JP3715159B2 - Spinning furnace for optical fiber production - Google Patents

Spinning furnace for optical fiber production Download PDF

Info

Publication number
JP3715159B2
JP3715159B2 JP33622699A JP33622699A JP3715159B2 JP 3715159 B2 JP3715159 B2 JP 3715159B2 JP 33622699 A JP33622699 A JP 33622699A JP 33622699 A JP33622699 A JP 33622699A JP 3715159 B2 JP3715159 B2 JP 3715159B2
Authority
JP
Japan
Prior art keywords
optical fiber
fiber material
tube
ceramic tube
spinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33622699A
Other languages
Japanese (ja)
Other versions
JP2001151530A (en
Inventor
宏幸 中崎
幸男 野口
操 白岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP33622699A priority Critical patent/JP3715159B2/en
Publication of JP2001151530A publication Critical patent/JP2001151530A/en
Application granted granted Critical
Publication of JP3715159B2 publication Critical patent/JP3715159B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/029Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/70Draw furnace insulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば酸溶出法によるイメージバンドル(光学繊維束)の製造において三重素線を紡糸する際に用いられる光学繊維製造用紡糸炉に関する。
【0002】
【従来の技術】
従来、酸溶出法によるイメージバンドル(光学繊維束)の製造において三重素線を紡糸する際に用いられる光学繊維製造用紡糸炉としては、図2に示すように、円筒状のセラミック管100の中央外周部に空隙101を介し、セラミック管100に沿って発熱体102を約100mmにわたって配設し、空隙101に臨む以外の発熱体102の外周を断熱体103で覆っているものが知られている。
【0003】
このようなセラミック管100を介して光学繊維材料104を加熱するのは、発熱体102や断熱体103などから発生する塵から光学繊維材料104を保護するためである。なお、105はセラミック管100の周囲温度を検出する熱電対である。
【0004】
この光学繊維製造用紡糸炉は、セラミック管100の上方より、コアロッド、クラッド管及び酸溶出管を組合せた光学繊維材料104を垂直に吊るしてセラミック管100内に降下させ、発熱体102で加熱することにより軟化させ(コアロッド、クラッド管及び酸溶出管が融着する程度の状態をいう)、下方に設けた一対のローラ(不図示)で細くなった光学繊維材料104を挟持しながら引張って三重素線106を製造する際に用いられる。
【0005】
【発明が解決しようとする課題】
従来の技術においては、光学繊維材料104がセラミック管100中で発熱体102に対向する加熱幅が広くて光学繊維材料104の軟化幅が長いため、光学繊維材料104の軟化融着部分の長さdが上下方向に長くなり、コアロッドとクラッド管の隙間が紡糸中にうまく埋まらず残ってしまうため、この隙間が泡となって三重素線106内に巻き込まれ、不良品になってしまうという問題点を有していた。
また、光学繊維材料104の軟化幅が長く、外的な影響を受け易い軟化融着部分dの範囲が長くなるため、三重素線106の線径のばらつきが大きくなるという問題点を有していた。
【0006】
なお、加熱幅を狭くして局所加熱しようとしても、発熱体102を構成する発熱線の寿命は、線径、ピッチ、温度によって決まってしまうため、発熱体102の輻射熱をセラミック管100を介して光学繊維材料104に与えて加熱する方法では、限度があった。
【0007】
本発明は、従来の技術が有するこのような問題点に鑑みてなされたものであり、その目的とするところは、紡糸時に不安定となる軟化部分を極力少なくし、素線内への泡の巻き込み及び素線の線径のばらつきを少なくすることが出来る光学繊維製造用紡糸炉を提供しようとするものである。
【0008】
【課題を解決するための手段】
上記課題を解決すべく本発明は、セラミック管の周囲に発熱体を配設し、光学繊維材料を軟化融着させながら素線を製造する光学繊維製造用紡糸炉において、前記セラミック管に石英窓を設け、前記発熱体からの輻射熱を前記石英窓を介して前記光学繊維材料に与えるものである。
【0009】
また、前記セラミック管を上部セラミック管と下部セラミック管に分割し、これら上部セラミック管と下部セラミック管の間に筒状の石英管を設けて前記石英窓を形成してもよい。
【0010】
[作用]
発熱体の輻射熱が石英窓を介して局所的に直接光学繊維材料に与えられるので、発熱体の光学繊維材料に対向する寸法を小さく出来、更に光学繊維材料の軟化幅が従来よりも狭くなるため、光学繊維材料の軟化融着部分の長さが短くなる。
【0011】
【発明の実施の形態】
以下に本発明の実施例を添付図面に基づいて説明する。ここで、図1は本発明に係る光学繊維製造用紡糸炉で紡糸中の縦断面図である。
【0012】
図1に示すように、本発明の光学繊維製造用紡糸炉1においては、上部に配設するつば付きセラミックチューブ2と下部に配設するセラミックチューブ3の間に筒状の透明石英管4を設けることで、図2に示す従来のセラミック管100に相当する部分を形成している。そして、透明石英管4の外周面に対向する位置に空隙5を介して発熱体6を配設し、空隙5に臨む以外の発熱体6の外周を断熱体7で覆い、更に発熱体6や断熱体7等をケーシング8に収めている。
【0013】
なお、9は透明石英管4の周囲温度を検出する熱電対である。また、加熱の対象となる光学繊維材料10は、コアロッド11、クラッド管12及び酸溶出管13を組合せたものである。
【0014】
このように、発熱体6が対向する部分を従来のセラミック管に替えて透明石英管4にしたことによって、発熱体6の輻射熱がより直接的に光学繊維材料10に到達するので、熱効率が良く、炉心の最高温度を下げずに局所加熱が可能になる。
【0015】
光学繊維製造用紡糸炉1を用いて光学繊維を紡糸するには、先ず材料チャック治具14で光学繊維材料10の後端を把持して光学繊維材料10を垂直に吊るす。次いで、光学繊維材料10の先端をつば付きセラミックチューブ2の上方より、つば付きセラミックチューブ2の中に降下させる。
【0016】
光学繊維材料10の先端が、透明石英管4に囲まれた炉内に降下すると、発熱体6の輻射熱が透明石英管4を介して局所的に直接光学繊維材料10に与えられる。すると、光学繊維材料10の先端が軟化して細くなる。
【0017】
更に、透明石英管4から外れた位置まで降下すると温度が軟化温度より低くなるため細くなった先端が凝固する。その凝固した先端がセラミックチューブ3の下方に配置され、所定の回転速度で回転する一対のローラ15に挟持されることによって、下方に引張られる。
【0018】
このような光学繊維材料10に対する紡糸炉1による軟化及び一対のローラ15による引張り動作が定常的に繰返されることによって、所望の線径を有する三重素線16が連続的に製造される。なお、17は三重素線16の線径測定用センサである。
【0019】
コアロッド11とクラッド管12との隙間が軟化融着によって紡糸中に速やかに埋まるので、泡がコアロッド11とクラッド管12との間に残り難くい。更に、光学繊維材料10の軟化融着部分が短いので、外的な影響を受け難い。
【0020】
また、コアロッド11、クラッド管12及び酸溶出管13を組合せた光学繊維材料10のような複合材ではない、単体のロッドを熱延伸させて素線を得る場合や、コアロッド11とクラッド管12を紡糸する場合などにも、本発明の光学繊維製造用紡糸炉1を適用出来、素線の線径精度の向上に寄与する。
【0021】
この発明は以下の形態によっても把握できる。
【0022】
請求項1に記載の光学繊維製造用紡糸炉において、前記セラミック管は上部セラミック管と下部セラミック管に分割され、これら上部セラミック管と下部セラミック管の間に筒状の石英管を設けて前記石英窓を形成した光学繊維製造用紡糸炉である。
【0023】
【発明の効果】
以上説明したように本発明によれば、セラミック管に石英窓を設けたことで、発熱体の輻射熱を局所的に直接光学繊維材料に与えることが可能となるので、光学繊維材料の加熱幅を狭くすることが出来、光学繊維材料の軟化幅が狭くて光学繊維材料の軟化融着部分が短くなり、素線内に巻き込まれる泡が少なくなる。
また、光学繊維材料の軟化融着部分が短くなることで、外的な影響を受ける範囲が狭くなって、安定した紡糸が可能となり、素線の線径のばらつきが小さくなる。
【図面の簡単な説明】
【図1】本発明に係る光学繊維製造用紡糸炉で紡糸中の縦断面図
【図2】従来の光学繊維製造用紡糸炉で紡糸中の縦断面図
【符号の説明】
1 光学繊維製造用紡糸炉
2 つば付きセラミックチューブ(上部セラミック管)
3 セラミックチューブ(下部セラミック管)
4 透明石英管(石英窓)
6 発熱体
7 断熱体
8 ケーシング
9 熱電対
10 光学繊維材料
11 コアロッド
12 クラッド管
13 酸溶出管
15 ローラ
16 三重素線
17 線径測定用センサ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a spinning furnace for producing optical fibers used for spinning triple strands in the production of image bundles (optical fiber bundles) by, for example, an acid elution method.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as a spinning furnace for producing optical fibers used when spinning triple strands in the production of an image bundle (optical fiber bundle) by an acid elution method, as shown in FIG. 2, the center of a cylindrical ceramic tube 100 is used. It is known that a heating element 102 is disposed about 100 mm along the ceramic tube 100 through the gap 101 on the outer peripheral portion, and the outer circumference of the heating element 102 other than facing the gap 101 is covered with a heat insulator 103. .
[0003]
The reason why the optical fiber material 104 is heated through the ceramic tube 100 is to protect the optical fiber material 104 from dust generated from the heating element 102, the heat insulator 103, and the like. Reference numeral 105 denotes a thermocouple that detects the ambient temperature of the ceramic tube 100.
[0004]
In this optical fiber manufacturing spinning furnace, from above the ceramic tube 100, an optical fiber material 104, which is a combination of a core rod, a clad tube, and an acid elution tube, is vertically suspended, lowered into the ceramic tube 100, and heated by a heating element 102. The optical fiber material 104 is softened (refers to a state where the core rod, the clad tube, and the acid elution tube are fused), and the optical fiber material 104 that is thinned by a pair of rollers (not shown) provided below is pulled and triple-folded. It is used when manufacturing the strand 106.
[0005]
[Problems to be solved by the invention]
In the prior art, the optical fiber material 104 has a wide heating width facing the heating element 102 in the ceramic tube 100 and the softening width of the optical fiber material 104 is long. d becomes longer in the vertical direction, and the gap between the core rod and the clad pipe is not filled well during spinning, and this gap becomes a bubble and is caught in the triple strand 106, resulting in a defective product. Had a point.
Moreover, since the softening width of the optical fiber material 104 is long and the range of the softened and fused portion d that is susceptible to external influences becomes long, there is a problem that the variation in the wire diameter of the triple strand 106 becomes large. It was.
[0006]
Even if the heating width is narrowed and local heating is attempted, the life of the heating wire constituting the heating element 102 is determined by the wire diameter, pitch, and temperature, so that the radiant heat of the heating element 102 is transmitted through the ceramic tube 100. There is a limit in the method of heating by applying to the optical fiber material 104.
[0007]
The present invention has been made in view of such problems of the prior art, and the object of the present invention is to minimize the softened portion that becomes unstable during spinning and to prevent bubbles from entering into the strands. It is an object of the present invention to provide a spinning furnace for producing optical fibers that can reduce the variation in winding and wire diameter.
[0008]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides an optical fiber manufacturing spinning furnace in which a heating element is disposed around a ceramic tube, and an optical fiber material is softened and fused to manufacture a strand. The radiant heat from the heating element is applied to the optical fiber material through the quartz window.
[0009]
The ceramic tube may be divided into an upper ceramic tube and a lower ceramic tube, and a cylindrical quartz tube may be provided between the upper ceramic tube and the lower ceramic tube to form the quartz window.
[0010]
[Action]
Since the radiant heat of the heating element is directly applied directly to the optical fiber material through the quartz window, the size of the heating element facing the optical fiber material can be reduced, and the softening width of the optical fiber material becomes narrower than before. The length of the softened and fused portion of the optical fiber material is shortened.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings. Here, FIG. 1 is a longitudinal sectional view during spinning in the spinning furnace for producing optical fibers according to the present invention.
[0012]
As shown in FIG. 1, in a spinning furnace 1 for producing optical fibers of the present invention, a cylindrical transparent quartz tube 4 is provided between a ceramic tube 2 with a collar disposed at the upper portion and a ceramic tube 3 disposed at the lower portion. By providing, a portion corresponding to the conventional ceramic tube 100 shown in FIG. 2 is formed. Then, a heating element 6 is disposed through a gap 5 at a position facing the outer peripheral surface of the transparent quartz tube 4, and the outer periphery of the heating element 6 other than facing the gap 5 is covered with a heat insulating body 7. A heat insulator 7 or the like is housed in the casing 8.
[0013]
Reference numeral 9 denotes a thermocouple for detecting the ambient temperature of the transparent quartz tube 4. The optical fiber material 10 to be heated is a combination of the core rod 11, the clad tube 12 and the acid elution tube 13.
[0014]
As described above, the transparent quartz tube 4 is used instead of the conventional ceramic tube at the portion where the heat generating member 6 faces, so that the radiant heat of the heat generating member 6 reaches the optical fiber material 10 more directly. Local heating is possible without lowering the maximum temperature of the core.
[0015]
In order to spin an optical fiber using the optical fiber manufacturing spinning furnace 1, first, the optical fiber material 10 is suspended vertically by holding the rear end of the optical fiber material 10 with the material chuck jig 14. Next, the tip of the optical fiber material 10 is lowered into the collared ceramic tube 2 from above the collared ceramic tube 2.
[0016]
When the tip of the optical fiber material 10 is lowered into the furnace surrounded by the transparent quartz tube 4, the radiant heat of the heating element 6 is locally applied directly to the optical fiber material 10 through the transparent quartz tube 4. Then, the tip of the optical fiber material 10 is softened and thinned.
[0017]
Furthermore, when the temperature falls below the position where the transparent quartz tube 4 is removed, the temperature becomes lower than the softening temperature, so that the thinned tip is solidified. The solidified tip is disposed below the ceramic tube 3 and is pulled downward by being sandwiched between a pair of rollers 15 rotating at a predetermined rotational speed.
[0018]
By repeatedly repeating such softening of the optical fiber material 10 by the spinning furnace 1 and pulling operation by the pair of rollers 15, a triple strand 16 having a desired wire diameter is continuously manufactured. Reference numeral 17 denotes a sensor for measuring the diameter of the triple strand 16.
[0019]
Since the gap between the core rod 11 and the cladding tube 12 is quickly filled during spinning by softening and fusion, bubbles are unlikely to remain between the core rod 11 and the cladding tube 12. Furthermore, since the softened and fused portion of the optical fiber material 10 is short, it is hardly affected by external influences.
[0020]
In addition, when the core rod 11, the clad tube 12 and the acid elution tube 13 are not a composite material such as the optical fiber material 10, a single rod is thermally stretched to obtain a strand, or the core rod 11 and the clad tube 12 are In the case of spinning, for example, the spinning furnace 1 for producing optical fibers of the present invention can be applied, which contributes to improvement of the wire diameter accuracy of the strands.
[0021]
The present invention can also be grasped by the following modes.
[0022]
2. The spinning furnace for producing an optical fiber according to claim 1, wherein the ceramic tube is divided into an upper ceramic tube and a lower ceramic tube, and a cylindrical quartz tube is provided between the upper ceramic tube and the lower ceramic tube. This is a spinning furnace for producing optical fibers having a window.
[0023]
【The invention's effect】
As described above, according to the present invention, by providing the quartz window in the ceramic tube, it becomes possible to locally apply the radiant heat of the heating element directly to the optical fiber material. The optical fiber material can be narrowed, the softening width of the optical fiber material is narrowed, the softened and fused portion of the optical fiber material is shortened, and the number of bubbles entrained in the strand is reduced.
In addition, since the softened and fused portion of the optical fiber material is shortened, the range of external influence is narrowed, stable spinning is possible, and the variation in the wire diameter of the strands is reduced.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view during spinning in a spinning furnace for producing optical fibers according to the present invention. FIG. 2 is a longitudinal sectional view during spinning in a conventional spinning furnace for producing optical fibers.
1 Optical fiber production spinning furnace 2 Brim ceramic tube (upper ceramic tube)
3 Ceramic tube (lower ceramic tube)
4 Transparent quartz tube (quartz window)
6 Heating element 7 Heat insulator 8 Casing 9 Thermocouple 10 Optical fiber material 11 Core rod 12 Clad tube 13 Acid elution tube 15 Roller 16 Triple strand 17 Wire diameter measuring sensor.

Claims (1)

セラミック管の周囲に発熱体を配設し、光学繊維材料を軟化融着させながら素線を製造する光学繊維製造用紡糸炉において、前記セラミック管に石英窓を設け、前記発熱体からの輻射熱を前記石英窓を介して前記光学繊維材料に与えることを特徴とする光学繊維製造用紡糸炉。In a spinning furnace for producing optical fibers, in which a heating element is arranged around a ceramic tube and the optical fiber material is softened and fused, a quartz window is provided in the ceramic tube to radiate heat from the heating element. A spinning furnace for producing optical fibers, which is provided to the optical fiber material through the quartz window.
JP33622699A 1999-11-26 1999-11-26 Spinning furnace for optical fiber production Expired - Lifetime JP3715159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33622699A JP3715159B2 (en) 1999-11-26 1999-11-26 Spinning furnace for optical fiber production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33622699A JP3715159B2 (en) 1999-11-26 1999-11-26 Spinning furnace for optical fiber production

Publications (2)

Publication Number Publication Date
JP2001151530A JP2001151530A (en) 2001-06-05
JP3715159B2 true JP3715159B2 (en) 2005-11-09

Family

ID=18296951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33622699A Expired - Lifetime JP3715159B2 (en) 1999-11-26 1999-11-26 Spinning furnace for optical fiber production

Country Status (1)

Country Link
JP (1) JP3715159B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2840749B1 (en) 2013-08-23 2020-09-30 Alcatel Lucent Receiver and receive method for a filtered multicarrier signal

Also Published As

Publication number Publication date
JP2001151530A (en) 2001-06-05

Similar Documents

Publication Publication Date Title
FI77217C (en) Process for producing a polarization preserving optical fiber
US4602926A (en) Optical fibre fabrication
JP5213116B2 (en) Method for manufacturing preform for optical fiber
JP3715159B2 (en) Spinning furnace for optical fiber production
JP4184302B2 (en) Multi-core fiber and manufacturing method thereof
JPS5992940A (en) Production of optical fiber having pore
JP2968678B2 (en) Method for producing optical fiber and spinning furnace for producing optical fiber
JPH0548445B2 (en)
JP3819614B2 (en) Method for producing quartz glass preform for optical fiber
JP3841849B2 (en) Method for producing radiation-resistant tape-type multi-core fiber
JPS621331B2 (en)
JPH0337129A (en) Production of optical glass fiber
JPS6146414B2 (en)
JPS6146415B2 (en)
JPS61251536A (en) Production of optical fiber
JP2008040009A (en) Optical fibre for sensor, and its manufacturing method
JPH07294755A (en) Production of tape-shaped multicore fiber
JPH04187537A (en) Method for preparing image fiber
JPS6350291B2 (en)
JPH0333659B2 (en)
JP3816128B2 (en) Method for producing radiation-resistant tape-type multi-core fiber
JPS61163135A (en) Production of multicored optical fiber
JPS6045205A (en) Manufacture of image guide
JPS60251140A (en) Manufacture of base material for optical fluoride glass fiber
JPH0943438A (en) Production of radiation resistant ribbon type multicore fiber

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040128

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040901

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050311

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050824

R151 Written notification of patent or utility model registration

Ref document number: 3715159

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130902

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term