show other embodiments of the gas pipe 20. FIG.

同図bはガス導入管26の先端部の内径を楕円形状にし
たことを特徴とする。このように楕円にすることによっ
て、光フアィバが多少×軸方向にずれてもY軸方向から
吹きつけているガスによって光フアィバのY軸方向への
変位量を一定に保たせられるようにしたものである。ま
た同図cはガス導入管26から送り込まれたガスが先鉄
突部28で光フアイバガィド管23と25側へ分離され
易いようにしたものである。その結果、走行中の光フア
ィバ9がガス流量によって振動するのを抑えることがで
きる。同図dはガス導入管26から送り込まれたガスが
光フアイバガィド管23と25側へ分離、流出する以外
に、穴29からも流出するようにしたものである。これ
も同図cと同じように走行中の光フアィバ9が振動する
のを抑えるように配慮したものである。このように光フ
アィバ位置ずれ抑制のためにはガス管は走行中の光フア
ィバに一様にガスが衝突する構造であればよく本実施例
に限定されるものではない。また内径24は光フアィバ
線径値よりも大きい値であれがよい。さらに、矢印18
から送り込むガスの圧力は高ければそれだけ光フアィバ
9のY軸方向への変位層を大きくとることができるので
好都合である。第7図は本発明の線引方法の別の実施例
である。
Figure b is characterized in that the inner diameter of the tip of the gas introduction pipe 26 is elliptical. By making it elliptical in this way, even if the optical fiber shifts slightly in the x-axis direction, the amount of displacement of the optical fiber in the Y-axis direction can be kept constant by the gas blown from the Y-axis direction. It is. In addition, in FIG. 3c, the gas fed from the gas introduction pipe 26 is easily separated into the optical fiber guide pipes 23 and 25 by the tip protrusion 28. As a result, it is possible to suppress vibration of the optical fiber 9 while it is running due to the gas flow rate. In FIG. 4D, the gas sent from the gas introduction pipe 26 is separated and flows out to the optical fiber guide pipes 23 and 25, and also flows out from the hole 29. This is also designed to suppress the vibration of the optical fiber 9 while it is running, as in the case c of the same figure. As described above, in order to suppress the displacement of the optical fiber, the gas pipe is not limited to this embodiment as long as it has a structure that allows the gas to uniformly collide with the traveling optical fiber. Further, the inner diameter 24 may be larger than the diameter of the optical fiber. Furthermore, arrow 18
It is advantageous that the higher the pressure of the gas sent from the y-axis, the greater the displacement layer of the optical fiber 9 in the Y-axis direction. FIG. 7 shows another embodiment of the line drawing method of the present invention.

これは矢印18から送り込んだガスがガス流量調節用バ
ルブ開閉装置31、流量計19を通してガス管20へ送
り込まれてある。そして、光フアィバのY軸方向変位量
を光学的非接触検出器29で検出し、制御回路30を通
してガス流量調節用バルブ開閉装置31にフィードバッ
クされ、つねに線蓬検出器の走査ビームの中心に光フア
ィバがくるようにしたものである。光学的非接触検出器
29を用いないで行なう他の方法としては線蓬測定装置
17(たとえば安立電気株式会社製のレーザ線蓬測定装
置を用いた場合)から得られる光フアィバの位置設定用
の指示信号を使えばよい。すなわち、この指示信号が最
大値を示すと線径検出器の走査ビームの中心に光フアィ
バがくるようになっている。したがって、制御回路30
の基準信号には上記指示信号の最大値を用い、入力信号
として上記指示信号を入力し、基準信号と比較増幅し誤
畠葦信号が生じた場合にはガス流量調節用バルブ開閉装
置が駆動しガスが増、あるいは減少するようにしておけ
ばよい。なお、本発明の方法はるつぼ法、るつぼ法とプ
リフオー.ム法の組合せ法などにも適用できることは言
うまでもないことである。
In this case, gas sent from an arrow 18 is sent into a gas pipe 20 through a gas flow rate regulating valve opening/closing device 31 and a flow meter 19. Then, the amount of displacement of the optical fiber in the Y-axis direction is detected by the optical non-contact detector 29, and is fed back to the gas flow rate adjustment valve opening/closing device 31 through the control circuit 30, so that the optical fiber is always directed to the center of the scanning beam of the linear detector. It was designed so that fibers would come. Another method that does not use the optical non-contact detector 29 is to use a method for setting the position of the optical fiber obtained from the line measuring device 17 (for example, when using a laser line measuring device manufactured by Anritsu Electric Co., Ltd.). You can use an instruction signal. That is, when this instruction signal reaches its maximum value, the optical fiber is brought to the center of the scanning beam of the wire diameter detector. Therefore, the control circuit 30
The maximum value of the above instruction signal is used as the reference signal, the above instruction signal is input as the input signal, and the signal is compared and amplified with the reference signal. If an erroneous Hatakeashi signal is generated, the valve opening/closing device for gas flow rate adjustment is activated. All you have to do is make it so that the gas increases or decreases. The method of the present invention includes a crucible method, a crucible method, and a preform method. Needless to say, this method can also be applied to combination methods of multi-purpose methods.

以上の説明では光フアィバをY鱗方向へ変位させる方法
およびその変位量が一定となるように制御する方法を説
明したが、本発明に用いた線蓬測定装置の光軸方向(す
なわち、X軸方向)の位置ずれに対する線蓬測定精度は
第8図のような特性をもっている。
In the above explanation, the method of displacing the optical fiber in the Y scale direction and the method of controlling it so that the amount of displacement is constant has been explained. The accuracy of line measurement with respect to positional deviation in direction) has characteristics as shown in FIG.

したがって、この光軸方向の位置ずれに対する線蓬測定
精度を上げるために、Z軸方向に走行する光フアィバに
×軸方向から第2図および第7図と同様にガス管を通し
てガスを吹きつけ光フアィバ位置ずれを抑制する方法を
前記方法と併用、あるいは単独に用いてもよい。〔発明
の効果〕 以上説明したごとく本発明によれば、光フアィバの機械
的強度を上げることができる。
Therefore, in order to improve the accuracy of line measurement for the positional deviation in the optical axis direction, gas is blown onto the optical fiber running in the Z-axis direction from the x-axis direction through the gas pipe as shown in Figures 2 and 7. A method of suppressing fiber position shift may be used in combination with the above method, or may be used alone. [Effects of the Invention] As explained above, according to the present invention, the mechanical strength of the optical fiber can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光フアィバ線引装置、第2図は本発明の
実施に用いる光フアィバ線引装置の一例、第3図は本発
明の実施に用いた線怪測定装置の走査方向の線径測定精
度の一例、第4図は本発明の実施に用いるガス管の実施
例、第5,6図は本発明の光フアィバ線引方法によって
得た結果の一例、第7図は本発明の実施に用いる光フア
ィバ線引装置の他の例、第8図は線径測定装置の光軸方
向の線窪測定精度の一例、である。 1…・・・プリフオム、2・・・・・・加熱源、6・・
・・・・巻取りドラム、9……光フアイバ、10……ポ
リマ被覆槽、13・…・・プリコートフアィバ、20・
・・・・・ガス管。 多’図 多6図 多2図 劣り図 第4図′4i 努イ図でも」 多イ図にノ 多イ図「〆J 努ク図 努a図 第7図
Fig. 1 shows a conventional optical fiber drawing device, Fig. 2 shows an example of an optical fiber drawing device used in the implementation of the present invention, and Fig. 3 shows lines in the scanning direction of the line deviation measuring device used in the implementation of the present invention. An example of diameter measurement accuracy, FIG. 4 is an example of a gas pipe used in the practice of the present invention, FIGS. 5 and 6 are examples of results obtained by the optical fiber drawing method of the present invention, and FIG. Another example of the optical fiber drawing device used in practice, FIG. 8 shows an example of the accuracy of measuring the line depression in the optical axis direction of the wire diameter measuring device. 1...preform, 2...heat source, 6...
... Winding drum, 9 ... Optical fiber, 10 ... Polymer coating tank, 13 ... Precoated fiber, 20.
...Gas pipe. Many figures, many six figures, many two figures, inferior figure, Figure 4, '4i, Tsutomu I figure, too.'

Claims (1)

【特許請求の範囲】 1 光フアイバ素材を加熱、溶融しつつ線引きし、ドラ
ムに光フアイバを巻取る光フアイバの線引方法において
、該素材を加熱する加熱源を出た後の光フアイバを光フ
アイバの軸方向に沿って延在する管内を通過させ、該管
内に気体を流し、光フアイバ表面を冷却することを特徴
とする光フアイバの線引方法。 2 特許請求の範囲第1項記載の光フアイバの線引方法
において、前記気体として酸化性ガス、あるいは不活性
ガスを用いたことを特徴とする光フアイバの線引方法。 3 特許請求の範囲第1項記載の光フアイバの線引き方
法において、前記管を通過した光フアイバの外周表面を
被覆材料で被覆することを特徴とする光フアイバの線引
方法。4 特許請求の範囲第1項記載の光フアイバの線
引方法において、前記気体を光フアイバの走行方向に垂
直な方向から光フアイバに吹きつけるように前記管に導
入し、該気体をガイド管内に流すようにして光フアイバ
表面を冷却することを特徴とする光フアイバの線引方法
。 5 特許請求の範囲第4項記載の光フアイバの線引方法
において、前記気体を光フアイバに吹きつけて光フアイ
バを変位させたことを特徴とする光フアイバの線引方法
。 6 特許請求の範囲第5項記載の光フアイバの線引方法
において、光フアイバの線径をガイドローラなしの非接
触状態で検出するようにしたことを特徴とする光フアイ
バの線引方法。
[Claims] 1. In an optical fiber drawing method in which an optical fiber material is drawn while being heated and melted, and the optical fiber is wound around a drum, the optical fiber is exposed to light after leaving a heating source that heats the material. 1. A method for drawing an optical fiber, which comprises passing a gas through a tube extending along the axial direction of the fiber and causing gas to flow through the tube to cool the surface of the optical fiber. 2. The optical fiber drawing method according to claim 1, wherein an oxidizing gas or an inert gas is used as the gas. 3. A method for drawing an optical fiber according to claim 1, characterized in that the outer peripheral surface of the optical fiber that has passed through the tube is coated with a coating material. 4. In the method for drawing an optical fiber according to claim 1, the gas is introduced into the tube so as to be blown onto the optical fiber from a direction perpendicular to the running direction of the optical fiber, and the gas is introduced into the guide tube. A method for drawing an optical fiber, characterized in that the surface of the optical fiber is cooled by flowing the fiber. 5. A method for drawing an optical fiber according to claim 4, characterized in that the gas is blown onto the optical fiber to displace the optical fiber. 6. An optical fiber drawing method according to claim 5, characterized in that the diameter of the optical fiber is detected in a non-contact state without using a guide roller.
JP52039518A 1977-04-08 1977-04-08 How to draw optical fiber Expired JPS602254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52039518A JPS602254B2 (en) 1977-04-08 1977-04-08 How to draw optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52039518A JPS602254B2 (en) 1977-04-08 1977-04-08 How to draw optical fiber

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP61306476A Division JPS62270434A (en) 1986-12-24 1986-12-24 Method for drawing optical fiber and apparatus therefor

Publications (2)

Publication Number Publication Date
JPS53125037A JPS53125037A (en) 1978-11-01
JPS602254B2 true JPS602254B2 (en) 1985-01-21

Family

ID=12555252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52039518A Expired JPS602254B2 (en) 1977-04-08 1977-04-08 How to draw optical fiber

Country Status (1)

Country Link
JP (1) JPS602254B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61181270U (en) * 1985-04-30 1986-11-12

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5942020A (en) * 1996-01-11 1999-08-24 Tensor Machinery Limited Apparatus for evacuating air from curing area of UV lamps for fiber-like substrates
DE59602017D1 (en) * 1996-12-17 1999-07-01 Cit Alcatel Method and device for drawing an optical fiber from a preform

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61181270U (en) * 1985-04-30 1986-11-12

Also Published As

Publication number Publication date
JPS53125037A (en) 1978-11-01

Similar Documents

Publication Publication Date Title
JP3160422B2 (en) Optical waveguide fiber drawing apparatus and method
US4897100A (en) Apparatus and process for fiberizing fluoride glasses using a double crucible and the compositions produced thereby
EP0079186B1 (en) Apparatus for drawing optical fibers
JP3159116B2 (en) Stretching machine and stretching method for glass base material
JP2798486B2 (en) Method and apparatus for producing hermetic coated optical fiber
WO2017026498A1 (en) Method for manufacturing optical fiber strand
US6010741A (en) Apparatus and method for controlling the coating thickness of an optical glass fiber
JPH09124336A (en) Melting furnace for apparatus for drawing optical fiber and supporting structure for base material for optical fiber
US4321072A (en) Method for automatic centering of an optical fiber within a primary protective cladding and a device employed for carrying out said method
KR100222347B1 (en) Method and apparatus for coating optical fiber
JPS602254B2 (en) How to draw optical fiber
US20030126890A1 (en) Optical fiber drawing method
JPS62270434A (en) Method for drawing optical fiber and apparatus therefor
JP3519750B2 (en) Method and apparatus for drawing optical fiber
JP2005281090A (en) Manufacturing method for optical fiber and manufacturing unit
US20050223751A1 (en) Method and a device in the manufacture of an optical fibre
JPH07229813A (en) Method and apparatus for detecting bubble in optical fiber
JPH02184544A (en) Apparatus for cooling optical fiber and cooling method
JPH02149451A (en) Production of inorganic coated optical fiber and device therefor
JPH047159Y2 (en)
JPH0337129A (en) Production of optical glass fiber
KR100528752B1 (en) Method of and apparatus for overcladding a optical preform rod
JPH09156966A (en) Feeding of optical fiber coating resin and apparatus for feeding optical fiber coating resin
KR100393611B1 (en) Keeping device of bare fiber temperature
JPH04362038A (en) Optical fiber producing device