JPS6034721B2 - Method for reducing optical fiber diameter variation - Google Patents

Method for reducing optical fiber diameter variation

Info

Publication number
JPS6034721B2
JPS6034721B2 JP4552776A JP4552776A JPS6034721B2 JP S6034721 B2 JPS6034721 B2 JP S6034721B2 JP 4552776 A JP4552776 A JP 4552776A JP 4552776 A JP4552776 A JP 4552776A JP S6034721 B2 JPS6034721 B2 JP S6034721B2
Authority
JP
Japan
Prior art keywords
optical fiber
crucible
gas
glass
molten glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4552776A
Other languages
Japanese (ja)
Other versions
JPS52129533A (en
Inventor
克之 井本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4552776A priority Critical patent/JPS6034721B2/en
Publication of JPS52129533A publication Critical patent/JPS52129533A/en
Publication of JPS6034721B2 publication Critical patent/JPS6034721B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/022Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from molten glass in which the resultant product consists of different sorts of glass or is characterised by shape, e.g. hollow fibres, undulated fibres, fibres presenting a rough surface
    • C03B37/023Fibres composed of different sorts of glass, e.g. glass optical fibres, made by the double crucible technique

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】 本発明はルッボ法による光フアィバの線引において、よ
り線蚤変動が少なく、またより高精度に制御された線径
の光フアイバを得るための光フアイバ線引方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical fiber drawing method using the Lubbo method to obtain an optical fiber with less variation in line flea and a diameter controlled with higher precision. .

光フアィバに関する研究は、ここ数年の間に急速に進展
し、数dB/肋の超低損失値の実現の見通しが得られる
ようになってきた。
Research on optical fibers has progressed rapidly over the past few years, and it has become possible to realize ultra-low loss values of several dB/second.

それと共に光フアィバ同志の接続の容易性、耐応力特性
、広帯域特性などの実用性に直面した諸特性が次第に議
論される段階に入ってきた。これらの諸特性を解明、評
価する一つの重要なカギをにぎつているものの一つに光
フアイバの線径の均一性がある。この光フアイバの糠径
の均一性は光フアィバの線引装置に依存している。従来
、光ファィバの線引法にはプリフオーム法とルツボ法が
ある。ルツボ法は現状ではプリフオーム法に比して低損
失の光フアイバが得にくいという問題点を有しているが
、長尺(数十物程度)の光フアィバが高速度で連続的に
線引でき、量産性にすぐれている点で将来性のある線引
法である。第1図に従来のルッポ法による光フアィバ線
引法の概略を示す。同図は2重ルツボ法の一例であり、
内側ルツポ1内に光フアイバのコア材となるガラス材を
、外側ルッボ2内に光フアイバのクラツド材となるガラ
ス材をそれぞれ入れて加熱源5でルツボを加熱すること
により、それぞれのルツポ内に入れられたガラスが溶融
され、ルッボのノズル6,6′から溶融されたガラスが
引き出されて光フアィバ7となる。光フアィバ7はドラ
ム12に所定の巻取り速度vr(モータコントローラ1
1で設定する。)で巻きとられる。そしてドラム12
に光フアィバが巻きとられる間に検出器8で光フアィバ
の線径が検出され、綾蓬測定装置9に表示される。この
線引法における問題点の一つは次のような要因によって
光フアィバの線径変動が発生することである。‘11
線引時のガラス温度の変動による線径変動。■ 線引時
間とともにルッボ内のガラスの液面の位置が下り、ガラ
スの流出量が変化することによる線径変動。上記線蓬変
動の解析例(たとえば、正垣他4名:光通信用ファイバ
ーの検討、光童子エレクトロニクス研究会資料)として
、ガラス温度Tの変動△Tによるコア径a、クラッド蚤
bの変化△a(T)、△b(T)は次式で表わされる。
At the same time, we have gradually entered the stage where various practical characteristics of optical fibers, such as ease of connection, stress resistance characteristics, and broadband characteristics, are being discussed. One of the important keys to elucidating and evaluating these properties is the uniformity of the diameter of the optical fiber. The uniformity of the bran diameter of this optical fiber depends on the optical fiber drawing device. Conventionally, optical fiber drawing methods include a preform method and a crucible method. Currently, the crucible method has the problem that it is difficult to obtain optical fibers with low loss compared to the preform method, but it is possible to draw long optical fibers (about several tens of fibers) continuously at high speed. This is a promising line drawing method because it is suitable for mass production. FIG. 1 shows an outline of the conventional optical fiber drawing method using the Luppo method. The figure is an example of the double crucible method.
By placing a glass material that will become the core material of the optical fiber in the inner crucible 1 and a glass material that will become the cladding material of the optical fiber in the outer crucible 2 and heating the crucibles with the heat source 5, the crucibles are heated. The inserted glass is melted, and the molten glass is drawn out from the rubbo nozzles 6, 6' to form an optical fiber 7. The optical fiber 7 is attached to the drum 12 at a predetermined winding speed vr (motor controller 1
Set at 1. ). and drum 12
While the optical fiber is being wound, the diameter of the optical fiber is detected by the detector 8 and displayed on the twill measuring device 9. One of the problems with this drawing method is that the diameter of the optical fiber varies due to the following factors. '11
Wire diameter variation due to glass temperature variation during drawing. ■ The wire diameter changes due to the drop in the glass liquid level in Rubbo and the change in the amount of glass flowing out as the drawing time increases. As an example of the analysis of the above-mentioned fluctuation in line density (for example, Masagaki et al.: Study of fibers for optical communication, materials from the Kodoji Electronics Research Group), we can see that changes in core diameter a and cladding flea b due to fluctuations in glass temperature T, ΔA (T) and Δb(T) are expressed by the following equations.

Q1 三事2=裏{pM+QJ+(;卓;ヌ}△T〇2△事2
=享{pの十蛇T十;呉毛;}△Tただし、Q、A、B
、Toは各々定数、po は温度0℃における密度、サ
フイックス1、2は各々コアガラス、クラッドガラスに
関する量である。
Q1 Three things 2 = Back {pM+QJ+(; Table; Nu}△T〇2△Things 2
=Kyo {p's ten snake T ten; Kurage;}△T However, Q, A, B
, To are constants, po is the density at a temperature of 0° C., and suffixes 1 and 2 are quantities related to the core glass and clad glass, respectively.

また、コア径、クラッド径もガラスの液面の位置の平方
根に比例しているので、線引時間とともにガラスの液面
の位置が下り、線径が変動する。
Furthermore, since the core diameter and cladding diameter are also proportional to the square root of the position of the liquid level of the glass, the position of the liquid level of the glass decreases with the drawing time, and the wire diameter changes.

そのために、従来、検出器8の出力信号を制御回路10
を通してモータコントロ−ラ11にフィ−ドバックし、
光フアィバの巻取り速度vfを変えて線蓬制御が行われ
ている。この制御方法により、ガラス温度Tのゆっくり
した周期の変動による線蓬変動、ガラスの流出量の変化
による線蓬変動はある程度抑制することが可能である。
ところが、実際にはこの線引法ではルッボのノズル近辺
の熔融ガラスの温度が、線引中の作業者、物の移動など
による外界の空気の密度ゆらぎ、あるいは強制的なじよ
う乱によって不規則に、かつ極めて敏感に短い周期で変
動することがわかった。そして線蓬も同じように不規則
に、かつ極めて敏感に短い周期で変動することがわかっ
た。そのために、上記線蚤制御によってはこの糠径変動
を抑制することが困難であった。これは上記線蓬変動の
立ち上り、立ち下り時間が、巻取り速度vfのステップ
状変化に対する線径応答の立ち上り、立ち下り時間より
も若干短い(いずれも秒オーダである)ためであった。
したがって、本発明は、ルッボのノズル近辺の溶融ガラ
スの温度が線引中の作業者、物の移動などによる外界の
空気の密度ゆらぎ、あるいは強制的なじよう乱によって
変動するのを抑制し、その結果、上記温度変動による不
規則で、かつ極めて短い周期の線径変動を抑制する方法
を提供することにある。すなわち、ルッボと加熱源内の
間にガス導入通路を設け、ルッボ外周表面に沿ってガス
を流しながらつねに溶融ガラスの流れおよびガスの流れ
が屑流になるような状態で線引する方法である。また、
加熱源の設定温度の変動、ガラスの液面の位置の変動に
起因する線窪変動を上詑ガスの流量を変えて線蓬制御す
る方法も提供するものである。以下に、本発明の方法を
実施例を用いて説明する。第2図は本発明の光ファィバ
線引方法の一実施例の概略図を示したものである。
For this purpose, conventionally, the output signal of the detector 8 is transferred to the control circuit 10.
feeds back to the motor controller 11 through
Wire winding control is performed by changing the winding speed vf of the optical fiber. By this control method, it is possible to suppress to a certain extent the line flow fluctuation due to slow periodic fluctuations in the glass temperature T and the line flow fluctuation due to changes in the amount of glass flowing out.
However, in reality, with this drawing method, the temperature of the molten glass near the Lubbo nozzle becomes irregular due to fluctuations in the density of the outside air due to the movement of workers or objects during drawing, or due to forced disturbances. , and it was found to fluctuate extremely sensitively in short periods. It was also found that the line mosaic also fluctuates irregularly and extremely sensitively in short periods. Therefore, it has been difficult to suppress this bran diameter variation by the above-mentioned line flea control. This is because the rise and fall times of the wire flow variation are slightly shorter (both on the order of seconds) than the rise and fall times of the wire diameter response to a step change in the winding speed vf.
Therefore, the present invention suppresses fluctuations in the temperature of molten glass near the nozzle of Rubbo due to fluctuations in the density of the outside air due to the movement of objects or workers during drawing, or forced disturbances. As a result, it is an object of the present invention to provide a method for suppressing the irregular and extremely short period fluctuations in wire diameter caused by the temperature fluctuations. That is, in this method, a gas introduction passage is provided between the rubbo and the inside of the heat source, and the gas is flowed along the outer circumferential surface of the rubbo, and the wire is drawn in such a state that the flow of molten glass and the gas flow always become a waste flow. Also,
The present invention also provides a method for linearly controlling fluctuations caused by fluctuations in the set temperature of the heating source and fluctuations in the position of the liquid level of the glass by changing the flow rate of the gas. The method of the present invention will be explained below using Examples. FIG. 2 shows a schematic diagram of an embodiment of the optical fiber drawing method of the present invention.

同図は3重ルッポからなり、外側ルツボ13に矢印14
からガス導入管15を通してガスが送り込まれ矢印14
^の方向へ流れ出るようにしてある。そして外側ルッボ
13内を通って矢印14″の方向へ流れ出るガス流量は
その流量分布が乱流にならない層流の範囲において、前
記外界の空気の密度ゆらぎによる自然対流の変化分およ
び強制的なじよう乱による自然対流の変化分よりも十分
に大きく設定してある。したがって、ルッボのノズル近
辺の溶融ガラスの温度ゆらぎを抑制することができ、こ
れによる不規則で、かつ極めて敏感に短い周期で変動す
る線蓬変動を抑制することができる。すなわち、本発明
の方法はルッボ1およびルッボ2内の溶融ガラス3およ
び4がノズルから流れでて行く際に、その溶融ガラスの
流れと、その溶融ガラス外周表面のガスの流れがつねに
層流状態に保たれており、極めて理想的な線引方法であ
る。また、ノズルから流れ出る溶融ガラス外周表面につ
ねにガスを吹きつけて清浄な雰囲気に保ちながら線引で
きるので、低損失の光フアィバが期待できる。さらに、
14から冷却したガスを送り込めば、光フアィバ外周表
面の冷却効果も期待でき、光フアィバの機械的強度を損
なわずにドラム12に巻取ることも可能となる。第3図
は第2図に用いたガス導入部15の一実施例である。同
図において、16はガス供給管であり、17はリング管
である。そして18はガス吹出口であり、ここから出た
ガスが第2図の外側ルッボ13内へ一様に送り込まれる
ようにしてある。なお第3図のガス導入部を第2図の3
重ルッボに設置した場合に、ルッポ1およびルッボ2内
にもガスが均一に吹きつけられるようにリング管17の
底部に大きなガス吹出口を設けてもよい(第4図にその
一例を示す)。このようにすれば清浄なガス雰囲気に保
たれた状態でガラスが溶融されるので、ガラス溶融時の
汚染を防止し、低損失光フアイバが実現し易くなる。ま
た、ルツボ1およびルツボ2内にガスを吹きつけること
はルッボ1およびルツボ2内に圧力を加えていることに
相当し、ルツボのノズルからの溶融ガラス量の流出をガ
ス圧力を加えない場合に比し、連続的にすることも可能
である。矢印14から送り込むガスとしては02、Ar
、N2、Heなどを用いることができる。第5図は本発
明の光フアィバ線蓬制御方法の一実施例を示した概略図
である。
The figure consists of a triple Lupo, with an arrow 14 on the outer crucible 13.
Gas is fed through the gas introduction pipe 15 from the arrow 14.
It is made to flow in the direction of ^. The gas flow rate passing through the outer rubbo 13 and flowing in the direction of the arrow 14'' is within the laminar flow range where the flow rate distribution does not become turbulent. The temperature is set to be sufficiently larger than the change in natural convection due to turbulence.Therefore, it is possible to suppress the temperature fluctuations of the molten glass near the Rubbo nozzle, and the irregular and extremely sensitive fluctuations in short periods due to this can be suppressed. That is, when the molten glasses 3 and 4 in Rubbo 1 and Rubbo 2 flow out of the nozzle, the method of the present invention can suppress the flow of the molten glass and the fluctuation of the molten glass. The flow of gas on the outer surface is always maintained in a laminar flow state, making it an extremely ideal wire drawing method.In addition, gas is constantly blown onto the outer surface of the molten glass flowing from the nozzle to maintain a clean atmosphere while drawing the wire. Therefore, low-loss optical fibers can be expected.Furthermore,
If cooled gas is sent from the optical fiber 14, a cooling effect on the outer circumferential surface of the optical fiber can be expected, and it becomes possible to wind the optical fiber onto the drum 12 without impairing its mechanical strength. FIG. 3 shows an embodiment of the gas introduction section 15 used in FIG. 2. In the figure, 16 is a gas supply pipe, and 17 is a ring pipe. Reference numeral 18 denotes a gas outlet, from which the gas is uniformly sent into the outer rubbo 13 shown in FIG. Note that the gas introduction part in Figure 3 is replaced by 3 in Figure 2.
When installed in a heavy Lubbo, a large gas outlet may be provided at the bottom of the ring pipe 17 so that gas can be evenly blown into Lubpo 1 and Lubbo 2 (an example is shown in Fig. 4). . In this way, the glass is melted while being maintained in a clean gas atmosphere, thereby preventing contamination during glass melting and making it easier to realize a low-loss optical fiber. Also, blowing gas into crucibles 1 and 2 corresponds to applying pressure inside crucibles 1 and 2, and the amount of molten glass flowing out from the nozzles of the crucibles is reduced when no gas pressure is applied. It is also possible to compare and make it continuous. The gas sent from arrow 14 is 02, Ar.
, N2, He, etc. can be used. FIG. 5 is a schematic diagram showing an embodiment of the optical fiber line control method of the present invention.

同図は矢印14からガス流量制御用バルブ開閉装置20
、流量計19、ガス導入部15を通して外側ルツボ13
内に、前記空気の密度ゆらぎ、強制的なじよう乱による
自然対流の変化分よりも十分に多いガスの流量を流して
ある。そして、光フアイバの糠径制御方法は検出器8で
検出した信号を線径測定装置9、制御回路10を通して
ガス流量制御用バルフ開閉装置20へフィードバックし
、流量計19を通過するガス流量を変えて線経制御を行
う方法である。この光フアィバの線蚤制御の詳細を以下
に述べる。光フアィバの線径dがガラスの流出量が変化
したことによって十△d%変動したとすると、この線蓬
変動を検出器8で検出し、綾蚤測定装置9によって線径
を電圧(または電流)に変換し、その出力信号を制御回
路10に送り込む。そして△d=0の場合を制御回路と
比較し、光フアィバの線径が基準値よりも細い場合には
ガス流量制御用バルブ開閉装置20のバルブを閉じて流
量計19を通過するガス流量を減らすように制御回路1
0の出力信号をガス流量制御用バルブ開閉装置20に送
る。逆に、光フアィバの線径が基準値よりも太い場合に
はガス流量制御用バルブ開閉装置20のバルブを開けて
流量計19を通過するガス流量を増やすように制御回路
10の出力信号をガス流量制御用バルブ開閉装置20に
送ることによって光フアィバの線径を制御する方法であ
る。この制御方法は本発明者が先に提案した方法(待顔
昭50一151825号)の応用である。第6図は本発
明の光ファィバ線引方法の一実施例を示した概略図であ
る。これは3層ガラス構造からなる光フアィバを線引す
る方法であり、4重ルッボで構成されている。そしてこ
の場合には中心ルツボ1内にはコア用ガラス材3を入れ
、ルッポ2には中間層用ガラス材4を入れ、ルツボ21
にはクラッド用ガラス材22を入れたもので、外側ルツ
ポ13内には矢印14からガス導入部15を通してガス
が送り込まれ、矢印14″の方向へ流れ出ていくように
なっている。以上の説明からわかるように、本発明の光
フアィバの線蓬変動低減方法はルッボと加熱源の間にガ
ス導入通路を設けてルッボ外周表面に沿ってガスを流し
、ルッボのノズルから流れ出ていく溶融ガラスの流れと
、その溶融ガラス外周表面のガスの流れをつねに層流に
保つて線引することを特徴としており、その結果、ルッ
ボのノズルから流れ出ていく溶融ガラスの溶融温度のゆ
らぎを抑制することができ、これによる線蓬変動をほぼ
完全になくせることが期待できる。
The figure shows an arrow 14 indicating a gas flow rate control valve opening/closing device 20.
, the flow meter 19, and the outer crucible 13 through the gas introduction part 15.
The flow rate of gas is flowed within the chamber at a flow rate that is sufficiently larger than the change in natural convection caused by the density fluctuation of the air and forced turbulence. The method for controlling the bran diameter of the optical fiber is to feed back the signal detected by the detector 8 to the valve opening/closing device 20 for controlling the gas flow rate through the wire diameter measuring device 9 and the control circuit 10, thereby changing the gas flow rate passing through the flow meter 19. This is a method of controlling the line length. The details of this optical fiber line flea control will be described below. If the wire diameter d of the optical fiber fluctuates by 10△d% due to a change in the outflow amount of glass, the detector 8 detects this wire diameter fluctuation, and the wire diameter is measured by the voltage (or current) using the twill measuring device 9. ) and sends the output signal to the control circuit 10. Then, the case where Δd=0 is compared with the control circuit, and if the wire diameter of the optical fiber is smaller than the reference value, the valve of the gas flow rate control valve opening/closing device 20 is closed and the gas flow rate passing through the flow meter 19 is adjusted. Control circuit 1 to reduce
An output signal of 0 is sent to the gas flow rate control valve opening/closing device 20. Conversely, if the diameter of the optical fiber is larger than the reference value, the output signal of the control circuit 10 is changed to open the valve of the gas flow rate control valve opening/closing device 20 to increase the gas flow rate passing through the flow meter 19. This is a method of controlling the wire diameter of the optical fiber by sending it to the flow rate control valve opening/closing device 20. This control method is an application of the method previously proposed by the present inventor (Machigao No. 50-1151825). FIG. 6 is a schematic diagram showing an embodiment of the optical fiber drawing method of the present invention. This is a method of drawing an optical fiber consisting of a three-layer glass structure, which is composed of four-layer Rubbo. In this case, the core glass material 3 is placed in the center crucible 1, the intermediate layer glass material 4 is placed in the Lupo 2, and the crucible 21 is filled with the glass material 3 for the core.
A glass material 22 for cladding is placed in the outer receptacle 13, and gas is fed from the arrow 14 through the gas introduction part 15 and flows out in the direction of the arrow 14''.The above explanation As can be seen from the figure, the method for reducing line fluctuations in optical fibers of the present invention involves providing a gas introduction passage between the Rubbo and the heating source, flowing the gas along the outer peripheral surface of the Rubbo, and reducing the amount of molten glass flowing out of the Rubbo nozzle. It is characterized by drawing the flow and the flow of gas on the outer surface of the molten glass to always maintain a laminar flow, and as a result, it is possible to suppress fluctuations in the melting temperature of the molten glass flowing out of the Lubbo nozzle. It can be expected that line fluctuations caused by this can be almost completely eliminated.

またガラスの流出量が変化することによって発生する線
蓬変動を上記ガス流量を変えることによって制御するこ
とが可能であり、線径変動の小さい光ファィバが期待で
きる。
Further, it is possible to control the wire diameter fluctuation caused by the change in the outflow amount of glass by changing the gas flow rate, and it is possible to expect an optical fiber with small wire diameter fluctuation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のルッボ法による光フアィバ線引法の概略
を示したもの、第2図は本発明の光フアィバ線引方法の
一実施例の概略図、第3図および第4図は本発明の光フ
アィバ線引装置に用いたガス導入部の一実施例、第5図
は本発明の光フアィバ線径制御方法の一実施例を示した
概略図、第6図は本発明の光フアィバ線引方法の一実施
例を示した概略図である。 努1図 努そ図 第3図 第4図 秀づ図 努6図
Fig. 1 shows an outline of the conventional Lubbo method for drawing optical fibers, Fig. 2 is a schematic diagram of an embodiment of the optical fiber drawing method of the present invention, and Figs. 3 and 4 show the present invention. An embodiment of the gas introduction part used in the optical fiber drawing apparatus of the invention, FIG. 5 is a schematic diagram showing an embodiment of the optical fiber diameter control method of the invention, and FIG. It is a schematic diagram showing an example of a line drawing method. Tsutomu Figure 1 Tsutomu Figure 3 Figure 4 Hidezu Figure Tsutomu Figure 6

Claims (1)

【特許請求の範囲】 1 ルツボを加熱源で加熱して、ルツボ内の溶融された
ガラスをルツボのノズルから引き出して細径の光フアイ
バとし、これを回転ドラムに巻きつけて長尺の光フアイ
バを線引きする方法において、ルツボのノズルから引き
出される溶融ガラスの外周表面に沿い、この溶融ガラス
の引き出し方向にガスを流しながら光フアイバを線引き
することを特徴とする光フアイバの線径変動低減方法。 2 特許請求の範囲第1項記載の線径変動低減方法にお
いて、ルツボと加熱源との間にガス導入通路を設け、ル
ツボの外周表面に沿つて流れたガスが、ルツボのノズル
から引き出される溶融ガラスの外周表面に沿い、この溶
融ガラスの引出し方向に流れるようにしたことを特徴と
する光フアイバの線径変動低減方法。
[Claims] 1. Heat the crucible with a heat source, pull out the molten glass in the crucible through the nozzle of the crucible to form a thin optical fiber, and wind this around a rotating drum to form a long optical fiber. A method for reducing wire diameter variation of an optical fiber, characterized in that the optical fiber is drawn while flowing gas along the outer circumferential surface of the molten glass drawn out from a nozzle of a crucible in the drawing direction of the molten glass. 2. In the method for reducing wire diameter variation according to claim 1, a gas introduction passage is provided between the crucible and the heating source, and the gas flowing along the outer circumferential surface of the crucible is drawn out from the nozzle of the crucible for melting. A method for reducing wire diameter variation of an optical fiber, characterized in that the molten glass flows along the outer circumferential surface of the glass in the drawing direction of the molten glass.
JP4552776A 1976-04-23 1976-04-23 Method for reducing optical fiber diameter variation Expired JPS6034721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4552776A JPS6034721B2 (en) 1976-04-23 1976-04-23 Method for reducing optical fiber diameter variation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4552776A JPS6034721B2 (en) 1976-04-23 1976-04-23 Method for reducing optical fiber diameter variation

Publications (2)

Publication Number Publication Date
JPS52129533A JPS52129533A (en) 1977-10-31
JPS6034721B2 true JPS6034721B2 (en) 1985-08-10

Family

ID=12721872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4552776A Expired JPS6034721B2 (en) 1976-04-23 1976-04-23 Method for reducing optical fiber diameter variation

Country Status (1)

Country Link
JP (1) JPS6034721B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000075086A1 (en) * 1999-06-03 2000-12-14 Corning Incorporated Flow control for optical fiber fabrication using the double crucible technique

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55140726A (en) * 1979-04-17 1980-11-04 Nippon Telegr & Teleph Corp <Ntt> Manufacture of optical fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000075086A1 (en) * 1999-06-03 2000-12-14 Corning Incorporated Flow control for optical fiber fabrication using the double crucible technique

Also Published As

Publication number Publication date
JPS52129533A (en) 1977-10-31

Similar Documents

Publication Publication Date Title
US4217123A (en) Double crucible method of optical fiber manufacture
US4449568A (en) Continuous casting controller
US4673427A (en) Method of and device for drawing an optical fiber from a solid preform consisting substantially of SiO2 and doped SiO2
US4514205A (en) Fiber cooling apparatus
US4704307A (en) Method of and arrangement for coating a fibre
US3697241A (en) Method and apparatus for providing controlled quench in the manufacture of fiber glass
US4133664A (en) Apparatus and method for producing light conducting fibers having a core disposed in a loose fitting cladding tube
JPH0459631A (en) Drawing of optical fiber
JPH06321583A (en) Method and device for coating optical waveguide fiber
US4090241A (en) Method for estimating and controlling the mass flow rate of a free falling fluid stream
CN104211295A (en) Optical fiber drawing device and drawing method thereof
US3649235A (en) Apparatus for dissipating foam on molten glass
JPS6034721B2 (en) Method for reducing optical fiber diameter variation
JPH09132424A (en) Method for drawing optical fiber
US3649231A (en) Method and apparatus for producing fibers with environmental control
WO2006067787A2 (en) Forming and cooling glass-coated microwires
JP2003501337A (en) Flow control in optical fiber manufacturing using the double crucible method
IT8224974A1 (en) COOLING DEVICE FOR GLASS FIBER DRAWING EQUIPMENT
JP2000063142A (en) Furnace for drawing optical fiber and method for drawing optical fiber
CN103809618B (en) A kind of drawing process applies method and the device thereof of the on-line automatic control of diameter
KR100702293B1 (en) Method of coating and drawing optical fiber for preventing badness loss
JPS5850938B2 (en) Optical fiber manufacturing method and nozzle for optical fiber manufacturing
JP2682603B2 (en) Inorganic coated optical fiber manufacturing apparatus and manufacturing method
JPH107431A (en) Apparatus for producing wire for optical fiber
JPS5941936B2 (en) Optical fiber coating method