JP2003048732A - Method for forming precision glass tube - Google Patents

Method for forming precision glass tube

Info

Publication number
JP2003048732A
JP2003048732A JP2001231590A JP2001231590A JP2003048732A JP 2003048732 A JP2003048732 A JP 2003048732A JP 2001231590 A JP2001231590 A JP 2001231590A JP 2001231590 A JP2001231590 A JP 2001231590A JP 2003048732 A JP2003048732 A JP 2003048732A
Authority
JP
Japan
Prior art keywords
glass tube
precision
precision glass
forming
pressure difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001231590A
Other languages
Japanese (ja)
Inventor
Takashi Tsuneoka
貴士 常岡
Hirokazu Takeuchi
宏和 竹内
Masanori Wada
正紀 和田
Masanobu Minami
正信 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2001231590A priority Critical patent/JP2003048732A/en
Publication of JP2003048732A publication Critical patent/JP2003048732A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/04Re-forming tubes or rods
    • C03B23/047Re-forming tubes or rods by drawing

Abstract

PROBLEM TO BE SOLVED: To provide a method of forming precision glass tubes which is capable of forming a variety of the precision glass tubes different in the ratio of the internal to the external dimensions from a preform glass tube from the preform glass tube consisting of glass or crystallized glass of prescribed dimensions. SOLUTION: This method of forming the precision glass tube 20 comprises gripping the preform glass tube 1 consisting of the glass or crystallized glass and having the ratio of the internal to the external dimensions within a prescribed ratio in a gripping section 2a of feeding means 2 and feeding the preform glass tube into a heating furnace 4, by which the preform glass tube 1 is heated to the prescribed temperature at which the minimum viscosity thereof attains 10<3> to 10<6> Pa.s, then stretching the lower part of the preform glass tube 1 by pulling means, thereby forming the precision glass tube 20 having the ratio of the internal to the inner and extern dimensions of the prescribed range varying in the ratio of the internal to the external dimensions from the preform glass tube 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、精密ガラス管の成
形方法に関する。
TECHNICAL FIELD The present invention relates to a method for molding a precision glass tube.

【0002】[0002]

【従来の技術】近年、光通信技術の発達により、光デバ
イスや光コネクタ等には、光ファイバやレンズ等を保持
・固定するため、透明性、低膨張、量産性、及び適度な
研磨性等の利点を有する多種類の精密ガラス管が使用さ
れている。
2. Description of the Related Art In recent years, with the development of optical communication technology, in order to hold and fix optical fibers, lenses, etc. in optical devices, optical connectors, etc., transparency, low expansion, mass producibility, and appropriate polishing properties are achieved. Many types of precision glass tubes are used that have the advantages of.

【0003】一般に、母材ガラス管を延伸成形すること
で得られる精密ガラス管の内外寸法、すなわち、内径等
の内寸と外径等の外寸は、その母材ガラス管の内外寸法
と、その縮小比により決定される。例えば、特開平6−
94944号では、母材ガラス管の内外寸法比と、それ
から延伸成形されたガラス管の内外寸法比とは同じにな
ると記載されている。
In general, the inner and outer dimensions of a precision glass tube obtained by drawing a base material glass tube, that is, the inner dimensions such as the inner diameter and the outer dimensions such as the outer diameter, are the same as the inner and outer dimensions of the base material glass tube. It is determined by the reduction ratio. For example, JP-A-6-
No. 94944 describes that the inner-outer dimension ratio of a base glass tube and the inner-outer dimension ratio of a glass tube stretch-molded therefrom are the same.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
ような従来の成形技術では、目的とする内外寸法を有す
る精密ガラス管を作製する場合、専用の母材ガラス管を
個別に作製する必要がある。そのため、内外寸法比の異
なる多種の精密ガラス管を作製するには、その品種毎に
縮小比を考慮した母材ガラス管の設計・製作が必要とな
り、精密ガラス管の製造期間が長くなる問題がある。
However, in the conventional molding technique as described above, when a precision glass tube having desired inner and outer dimensions is manufactured, it is necessary to individually manufacture a dedicated base material glass tube. . Therefore, in order to manufacture various types of precision glass tubes with different inner and outer dimension ratios, it is necessary to design and manufacture the base material glass tube in consideration of the reduction ratio for each product type, which causes a problem that the manufacturing period of the precision glass tube becomes long. is there.

【0005】そのため、精密ガラス管の製造期間を短く
する場合には、精密ガラス管の品種毎に専用の母材ガラ
ス管を常時準備しておかなければならず製造コストが非
常に高くなる問題がある。
Therefore, when shortening the manufacturing period of the precision glass tube, it is necessary to always prepare a dedicated base material glass tube for each type of precision glass tube, which causes a problem that the manufacturing cost becomes very high. is there.

【0006】本発明は、上記の問題点を解決し、所定寸
法のガラスまたは結晶化ガラスからなる母材ガラス管か
ら内外寸法比が母材ガラス管と異なる多種の精密ガラス
管を成形することが可能な精密ガラス管の成形方法を提
供することを目的とする。
The present invention solves the above-mentioned problems and can form a variety of precision glass tubes having a different inner / outer dimension ratio from the base material glass tube made of glass or crystallized glass having a predetermined size. It is an object of the present invention to provide a possible method for forming a precision glass tube.

【0007】[0007]

【課題を解決するための手段】本発明に係る精密ガラス
管の成形方法は、所定範囲の内外寸法比を有するガラス
または結晶化ガラスからなる母材ガラス管を送り込み手
段の把持部に把持し、該母材ガラス管を加熱炉に送り込
むことにより母材ガラス管の最低粘度が103〜106
a・sとなる所定の温度に加熱し、該母材ガラス管の下
方を引張手段で延伸することにより母材ガラス管と内外
寸法比が異なる所望範囲の内外寸法を有する精密ガラス
管を成形することを特徴とする。
A method for forming a precision glass tube according to the present invention is such that a preform glass tube made of glass or crystallized glass having an inside-outside dimension ratio within a predetermined range is held in a holding portion of a feeding means, By sending the base material glass tube to a heating furnace, the minimum viscosity of the base material glass tube is 10 3 to 10 6 P
By heating to a predetermined temperature of a · s and stretching the lower part of the base material glass tube with a tension means, a precision glass tube having a desired range of inner and outer dimensions different from the base material glass tube is formed. It is characterized by

【0008】加熱炉内の母材ガラス管の最低粘度が10
3Pa・s未満では、延伸成形中のガラス管が撓んで所
定の寸法の精密ガラス管を真っ直ぐ引っ張ることができ
ず曲がってしまうので使用不可能となる。一方、最低粘
度が106Pa・sを超えると、従来と同様に、延伸成
形の際に精密ガラス管の縮小比を制御することができな
くなるばかりでなく、延伸成形中のガラス管のレオロジ
ー的挙動から、引張速度を高めようとすると延伸に非常
に大きな力が必要となり、対応する成形設備の製作が困
難になるばかりでなく、成形中の引張応力により延伸成
形中のガラス管が破損することも多々発生する。即ち、
最低粘度が106Pa・sを超えると、精密ガラス管の
引張速度を一定値よりも高くすることができなくなり、
成形スピードが非常に遅くなる。本発明では、加熱炉内
の母材ガラス管の最低粘度が10 3〜106Pa・sの範
囲にあることが重要である。
The minimum viscosity of the base glass tube in the heating furnace is 10
3If it is less than Pa · s, the glass tube during bending may bend.
You can pull straight through a precision glass tube of a certain size
Since it bends without being used, it cannot be used. On the other hand, the lowest viscosity
Degree 106If it exceeds Pa · s, stretching is performed as before.
It is not possible to control the reduction ratio of the precision glass tube during shaping
As well as the rheology of the glass tube during stretch forming.
Behavior, it is very difficult to stretch when trying to increase the pulling speed.
Requires a large amount of force, making it difficult to manufacture the corresponding molding equipment.
Not only is it difficult, but it is stretched due to tensile stress during molding.
The glass tube in the shape often breaks. That is,
Minimum viscosity is 106If it exceeds Pa · s, the precision glass tube
The pulling speed cannot be higher than a certain value,
Molding speed is very slow. In the present invention, in the heating furnace
The minimum viscosity of the base material glass tube is 10 3-106Pa · s range
It is important to be surrounded.

【0009】また、本発明の精密ガラス管の成形方法
は、差圧発生手段を用いて加熱された母材ガラス管に内
外圧力差を設けることを特徴とする。
Further, the method for forming a precision glass tube of the present invention is characterized in that a difference in pressure between the inside and outside is provided in the base glass tube heated by using the pressure difference generating means.

【0010】最低粘度が103〜106Pa・sの範囲に
ある加熱炉内の母材ガラス管に、差圧発生手段を用いて
内外圧力差を設けることにより、延伸成形中のガラス管
を膨らませたり、萎ませたりすることが可能となり、精
密ガラス管の主に内寸を自由に調節することが可能とな
る。
A glass tube being stretch-molded is provided by providing a pressure difference between the inner and outer sides of a base material glass tube in a heating furnace having a minimum viscosity in the range of 10 3 to 10 6 Pa · s by using a pressure difference generating means. It is possible to inflate and deflate, and it is possible to mainly adjust the inner dimensions of the precision glass tube.

【0011】また、本発明の精密ガラス管の成形方法
は、母材ガラス管の内外圧力差を差圧計により計測し、
該内外圧力差の信号を差圧調節器に入力して差圧発生手
段を操作することにより該内外圧力差を所定の値に制御
することを特徴とする。
Further, the method for molding a precision glass tube of the present invention is characterized in that the pressure difference between the inside and outside of the base glass tube is measured by a differential pressure gauge,
The internal / external pressure difference is controlled to a predetermined value by inputting a signal of the internal / external pressure difference to a differential pressure adjuster and operating a differential pressure generating means.

【0012】差圧計を用いて母材ガラス管の内外圧力差
を計測し、該内外圧力差の信号を制御器に入力して差圧
発生手段を操作し内外圧力差をフィードバック制御する
ことにより、差圧発生手段を用いて最低粘度が103
106Pa・sの範囲にある加熱炉内の母材ガラス管に
設けた内外圧力差を安定させることが可能になる。
By measuring the pressure difference between the inside and outside of the base glass tube using a differential pressure gauge, inputting a signal of the difference between the inside and outside pressures to the controller, and operating the differential pressure generating means to perform feedback control of the inside and outside pressure difference, The minimum viscosity is 10 3 ~ using the differential pressure generating means.
It becomes possible to stabilize the internal / external pressure difference provided in the base material glass tube in the heating furnace in the range of 10 6 Pa · s.

【0013】また、本発明の精密ガラス管の成形方法
は、レーザー測定器を用いて延伸成形時の精密ガラス管
の内寸を計測し、該内寸の信号を内寸調節器に入力して
差圧発生手段を操作することにより母材ガラス管の内外
圧力差を制御することを特徴とする。
The method for forming a precision glass tube of the present invention measures the inner size of the precision glass tube at the time of stretch forming using a laser measuring device and inputs a signal of the inner size to the inner size adjuster. It is characterized in that the pressure difference between the inside and the outside of the base material glass tube is controlled by operating the differential pressure generating means.

【0014】レーザー測定器を用いて延伸成形時の精密
ガラス管の内寸を計測して、母材ガラス管の内外圧力差
をフィードバック制御することにより、精密ガラス管の
内寸を所望範囲に安定させることが可能となる。
The inner dimension of the precision glass tube is stabilized within a desired range by measuring the inner dimension of the precision glass tube at the time of stretch forming using a laser measuring device and feedback-controlling the pressure difference between the inner and outer sides of the base material glass tube. It becomes possible.

【0015】また、本発明の精密ガラス管の成形方法
は、レーザー測定器を用いて延伸成形時の精密ガラス管
の外寸を計測し、該外寸の信号を外寸調節器に入力して
引張手段を操作することにより精密ガラス管の引張速度
を制御することを特徴とする。
Further, in the method for forming a precision glass tube of the present invention, the outer size of the precision glass tube at the time of stretch forming is measured by using a laser measuring device, and a signal of the outer size is input to the outer size adjuster. It is characterized in that the pulling speed of the precision glass tube is controlled by operating the pulling means.

【0016】レーザー測定器を用いて延伸成形時の精密
ガラス管の外寸を計測して、引張速度をフィードバック
制御することにより、精密ガラス管の外寸を所望範囲に
正確に安定させることが可能となる。
By measuring the outer dimension of the precision glass tube at the time of stretch forming using a laser measuring instrument and feedback controlling the pulling rate, it is possible to accurately stabilize the outer dimension of the precision glass tube within a desired range. Becomes

【0017】また、本発明の精密ガラス管の成形方法
は、レーザー測定器を用いて延伸成形時の精密ガラス管
の内寸および外寸を計測し、母材ガラス管の内外圧力差
および精密ガラス管の引張速度を同時に制御することを
特徴とする。
The method of forming a precision glass tube according to the present invention measures the inner and outer dimensions of the precision glass tube at the time of stretch forming using a laser measuring device to determine the difference between the inner and outer pressures of the base glass tube and the precision glass. It is characterized by simultaneously controlling the pulling speed of the pipe.

【0018】レーザー測定器を用いて延伸成形時の精密
ガラス管の内外寸法を計測して、母材ガラス管の内外圧
力差、および精密ガラス管の引張速度をフィードバック
制御することにより、精密ガラス管の互いに影響し合う
内寸と外寸とを同時に安定させることが可能となる。
By measuring the inner and outer dimensions of the precision glass tube at the time of stretch forming by using a laser measuring device and feedback-controlling the pressure difference between the inner and outer sides of the base glass tube and the pulling speed of the precision glass tube, the precision glass tube is controlled. It is possible to simultaneously stabilize the inner and outer dimensions that affect each other.

【0019】この際、この内径の制御システムとは個別
に動作する外径の制御システムを構築し、外径と内径と
を互いに独立して調整できるようにしておくことが好ま
しい。
At this time, it is preferable to construct an outer diameter control system that operates independently of the inner diameter control system so that the outer diameter and the inner diameter can be adjusted independently of each other.

【0020】また、上記の各調節器の信号を連動させる
ことにより、差圧発生手段、引張手段、送り込み手段を
全自動で稼働させてもよい。
Further, the differential pressure generating means, the tensioning means, and the feeding means may be operated fully automatically by interlocking the signals of the respective regulators.

【0021】[0021]

【作用】本発明の精密ガラス管の成形方法は、以上のよ
うな精密ガラス管の成形寸法に関して非常に自由度が高
く、且つ安定性の高い成形条件を実現可能な構成である
ので、ガラスまたは結晶化ガラスからなる1種類の母材
ガラス管から内外寸法比の異なる多種類の精密ガラス管
を安定して作製することが可能となる。
The method of forming a precision glass tube according to the present invention has a structure having a very high degree of freedom with respect to the above-mentioned forming dimensions of the precision glass tube and a highly stable molding condition. It is possible to stably manufacture many kinds of precision glass tubes having different inner / outer dimension ratios from one kind of base glass tube made of crystallized glass.

【0022】[0022]

【発明の実施の形態】まず、本発明の精密ガラス管の成
形方法に使用する成形装置について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION First, a molding apparatus used in the method for molding a precision glass tube of the present invention will be described.

【0023】成形装置は、図1に示すように、基本的な
構造部として、気密構造を有し母材ガラス管1を把持す
る把持部2aを有する送り込み手段2と、把持部2aに
接続された配管3aに連結されモータ3cで駆動される
ポンプ3bとからなる差圧発生手段3と、母材ガラス管
1をその最低粘度が103〜106Pa・sとなる所定の
温度に加熱する加熱炉4と、ローラー5a、5bの対を
有して母材ガラス管1の下方を延伸することにより母材
ガラス管とは内外寸法比が異なる所望範囲の内外寸法を
有する精密ガラス管20を成形する引張手段5とからな
る。
As shown in FIG. 1, the forming apparatus is connected to the feeding means 2 having a hermetically-sealed structure and a gripping portion 2a for gripping the base material glass tube 1 as a basic structural portion, and the gripping portion 2a. The differential pressure generating means 3 including the pump 3b connected to the pipe 3a and driven by the motor 3c, and the preform glass tube 1 are heated to a predetermined temperature at which the minimum viscosity is 10 3 to 10 6 Pa · s. A precision glass tube 20 having a desired range of inner and outer dimensions having a different inner-outer dimension ratio from the base material glass tube is obtained by extending the lower part of the base material glass tube 1 with a heating furnace 4 and a pair of rollers 5a and 5b. And a pulling means 5 for molding.

【0024】さらに説明すると、送り込み手段2では、
把持部2aに把持された母材ガラス管1が、例えば、1
mm/分〜100mm/分程度の一定速度V1で加熱炉
4内に送り込まれる。
To further explain, in the feeding means 2,
The base material glass tube 1 held by the holding portion 2a is, for example, 1
It is sent into the heating furnace 4 at a constant speed V1 of about 100 mm / min to 100 mm / min.

【0025】次に、差圧発生手段3は、図1及び図3に
示すように、気密構造の把持部2aに設けられた通気穴
の配管3aが接続され、この配管3aとこれに連結され
たポンプ3bとの途中に差圧計3dが設けられ、差圧
(正圧または負圧)は電気信号に変換されて差圧調節器
3eに入力され、差圧調節器3eの出力によりポンプ3
bを駆動するモータ3cの回転数を調節することにより
母材ガラス管1の内外圧力差を自由に調整できる。この
ように、延伸成型時に母材ガラス管1の内外圧力差を変
化させることにより、精密ガラス管20の主に内孔20
aの内径を自由に変えることができる。
Next, as shown in FIGS. 1 and 3, the differential pressure generating means 3 is connected to a pipe 3a of a vent hole provided in the grip portion 2a having an airtight structure, and is connected to the pipe 3a. A differential pressure gauge 3d is provided in the middle of the pump 3b. The differential pressure (positive pressure or negative pressure) is converted into an electric signal and input to the differential pressure adjuster 3e.
By adjusting the rotation speed of the motor 3c that drives b, the pressure difference between the inside and outside of the base glass tube 1 can be freely adjusted. In this way, by changing the pressure difference between the inside and outside of the base material glass tube 1 during the stretch molding, mainly the inner hole 20 of the precision glass tube 20.
The inner diameter of a can be freely changed.

【0026】加熱炉4は、図2に示すように、母材ガラ
ス管1をその最低粘度が103〜106Pa・sとなる所
定の温度に加熱するためのヒーター4aと、炉内温度を
測定する熱電対4bと、熱電対4bの電気信号を温度調
節器4cに入力して、目標温度に対して温度が低い場合
に出力する電力調節器4dを作動させることにより母材
ガラス管1の最低粘度が103〜106Pa・sとなる所
定の温度に安定させるようになっている。
As shown in FIG. 2, the heating furnace 4 includes a heater 4a for heating the base material glass tube 1 to a predetermined temperature having a minimum viscosity of 10 3 to 10 6 Pa · s, and a furnace temperature. The thermocouple 4b for measuring the temperature and the electric signal of the thermocouple 4b are input to the temperature controller 4c, and the power controller 4d that outputs when the temperature is lower than the target temperature is operated to operate the base glass tube 1 Is stabilized at a predetermined temperature at which the minimum viscosity of 10 3 to 10 6 Pa · s is obtained.

【0027】引張手段5は、図4に示すように、ローラ
ー5a、5bの対からなり図示しない駆動手段により回
転駆動されるようになっている。ローラー5a、5bを
一定回転数で回転させる必要がある。そこで、ローラー
5a、5bにロータリーエンコーダ5fを設置し、その
信号を回転調節器5eに入力し、ローラー5a、5bを
駆動するモータ5gの回転数を一定に維持させる。
As shown in FIG. 4, the pulling means 5 is composed of a pair of rollers 5a and 5b and is rotationally driven by a driving means (not shown). It is necessary to rotate the rollers 5a and 5b at a constant rotation speed. Therefore, a rotary encoder 5f is installed on the rollers 5a and 5b, and a signal from the rotary encoder 5f is input to the rotation adjuster 5e to keep the rotation speed of the motor 5g for driving the rollers 5a and 5b constant.

【0028】上記の各々の制御ループが個別に動作して
いる状態で、内・外寸のレーザー測定器6でガラス管の
内・外寸を延伸成形中に測定し、その測定値の電気信号
を内・外寸各々の内寸調節器6a、外寸調節器6bに入
力する。
With each of the above control loops operating individually, the inner and outer dimensions of the glass tube were measured by the laser measuring device 6 for inner and outer dimensions during stretch forming, and the electrical signals of the measured values were measured. Is input to the inner and outer size adjusters 6a and 6b.

【0029】内寸調節器6aは先記した差圧制御ループ
の差圧調節器3eに内寸の変化に対する指令を与える。
差圧調節器3e以降の制御ループは上記の通りである。
このようにして、内寸を目標値に安定化させることがで
きる。
The inner size adjuster 6a gives a command to the change in inner size to the differential pressure adjuster 3e of the differential pressure control loop described above.
The control loop after the differential pressure adjuster 3e is as described above.
In this way, the inner size can be stabilized at the target value.

【0030】外寸調節器6bの指令は先記した回転調節
器5eに入力される。回転調節器5e以降の制御ループ
は上記の通りである。このようにして、外寸を目標値に
することができる。
The command from the external size adjuster 6b is input to the rotation adjuster 5e described above. The control loop after the rotation adjuster 5e is as described above. In this way, the outer dimension can be set to the target value.

【0031】上述の通り、内寸と外寸の制御ループが個
別であり、単独でも動作する制御系を構築したので、内
外寸法比が1種類の母材ガラス管から、内外寸法比のこ
となる多種の精密ガラス管を作製することができる。
As described above, the control loops for the inner and outer dimensions are separate, and a control system that operates independently is constructed. Therefore, the inner-outer dimension ratio is different from the base glass tube having one inner-outer dimension ratio. A wide variety of precision glass tubes can be made.

【0032】次に、本発明に係る精密ガラス管の成形方
法の一例を上記成形装置を使用して説明する。
Next, an example of a method for molding a precision glass tube according to the present invention will be described using the above molding apparatus.

【0033】例えば、最低粘度が104Pa・sとなる
温度が約1000℃であるホウ珪酸ガラスからなり、外
径100mm、内径10mm、長さ約1mの母材ガラス
管1を準備する。この母材ガラス管1を用いて、従来の
ように、そのまま外径が2mmの精密ガラス管を延伸成
形すると、縮小率は0.02倍であるので、内径の値は
0.2mmとなり、直径が0.125mmの光ファイバ
を正確に保持する精密ガラス管を得ることができない。
For example, a base material glass tube 1 made of borosilicate glass having a minimum viscosity of 10 4 Pa · s and a temperature of about 1000 ° C. and having an outer diameter of 100 mm, an inner diameter of 10 mm and a length of about 1 m is prepared. If a precision glass tube having an outer diameter of 2 mm is stretch-molded as it is, using this base glass tube 1, the reduction ratio is 0.02 times, so the value of the inner diameter is 0.2 mm, and the diameter is However, it is not possible to obtain a precision glass tube that accurately holds an optical fiber of 0.125 mm.

【0034】上記の母材ガラス管1から直径が0.12
5mmの光ファイバを正確に保持固定するための内径
0.126mm+0.0005/−0mm、外径2mm
±0.005mmの精密ガラス管20を製造する場合に
ついて説明する。
From the above base material glass tube 1, the diameter is 0.12.
Inner diameter 0.126mm + 0.0005 / -0mm, outer diameter 2mm for holding and fixing 5mm optical fiber accurately
A case of manufacturing the precision glass tube 20 of ± 0.005 mm will be described.

【0035】まず、送り込み手段2の把持部2aに母材
ガラス管1を把持し、一定速度10mm/分で加熱炉4
内に送り込む。この時、延伸成形時の母材ガラス管1の
送り込み速度を計測し、この送り込み速度の信号を図示
しない制御器に入力して送り込み手段を操作することに
より母材ガラス管1の送り込み速度を高い精度で一定に
制御することが可能である。
First, the base material glass tube 1 is held by the holding portion 2a of the feeding means 2, and the heating furnace 4 is held at a constant speed of 10 mm / min.
Send in. At this time, the feed rate of the base glass tube 1 is measured at the time of stretch forming, and a signal of the feed rate is input to a controller (not shown) to operate the feed means to increase the feed rate of the base glass tube 1. It is possible to control with a constant accuracy.

【0036】次に、加熱炉4内では、母材ガラス管1を
その最低粘度が104Pa・sとなる約1000℃に加
熱する。具体的にはヒーター4aと、炉内温度を測定す
る熱電対4bの電気信号を温度調節器4cに入力して、
目標の約1000℃に対して温度が低い場合に出力する
電力調節器4dを作動させることにより母材ガラス管1
の最低粘度が正確に104Pa・sになるように加熱炉
4内温度を安定させる。なお、加熱炉4内の温度が目標
の約1000℃よりも高い場合には、ヒーター4aの出
力を小さくすることで容易に加熱炉4内温度を下げるこ
とができる。また、本発明では加熱炉4の温度分布を調
整することより、母材ガラス管1から成形されて精密ガ
ラス管20に到る際に受ける温度履歴を最適に管理する
ことより、103Pa・sのような非常に低い粘度でも
安定して延伸成形を行うことが可能となる。
Next, in the heating furnace 4, the base glass tube 1 is heated to about 1000 ° C. at which its minimum viscosity is 10 4 Pa · s. Specifically, the electric signals of the heater 4a and the thermocouple 4b for measuring the temperature in the furnace are input to the temperature controller 4c,
By operating the power controller 4d that outputs when the temperature is low with respect to the target of about 1000 ° C., the base glass tube 1
The temperature inside the heating furnace 4 is stabilized so that the minimum viscosity of the is exactly 10 4 Pa · s. When the temperature inside the heating furnace 4 is higher than the target of about 1000 ° C., the temperature inside the heating furnace 4 can be easily lowered by reducing the output of the heater 4a. Also, from that in the present invention for adjusting the temperature distribution in the heating furnace 4, than to optimally manage the temperature history received when reaching is molded from preform glass tube 1 in a precision glass tube 20, 10 3 Pa · It is possible to stably perform stretch molding even with a very low viscosity such as s.

【0037】次に、加熱炉4内の母材ガラス管1の下方
に延びてほぼ所定寸法になり実質的に固化した精密ガラ
ス管20をローラー5a、5b対の間に挟んで十分に摩
擦力が作用する押圧状態にし、24.8m/分の引張速
度で引っ張ることで延伸する。これにより、母材ガラス
管1とは内外寸法比が異なる精密ガラス管20が成形さ
れる。
Next, the precision glass tube 20 extending below the base glass tube 1 in the heating furnace 4 and having a substantially predetermined size and being substantially solidified is sandwiched between the pair of rollers 5a and 5b, and a sufficient frictional force is exerted. Is exerted, and the film is stretched by pulling at a pulling speed of 24.8 m / min. As a result, a precision glass tube 20 having an inner / outer dimension ratio different from that of the base material glass tube 1 is formed.

【0038】この際、内・外寸のレーザー測定器6で延
伸成形中の精密ガラス管20の内・外径を0.0001
mmの精度で測定し、その測定値の電気信号を内寸調節
器6a及び外寸調節器6bの各々に入力する。
At this time, the inner and outer diameters of the precision glass tube 20 being stretch-molded by the inner and outer laser measuring devices 6 are set to 0.0001.
The measurement is performed with an accuracy of mm, and the electric signal of the measured value is input to each of the inner size adjuster 6a and the outer size adjuster 6b.

【0039】内寸調節器6aは先記した差圧制御ループ
の差圧調節器3eに内径の変化に対する指令を与える。
差圧調節器3eでは内寸調節器6aからの指示に従って
ポンプ3bを駆動するモータ3cの回転数を調節するこ
とにより母材ガラス管1の内外圧力差を調整する。この
ようにして、精密ガラス管20の内径を目標値である
0.126mm+0.0005/−0mmの範囲に安定
化させることができる。なお、実際の差圧は−15mm
2Oであったが、差圧は加熱炉4の温度分布と成形速
度により異なり、常に一定のものではない。
The inner size adjuster 6a gives a command for the change of the inner diameter to the differential pressure adjuster 3e of the differential pressure control loop described above.
The differential pressure adjuster 3e adjusts the internal / external pressure difference of the preform glass tube 1 by adjusting the rotational speed of the motor 3c that drives the pump 3b in accordance with the instruction from the internal size adjuster 6a. In this way, the inner diameter of the precision glass tube 20 can be stabilized within the target range of 0.126 mm + 0.0005 / -0 mm. The actual differential pressure is -15 mm.
Although it was H 2 O, the differential pressure is not always constant because it depends on the temperature distribution of the heating furnace 4 and the molding speed.

【0040】一方、外寸調節器6bは精密ガラス管20
の外径を目標値に維持するために、精密ガラス管20の
引張速度が所定値になるようにローラー5a、5bの回
転速度を変化させるよう回転調節器5eに指令する。回
転調節器5eはローラー5a、5bを駆動するモータ5
gの回転数を調節することにより、精密ガラス管20の
引張速度を所定値にする。このようにして、外径を目標
値である2.000mm±0.005mmの範囲に安定
化させることができる。
On the other hand, the outer size adjuster 6b is a precision glass tube 20.
In order to maintain the outer diameter of the roller at the target value, the rotation controller 5e is instructed to change the rotation speed of the rollers 5a and 5b so that the pulling speed of the precision glass tube 20 becomes a predetermined value. The rotation adjuster 5e is a motor 5 that drives the rollers 5a and 5b.
By adjusting the number of revolutions of g, the pulling speed of the precision glass tube 20 is set to a predetermined value. In this way, the outer diameter can be stabilized within the target range of 2.000 mm ± 0.005 mm.

【0041】以上のように本発明では、ガラスまたは結
晶化ガラスからなる母材ガラス管1を加熱して低い粘性
で延伸成形することにより、精密ガラス管20の外・内
径を0.0001mmの精度で安定して成形することが
可能になった。
As described above, according to the present invention, the base glass tube 1 made of glass or crystallized glass is heated and stretch-formed with a low viscosity, so that the precision glass tube 20 has an accuracy of 0.0001 mm in outer and inner diameters. It became possible to stably mold with.

【0042】なお、上記の実施の形態では、外径2.0
00mm、内径0.126mmの精密ガラス管20を延
伸成形する際の差圧は−15mmH2Oであったが、同
じ外径2.0mmでも内径が0.150mm、0.25
2mmの精密ガラス管を製造する場合は、それぞれ−1
0mmH2O、−5mmH2Oであり、差圧を調整するこ
とにより、縮小比とは関係なく目的の精密ガラス管20
を成形することができる。また、精密ガラス管の内径が
目的とする値よりも大きい場合には、差圧を負圧に、即
ち内部を減圧することにより、目的の内径の精密ガラス
管20を得ることが可能である。
In the above embodiment, the outer diameter is 2.0.
The differential pressure when the precision glass tube 20 having a diameter of 00 mm and an inner diameter of 0.126 mm was stretch-molded was −15 mmH 2 O, but the inner diameter is 0.150 mm and 0.25 even when the outer diameter is 2.0 mm.
When manufacturing a 2mm precision glass tube, each is -1
0 mmH 2 O and -5 mmH 2 O, and by adjusting the differential pressure, the precision glass tube 20 of interest regardless of the reduction ratio.
Can be molded. When the inner diameter of the precision glass tube is larger than the target value, it is possible to obtain the precision glass tube 20 having the target inner diameter by reducing the pressure difference to a negative pressure, that is, reducing the inside.

【0043】また、上記発明の実施形態では、速度計を
用いて延伸成形時の精密ガラス管の引張速度を計測し、
該引張速度の信号を制御器に入力して引張手段を操作し
精密ガラス管の引張速度を制御することにより所望範囲
の内外寸法を有する精密ガラス管をより精密に成形する
ことが可能である。
Further, in the embodiment of the invention described above, the pulling speed of the precision glass tube during stretch forming is measured by using a speedometer,
By inputting the signal of the pulling rate to the controller and operating the pulling means to control the pulling rate of the precision glass tube, it is possible to more accurately form a precision glass tube having inner and outer dimensions within a desired range.

【0044】また、上記発明の実施の形態では、単心用
光コネクタのフェルール等に適用される同心の円筒状精
密ガラス管を示したが、これに限らず、複数孔のもの、
異形孔のもの、外周が異形のもの等、種々の精密ガラス
管の成形に適用が可能である。
Further, in the embodiment of the invention described above, the concentric cylindrical precision glass tube applied to the ferrule or the like of the single-core optical connector is shown, but the present invention is not limited to this, and one having a plurality of holes,
It can be applied to the molding of various precision glass tubes, such as those with irregularly shaped holes and those with irregularly shaped outer periphery.

【0045】[0045]

【発明の効果】本発明によれば、1種類の所定範囲の内
外寸法比を有するガラスまたは結晶化ガラスからなる母
材ガラス管から高い寸法精度を有する多種類の精密ガラ
ス管が得られるので、多種類の精密ガラス管を短期間
で、かつ低コストで作製することが可能になる実用上優
れた効果を奏するものである。
According to the present invention, various kinds of precision glass tubes having high dimensional accuracy can be obtained from a base glass tube made of glass or crystallized glass having one kind of inside / outside dimension ratio. It is possible to produce various kinds of precision glass tubes in a short period of time and at low cost, and it has an excellent effect in practical use.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の精密ガラス管の成形方法に使用する成
形装置の概略説明図。
FIG. 1 is a schematic explanatory view of a molding apparatus used in the method for molding a precision glass tube of the present invention.

【図2】本発明に用いる加熱炉の説明図。FIG. 2 is an explanatory diagram of a heating furnace used in the present invention.

【図3】本発明に使用する内寸の制御系の説明図。FIG. 3 is an explanatory diagram of an internal size control system used in the present invention.

【図4】本発明に使用する外寸の制御系の説明図。FIG. 4 is an explanatory view of an external size control system used in the present invention.

【符号の説明】[Explanation of symbols]

1 母材ガラス管 2 送り込み手段 2a 把持部 3 差圧発生手段 3d 差圧計 3e 差圧調節器 4 加熱炉 4c 温度調節器 4d 電力調節器 5 引張手段 5e 回転調節器 5g モータ 6 レーザー測定器 6a 内寸調節器 6b 外寸調節器 20 精密ガラス管 1 base material glass tube 2 sending means 2a gripping part 3 Differential pressure generating means 3d differential pressure gauge 3e Differential pressure regulator 4 heating furnace 4c Temperature controller 4d power controller 5 Pulling means 5e Rotation controller 5g motor 6 Laser measuring instrument 6a Internal size adjuster 6b External size controller 20 Precision glass tube

───────────────────────────────────────────────────── フロントページの続き (72)発明者 南 正信 滋賀県大津市晴嵐2丁目7番1号 日本電 気硝子株式会社内 Fターム(参考) 4G015 BA01 BB01 BB02 BB05    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Masanobu Minami             2-7-1, Harashira, Otsu City, Shiga Prefecture             Air Glass Co., Ltd. F term (reference) 4G015 BA01 BB01 BB02 BB05

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 所定範囲の内外寸法比を有するガラスま
たは結晶化ガラスからなる母材ガラス管を送り込み手段
の把持部に把持し、該母材ガラス管を加熱炉に送り込む
ことにより母材ガラス管の最低粘度が103〜106Pa
・sとなる所定の温度に加熱し、該母材ガラス管の下方
を引張手段で延伸することにより母材ガラス管と内外寸
法比が異なる所望範囲の内外寸法を有する精密ガラス管
を成形することを特徴とする精密ガラス管の成形方法。
1. A preform glass tube by grasping a preform glass tube made of glass or crystallized glass having an inside-outside dimension ratio within a predetermined range in a grasping portion of a feeding means and feeding the preform glass tube into a heating furnace. Has a minimum viscosity of 10 3 to 10 6 Pa
Molding a precision glass tube having a desired range of inner and outer dimensions different from that of the base material glass tube by heating to a predetermined temperature of s and stretching the lower part of the base material glass tube with a tension means. A method for forming a precision glass tube, characterized by:
【請求項2】 差圧発生手段を用いて加熱された母材ガ
ラス管に内外圧力差を設けることを特徴とする請求項1
に記載の精密ガラス管の成形方法。
2. A pressure difference between the inside and outside of the glass preform heated by using the pressure difference generating means.
The method for forming a precision glass tube according to.
【請求項3】 母材ガラス管の内外圧力差を差圧計によ
り計測し、該内外圧力差の信号を差圧調節器に入力して
差圧発生手段を操作することにより該内外圧力差を所定
の値に制御することを特徴とする請求項2に記載の精密
ガラス管の成形方法。
3. The internal / external pressure difference is measured by measuring the internal / external pressure difference of the base material glass tube with a differential pressure gauge, inputting a signal of the internal / external pressure difference to a differential pressure adjuster, and operating the differential pressure generating means. The method for molding a precision glass tube according to claim 2, wherein the method is controlled to a value of.
【請求項4】 レーザー測定器を用いて延伸成形時の精
密ガラス管の内寸を計測し、該内寸の信号を内寸調節器
に入力して差圧発生手段を操作することにより母材ガラ
ス管の内外圧力差を制御することを特徴とする請求項1
〜3の何れかに記載の精密ガラス管の成形方法。
4. A base material is obtained by measuring the inner size of a precision glass tube at the time of stretch forming using a laser measuring device, inputting a signal of the inner size to an inner size adjuster and operating a differential pressure generating means. 2. The pressure difference between the inside and the outside of the glass tube is controlled.
4. The method for forming a precision glass tube according to any one of 3 to 3.
【請求項5】 レーザー測定器を用いて延伸成形時の精
密ガラス管の外寸を計測し、該外寸の信号を外寸調節器
に入力して引張手段を操作することにより精密ガラス管
の引張速度を制御することを特徴とする請求項1〜4の
何れかに記載の精密ガラス管の成形方法。
5. A laser measuring device is used to measure the outer dimension of a precision glass tube during stretch forming, and a signal of the outer dimension is input to the outer dimension adjusting device to operate the pulling means to measure the precision glass tube. The method for forming a precision glass tube according to claim 1, wherein the pulling speed is controlled.
【請求項6】 レーザー測定器を用いて延伸成形時の精
密ガラス管の内寸および外寸を計測し、母材ガラス管の
内外圧力差および精密ガラス管の引張速度を同時に制御
することを特徴とする請求項1〜5の何れかに記載の精
密ガラス管の成形方法。
6. A laser measuring device is used to measure the inner and outer dimensions of a precision glass tube during stretch forming, and to simultaneously control the pressure difference between the inner and outer sides of the base glass tube and the pulling rate of the precision glass tube. The method for molding a precision glass tube according to any one of claims 1 to 5.
JP2001231590A 2001-07-31 2001-07-31 Method for forming precision glass tube Pending JP2003048732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001231590A JP2003048732A (en) 2001-07-31 2001-07-31 Method for forming precision glass tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001231590A JP2003048732A (en) 2001-07-31 2001-07-31 Method for forming precision glass tube

Publications (1)

Publication Number Publication Date
JP2003048732A true JP2003048732A (en) 2003-02-21

Family

ID=19063622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001231590A Pending JP2003048732A (en) 2001-07-31 2001-07-31 Method for forming precision glass tube

Country Status (1)

Country Link
JP (1) JP2003048732A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010526019A (en) * 2007-05-09 2010-07-29 ヘレウス クヴァルツグラス ゲーエムベーハー ウント コー カーゲー Method of manufacturing a quartz glass tube by drawing a hollow cylinder of quartz glass
CN109311723A (en) * 2016-06-07 2019-02-05 康宁股份有限公司 The method and apparatus for forming glass tube from gas preform
CN111995231A (en) * 2020-09-03 2020-11-27 江苏亨通光纤科技有限公司 Drawing equipment and method for deep fluorine-doped capillary tube for beam combiner
JP2021001903A (en) * 2020-09-18 2021-01-07 ヘレーウス クオーツ ノース アメリカ エルエルシーHeraeus Quartz North America LLC Apparatus and method for preform or tube drawing based on its viscosity
CN112811798A (en) * 2021-01-19 2021-05-18 中天科技精密材料有限公司 Glass tube production equipment and preparation method of glass tube
US11454580B2 (en) 2014-10-14 2022-09-27 Heraeus Quartz North America Llc Method for preform or tube drawing based on its viscosity

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169136A (en) * 1980-05-30 1981-12-25 Furukawa Electric Co Ltd:The Manufacture of glass capillary tube
JPH03146433A (en) * 1989-11-02 1991-06-21 Furukawa Electric Co Ltd:The Method for heating, melting and drawing rod
JPH10287441A (en) * 1997-04-11 1998-10-27 Sumitomo Electric Ind Ltd Drawing machine for glass preform and drawing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169136A (en) * 1980-05-30 1981-12-25 Furukawa Electric Co Ltd:The Manufacture of glass capillary tube
JPH03146433A (en) * 1989-11-02 1991-06-21 Furukawa Electric Co Ltd:The Method for heating, melting and drawing rod
JPH10287441A (en) * 1997-04-11 1998-10-27 Sumitomo Electric Ind Ltd Drawing machine for glass preform and drawing method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010526019A (en) * 2007-05-09 2010-07-29 ヘレウス クヴァルツグラス ゲーエムベーハー ウント コー カーゲー Method of manufacturing a quartz glass tube by drawing a hollow cylinder of quartz glass
US11454580B2 (en) 2014-10-14 2022-09-27 Heraeus Quartz North America Llc Method for preform or tube drawing based on its viscosity
CN109311723A (en) * 2016-06-07 2019-02-05 康宁股份有限公司 The method and apparatus for forming glass tube from gas preform
KR20190016518A (en) * 2016-06-07 2019-02-18 코닝 인코포레이티드 Method and apparatus for forming a glass tube from a glass preform
JP2019521066A (en) * 2016-06-07 2019-07-25 コーニング インコーポレイテッド Method and apparatus for forming a glass tube from a glass base material
KR102374387B1 (en) * 2016-06-07 2022-03-15 코닝 인코포레이티드 Method and apparatus for forming a glass tube from a glass preform
CN111995231A (en) * 2020-09-03 2020-11-27 江苏亨通光纤科技有限公司 Drawing equipment and method for deep fluorine-doped capillary tube for beam combiner
JP2021001903A (en) * 2020-09-18 2021-01-07 ヘレーウス クオーツ ノース アメリカ エルエルシーHeraeus Quartz North America LLC Apparatus and method for preform or tube drawing based on its viscosity
JP7009585B2 (en) 2020-09-18 2022-01-25 ヘレーウス クオーツ ノース アメリカ エルエルシー Equipment and methods for drawing base metal or pipes based on the viscosity
CN112811798A (en) * 2021-01-19 2021-05-18 中天科技精密材料有限公司 Glass tube production equipment and preparation method of glass tube

Similar Documents

Publication Publication Date Title
KR100632756B1 (en) Method for producing a tube of glassy material, especially quartz glass
WO2017026498A1 (en) Method for manufacturing optical fiber strand
CN103502164A (en) Method for making optical fiber base material, and optical fiber
EP1456140B1 (en) Process for manufacturing a micro-structured optical fibre
EP3323791A1 (en) Upward collapse process and apparatus for making glass preforms
JP2003048732A (en) Method for forming precision glass tube
EP3207352B1 (en) Apparatus and method for preform or tube drawing based on its viscosity
KR20200089229A (en) Automated large outside diameter preform tipping process and resulting glass preforms
CN100465113C (en) Method for producing optical fibre containing core diameter distribution adjustment
JP6198667B2 (en) Processing method of glass base material for optical fiber
CN101541694A (en) Process for producing drawn glass body
JPH09132424A (en) Method for drawing optical fiber
WO2005056487A1 (en) Method of stretching optical fiber base material and stretching device
JP2006193397A (en) Method and apparatus for drawing glass preform
EP1211228A1 (en) Optical fiber drawing method and drawing device
JP2002293564A (en) Method for drawing optical fiber preform and drawing device
JP2001010839A (en) Apparatus and method for drawing glass preform
JP5041425B2 (en) Optical fiber preform stretching apparatus and optical fiber preform manufacturing method
CN107089791B (en) A kind of preform extension method
JP2005145765A (en) Method for controlling outer diameter of glass preform and apparatus for drawing glass preform
CN219621081U (en) Traction device for stretching optical fiber preform
JP2000247664A (en) Method drawing glass preform and apparatus for drawing the same
JPS6114149A (en) Stretching method of glass body
JP3151386B2 (en) Manufacturing method of optical fiber preform
WO2004000740A1 (en) Method for drawing glass parent material and drawing machine for use therein

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111031

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120402