JPS61136931A - Manufacture of glass capillary tube - Google Patents

Manufacture of glass capillary tube

Info

Publication number
JPS61136931A
JPS61136931A JP25766384A JP25766384A JPS61136931A JP S61136931 A JPS61136931 A JP S61136931A JP 25766384 A JP25766384 A JP 25766384A JP 25766384 A JP25766384 A JP 25766384A JP S61136931 A JPS61136931 A JP S61136931A
Authority
JP
Japan
Prior art keywords
glass
outer diameter
glass capillary
tube
capillary tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25766384A
Other languages
Japanese (ja)
Other versions
JPH0535094B2 (en
Inventor
Hiroo Matsuda
松田 裕男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP25766384A priority Critical patent/JPS61136931A/en
Publication of JPS61136931A publication Critical patent/JPS61136931A/en
Publication of JPH0535094B2 publication Critical patent/JPH0535094B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/04Re-forming tubes or rods
    • C03B23/047Re-forming tubes or rods by drawing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

PURPOSE:To obtain the titled glass capillary tube provided with excellent dimensional accuracy and a homogeneous protective coat and used for gas chromatograph by regulating the deviation value between the measured outer diameter of a wiredrawn glass capillary tube and a set value and the internal pressure of the glass base material. CONSTITUTION:A compressed gas is supplied from an opening at one end of a glass tube. The other end part of the glass tube is heated and melted by a wiredrawing furnace 5, and the glass is wiredrawn by the following method to manufacture a desired glass capillary tube. The outer diameter of the wiredrawn glass capillary tube 8 is measured, and the deviation value between the measured value and a specified set value of the outer diameter is obtained. The deviation value is fed back to the wiredrawing velocity of the capillary tube, and the wiredrawing velocity is controlled so that the outer diameter of the capillary tube may be kept constant. Besides, the deviation value between the wiredrawing velocity resulting from the control of the outer diameter and a specified set value of the wiredrawing velocity is fed back to a pressure controller 13 for supplying compressed gas through a PID control amplifier 10 to control the internal pressure so that the set value of the wiredrawing velocity may be obtained.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はガラス毛細管の製造方法に係わる。[Detailed description of the invention] <Industrial application field> The present invention relates to a method for manufacturing glass capillaries.

〈従来の技術〉 近年、石英系元ファイバの線引技術を応用して、ガスク
ロマトグラフィのキャピラリーカラムに使用される石英
毛細管が多量に裏道されている。このようなガラス毛細
管の製造方法としては、従来、例えば特許公開公報昭5
7−3726号に示されるようなものが知られている。
<Prior Art> In recent years, a large amount of quartz capillary tubes used in capillary columns for gas chromatography have been back-channeled by applying the drawing technology of quartz-based original fibers. As a manufacturing method of such a glass capillary tube, conventionally, for example, Patent Publication No. 5
The one shown in No. 7-3726 is known.

かかる従来技術によるものは、第2図に示すようK、石
英管1をガラス管送り装置2に取り付け、石英管1の下
端を高温線引炉5内に送シ、石英管下端を溶融線引し、
耐熱樹脂溶液3を貯えたコーティングダイヌ4を通じて
所望の厚さに樹脂を塗布した後、焼付炉11にて樹脂を
焼付硬化させ、樹脂被覆されたガラス毛細管8を、巻取
装置6によって駆動される巻取シトラム7に巻取る。こ
の際に、上記石英管1の上端にガス供給管によって結合
された圧力調整装置12により、石英管1内に窒素ガス
等の加圧ガスを供給して内圧をかけ、線引炉5で溶融線
引された毛細管が、溶融部分で表面張力の影響により、
肉厚が相対的KMくなるのを防止しつつ、外径測定器9
によって毛細管外径を測定し、加圧ガスによって外径が
拡大されるのを防止するようドラム巻取装置6の巻取り
速度を速め、所定の内径と外径を備えた石英系ガラス毛
細管を得るものである1−10は増暢器である。
As shown in FIG. 2, in this conventional technique, a quartz tube 1 is attached to a glass tube feeding device 2, the lower end of the quartz tube 1 is fed into a high temperature wire drawing furnace 5, and the lower end of the quartz tube is melted and wire drawn. death,
After applying the resin to a desired thickness through the coating dye 4 storing the heat-resistant resin solution 3, the resin is baked and hardened in the baking furnace 11, and the resin-coated glass capillary tube 8 is driven by the winding device 6. Wind it up on the winding citram 7. At this time, a pressurized gas such as nitrogen gas is supplied into the quartz tube 1 by a pressure regulator 12 connected to the upper end of the quartz tube 1 by a gas supply pipe to apply internal pressure, and the quartz tube 1 is melted in the drawing furnace 5. Due to the influence of surface tension in the molten part, the drawn capillary tube
While preventing the wall thickness from becoming relative KM, the outer diameter measuring device 9
The outer diameter of the capillary is measured by the method, and the winding speed of the drum winding device 6 is increased to prevent the outer diameter from being expanded by the pressurized gas, thereby obtaining a silica-based glass capillary having a predetermined inner diameter and outer diameter. Items 1-10 are amplifiers.

〈発明が解決しようとする問題点〉 ところで、キャピラリーカラムのガラス毛細管の特性と
しては、外径よりむしろ内径の寸法精度と機械的高強度
が要求される。機械的特性については耐熱樹脂被膜の均
質性が極めて重要である。しかし、第2図に示す従来技
術のものにおいては、ガラス毛細管の内径寸法精度と、
線引速度変動による耐熱樹脂被膜の長手方向均質性く尚
、問題があった。ガラス管の線引によって得られるガラ
ス毛細管の内径と外径は、出発母材であるガラス管の寸
法が長手方向に均一であったとしても、線引炉の温度変
動、ガラス管の内圧変動などの外乱によって変動する。
<Problems to be Solved by the Invention> Incidentally, the characteristics of the glass capillary tube of the capillary column require dimensional accuracy of the inner diameter rather than the outer diameter and high mechanical strength. Regarding mechanical properties, the homogeneity of the heat-resistant resin coating is extremely important. However, in the prior art shown in FIG. 2, the accuracy of the inner diameter of the glass capillary
There was also a problem with the longitudinal homogeneity of the heat-resistant resin coating due to variations in drawing speed. Even if the dimensions of the starting base material glass tube are uniform in the longitudinal direction, the inner and outer diameters of the glass capillary obtained by drawing the glass tube are affected by temperature fluctuations in the drawing furnace, internal pressure fluctuations in the glass tube, etc. fluctuates due to external disturbances.

線引されたガラス毛細管の外径は線速制御によって、高
精度化が可能であるが、内径は、線引時に高精度でモニ
タする方法がないため、直接制御できず、上記外乱に加
えて、外径制御による線引速度変動によって更に変動を
生じるという問題があつ念。ま九ガラス毛細管の外径制
御による線引速度変動は、耐熱樹脂被膜の硬化度を変動
させ、被膜の均質性を低下させるという問題があった。
The outer diameter of a drawn glass capillary can be highly accurate by controlling the drawing speed, but the inner diameter cannot be directly controlled because there is no way to monitor it with high precision during drawing, and in addition to the above disturbances. However, there is the problem that further fluctuations occur due to fluctuations in drawing speed due to outside diameter control. Variations in the drawing speed due to control of the outer diameter of the glass capillary tube have the problem of varying the degree of hardening of the heat-resistant resin coating and reducing the homogeneity of the coating.

本発明はかかる従来技術の問題点に鑑みてなされたもの
で、内径寸法の精度を向上し、かつ耐熱樹脂被膜か長手
方向に均質なガラス毛細管の製造方法を提供することを
目的とするものである。
The present invention has been made in view of the problems of the prior art, and aims to provide a method for manufacturing a glass capillary tube that improves the accuracy of the inner diameter dimension and has a heat-resistant resin coating that is homogeneous in the longitudinal direction. be.

く問題点を解決するための手段〉 かかる目的を達成した本発明によるガラス毛細管の製造
方法の構成は、線引炉へ供給されるガラス管の一端から
加圧気体を供給し、該ガラス管の他端を線引炉によって
加熱溶融させ、線引することによりガラス毛細管を製造
する方法において、上記線引されたガラス毛細管の外径
を測定し、その測定値とガラス毛細管の外径設定値との
偏差値を求め、該偏差値を上記毛細管の線引速度に帰還
し、上記毛細管の外径を一定に保つよう線引速度を制御
するとともに、上記外径制御によって生じた線引速度と
特定された線引速度設定値との偏差値をPID制御系増
巾器を介して上記加圧気体を送給する圧力制御装置に帰
還し、上記線引速度が上記線引速度設定値になるように
上記加圧気体による内圧を制御することを特徴とするも
のである。
Means for Solving the Problems〉 The structure of the method for manufacturing a glass capillary tube according to the present invention that achieves the above object is to supply pressurized gas from one end of the glass tube that is supplied to the drawing furnace, and to In a method of manufacturing a glass capillary by heating and melting the other end in a drawing furnace and drawing the wire, the outer diameter of the drawn glass capillary is measured, and the measured value and the set value of the outer diameter of the glass capillary are combined. The deviation value is calculated, the deviation value is fed back to the drawing speed of the capillary tube, the drawing speed is controlled to keep the outer diameter of the capillary constant, and the drawing speed is identified as the drawing speed caused by the outer diameter control. The deviation value from the set drawing speed is fed back to the pressure control device that supplies the pressurized gas via the PID control system amplifier, so that the drawing speed becomes the set drawing speed. The invention is characterized in that the internal pressure is controlled by the pressurized gas.

く作 用〉 本発明によるガラス毛細管の製造方法では、例えば一定
の内径Diと一定の外径り。を備えた中空ガラス管に内
圧をかけ、一定の供給速度V。
Function> In the method for manufacturing a glass capillary according to the present invention, for example, the inner diameter Di is constant and the outer diameter is constant. Apply internal pressure to a hollow glass tube with a constant feed rate V.

を所定値として線引炉に供給され、線引炉からは所望の
内径diと外径d。とを備えたガラス毛細管として安定
な状態で線引されている。従って次式が成立する。
are supplied to the drawing furnace as predetermined values, and the desired inner diameter di and outer diameter d are supplied from the drawing furnace. It is drawn in a stable state as a glass capillary with Therefore, the following equation holds.

VO8□ = v 6 s に こにS。はガラス管の断面積であり、 5o=(Do  Di) Soはガラス毛細管の断面図であり、 So = ′−(d g  d12)、従ってV。so
が一定であればvot−特定すればS。も特定される。
VO8□ = v 6 s smile S. is the cross-sectional area of the glass tube, 5o=(Do Di) So is the cross-sectional view of the glass capillary, So = '-(d g d12), so V. so
If is constant, vot-S if specified. is also specified.

ま九8゜は外径をd。に特定すれば内径diを特定する
。また、ガラス管の断面8tが長手方向に変化している
場合はその変化に合わせてガラス管の供給速度を変化さ
せ、断面積と供給速度の積が一定になるように、供給速
度を所定の変化通りにすることがある。従って、本発明
では断面積S。のガラス管を所定の速度v0で線引炉に
供給し、線引炉から線引された毛細管の外径がdo、線
引速度がV。になるように、線引速度ならびにガラス毛
細管の内圧を制御することによって所望の外径doと所
望の内径diとを備えたガラス毛細管を得ることができ
るものである。
The outer diameter of 98° is d. If it is specified, the inner diameter di is specified. In addition, if the cross section 8t of the glass tube changes in the longitudinal direction, the supply speed of the glass tube is changed according to the change, and the supply speed is adjusted to a predetermined value so that the product of the cross sectional area and the supply speed is constant. Sometimes I follow the changes. Therefore, in the present invention, the cross-sectional area S. A glass tube of is supplied to a drawing furnace at a predetermined speed v0, the outer diameter of the capillary tube drawn from the drawing furnace is do, and the drawing speed is V. By controlling the drawing speed and the internal pressure of the glass capillary, a glass capillary having a desired outer diameter do and a desired inner diameter di can be obtained.

〈実施例〉 本発明によるガラス毛細管の製造方法を第1図に示すガ
ラス毛細管の製造装置の一実施例によって図面を参照し
ながら説明する。
<Example> A method for manufacturing a glass capillary according to the present invention will be described with reference to the drawings using an example of a glass capillary manufacturing apparatus shown in FIG.

第1図に示す本発明の一実施例を説明する装置の構成図
において、ガラス毛細管の母材として、例えば外径25
 m 、肉厚5m1Illの石英管1をガラス管送シ装
&2に取シ付け、石英管lの上端にはガス供給管14が
結合され、圧力制御装置13によって、圧力調整された
窒素等の加圧ガスが供給でれている。また石英管lの下
端は線引炉5の最適の位置に、ガラス管送シ装置2によ
って一定速度■。で送シ込まれている。石英管lの下端
は線引炉5内で約2000℃に加熱され溶融状態にされ
、所望の外径d0と内径diの管状を保った状態で特定
の線引速度V。に制御されて線引され、耐熱樹脂溶液3
を貯え次コーティングダイス4を通じ、塗布された後、
焼付炉11にで焼付硬化され、巻取ドラム7に巻取られ
る。第1図に示す装置において、石英管1は一定の送シ
速度例えばV。= 1 、25 ml mi n で供
給され、ガラス毛細管は線引が速度v□ = 10m/
!n1nに速度制御され、ガラス毛細管の外径がd。;
300μmの設定値に外径制御されると、内径diは2
00μmのガラス毛細管が得られる。即ち、線引された
ガラス毛細管8の外径dは外径測定器9によって測定さ
れ、測定値dはガラス毛細管の外径設定値d。千300
μmが入力された増巾器10で比較され偏差値がドラム
巻取装置6のモータの線引速度指令信号にフィードバッ
クされ、ガラス毛細管の線引速度を変化し、ガラス毛細
管の外径が設定値doになるよう制御する。
In the configuration diagram of an apparatus for explaining one embodiment of the present invention shown in FIG. 1, the base material of the glass capillary is, for example,
A quartz tube 1 with a wall thickness of 5 ml is attached to a glass tube feeder &2, and a gas supply tube 14 is connected to the upper end of the quartz tube 1, and a pressure controller 13 controls the supply of nitrogen, etc. Pressure gas is supplied. Further, the lower end of the quartz tube l is placed at an optimal position in the drawing furnace 5 at a constant speed (2) by the glass tube feeding device 2. It is sent in. The lower end of the quartz tube l is heated to about 2000° C. in a drawing furnace 5 to a molten state, and is drawn at a specific drawing speed V while maintaining a tubular shape with a desired outer diameter d0 and inner diameter di. The heat-resistant resin solution 3
After being applied through coating die 4,
It is baked and hardened in a baking furnace 11 and wound onto a winding drum 7. In the device shown in FIG. 1, the quartz tube 1 is fed at a constant feed rate, for example V. = 1, 25 ml min is supplied, and the glass capillary is drawn at a speed v□ = 10 m/
! The speed is controlled by n1n, and the outer diameter of the glass capillary is d. ;
When the outer diameter is controlled to the set value of 300 μm, the inner diameter di becomes 2
00 μm glass capillary tubes are obtained. That is, the outer diameter d of the drawn glass capillary tube 8 is measured by the outer diameter measuring device 9, and the measured value d is the outer diameter setting value d of the glass capillary tube. 1,300 thousand
μm is compared in the input amplifier 10, and the deviation value is fed back to the drawing speed command signal of the motor of the drum winding device 6, and the drawing speed of the glass capillary tube is changed, and the outer diameter of the glass capillary tube is set to the set value. control so that it becomes do.

また増巾器10には線引速度設定値v0が入力されてお
り、ドラム巻取装置6のモータの速度指令信号は線引速
度vK比例するので、増巾器10で線引速度設定値V。
Further, the wire drawing speed set value v0 is input to the amplifier 10, and the speed command signal of the motor of the drum winding device 6 is proportional to the wire drawing speed vK. .

と線引速度Vとの偏差値を求め、PID制御系増巾器1
0’へ出力する。増巾器10′の出力は圧力制御装置1
3へ入力され、doに近づけるよう線引速度が制御され
ることKよって、線引速度は設定値v0に接近するよう
制御される。これによって、外径はd。2300μm。
and the drawing speed V, and calculate the deviation value between
Output to 0'. The output of the amplifier 10' is connected to the pressure control device 1.
3, and the drawing speed is controlled so as to approach do. Accordingly, the drawing speed is controlled so as to approach the set value v0. As a result, the outer diameter is d. 2300μm.

線引速度は76 = 10 mlmin  に制御され
、内径di=200.cua のガラス毛細管が安定し
て供給されることになる。尚、上記の内圧制御は、ガラ
ス毛細管8の外径を一定にするために線速が上ったとき
には内圧を下げ、逆に線引速度が低下したときには内圧
を上げるよう制御すものである。
The drawing speed was controlled at 76 = 10 mlmin, and the inner diameter di = 200. Cua glass capillary tubes will be stably supplied. The above-mentioned internal pressure control is such that in order to keep the outer diameter of the glass capillary tube 8 constant, the internal pressure is lowered when the drawing speed increases, and conversely, the internal pressure is increased when the drawing speed decreases.

本発明の方法を用いて線引速度を15 mlminで線
引された場合のガラス毛細管と、第2因に示す従来の方
法で得られたガラス毛細管の内・外径並びに線引速度変
動の測定結果の例を第1表に示す。
Measurement of inner and outer diameters and drawing speed fluctuations of glass capillary tubes drawn using the method of the present invention at a drawing speed of 15 ml min and glass capillary tubes obtained by the conventional method shown in Factor 2 Examples of the results are shown in Table 1.

第  1  表 第1表によって明らかなように、本発明によるガラス毛
細管の製造方法によればガラス毛細管の内径変動につい
ては、従来の場合の約すにおさえられ、線引速度変動に
ついても著しく低減され、耐熱樹脂としてポリイミド樹
脂の塗布焼付も、従来のものでは長平方向にムラが認め
られたが、本発明によるものでは極めて均質の被覆のも
のが安定して製造できるようになった。
Table 1 As is clear from Table 1, according to the method for manufacturing a glass capillary according to the present invention, fluctuations in the inner diameter of the glass capillary can be suppressed to the same level as in the conventional case, and fluctuations in drawing speed can also be significantly reduced. Also, when applying and baking a polyimide resin as a heat-resistant resin, unevenness was observed in the longitudinal direction in the conventional method, but with the method according to the present invention, an extremely homogeneous coating can be stably produced.

上記実施例の説明では、ガラス母材として、石英ガラス
の例について説明したが、本発明は石英ガラスに限定さ
れるものではなく、線引可能なガラスであればいかなる
ものでも使用可能である。
In the above embodiments, quartz glass was used as the glass base material, but the present invention is not limited to quartz glass, and any glass that can be drawn can be used.

〈発明の効果〉 本発明によるガラス毛細管の製造方法によれば、ガラス
毛細管に線引きされたガラス毛細管の外径を測定し、外
径設定値と比較し、偏差値をもとめ、この偏差値をドラ
ム巻取装置のモータ速度にフィードバックすると共に、
外径偏差値によって制御された線引速度と設定値とを比
較し、その偏差値をPID制御系の増巾器を介して、ガ
ラス毛細管のガラス母材の内圧を調整する圧力制御装置
に入力し、ガラス母材の内圧にフィードバックして線引
きすることにより、ガラス毛細管の内・外径を精密に特
定し、かつ線引き速度変動も少なくして、優れ九寸法精
度と均質な保護被覆を備えたガスクロマトグラフィ用の
ガラス毛細管を得ることができるようになった。
<Effects of the Invention> According to the method for manufacturing a glass capillary according to the present invention, the outer diameter of the glass capillary drawn into the glass capillary is measured, compared with the outer diameter setting value, and the deviation value is determined. Feedback is provided to the motor speed of the winding device, and
The drawing speed controlled by the outer diameter deviation value is compared with the set value, and the deviation value is input to the pressure control device that adjusts the internal pressure of the glass base material of the glass capillary through the amplifier of the PID control system. By drawing the wire based on the internal pressure of the glass base material, the inner and outer diameters of the glass capillary can be precisely specified, and fluctuations in the drawing speed are also reduced, resulting in excellent dimensional accuracy and a homogeneous protective coating. Glass capillary tubes for gas chromatography can now be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるガラス毛細管製造方法の一実施例
を説明する装置の構成図、第2図は従来の方法を説明す
る装置の構成図である。 図面中、 1は石英管、 2はガラス管送り装置、 3は耐熱樹脂溶液、 4はコーティングダイス、 5は線引炉、 6はドラム巻取装置、 7は巻取りドラム、 8はガラス毛細管、 9は外径測定器、 10は増巾器、 10′はPID系増巾器、 11は樹脂焼付炉、 13は圧力制御装置である。
FIG. 1 is a block diagram of an apparatus for explaining an embodiment of the glass capillary manufacturing method according to the present invention, and FIG. 2 is a block diagram of an apparatus for explaining a conventional method. In the drawings, 1 is a quartz tube, 2 is a glass tube feeding device, 3 is a heat-resistant resin solution, 4 is a coating die, 5 is a wire drawing furnace, 6 is a drum winding device, 7 is a winding drum, 8 is a glass capillary tube, 9 is an outer diameter measuring device, 10 is an amplifier, 10' is a PID amplifier, 11 is a resin baking furnace, and 13 is a pressure control device.

Claims (1)

【特許請求の範囲】[Claims] ガラス管の一端の開口から加圧気体を送給し、当該ガラ
ス管の他端部を線引炉によって加熱溶融させ、線引する
ことによりガラス毛細管を製造する方法において、上記
線引されたガラス毛細管の外径を測定し、その測定値と
ガラス毛細管の外径設定値との偏差値を求め、該偏差値
を上記毛細管の線引速度に帰還し、上記毛細管の外径を
一定に保つよう線引速度を制御するとともに、上記外径
制御によって生じた線引速度と特定された線引速度設定
値との偏差値をPID制御系増巾器を介して上記加圧気
体を送給する圧力制御装置に帰還し、上記線引速度が上
記線引速度設定値になるように上記加圧気体による内圧
を制御することを特徴とするガラス毛細管の製造方法。
A method of manufacturing a glass capillary by supplying pressurized gas from an opening at one end of a glass tube, heating and melting the other end of the glass tube in a drawing furnace, and drawing the drawn glass. The outer diameter of the capillary is measured, the deviation value between the measured value and the set value of the outer diameter of the glass capillary is determined, and the deviation value is fed back to the drawing speed of the capillary to keep the outer diameter of the capillary constant. At the same time as controlling the drawing speed, the deviation value between the drawing speed generated by the outer diameter control and the specified drawing speed setting value is determined by the pressure for feeding the pressurized gas through the PID control system amplifier. A method for manufacturing a glass capillary tube, characterized in that the internal pressure by the pressurized gas is controlled so that the wire drawing speed becomes the wire drawing speed setting value by returning to a control device.
JP25766384A 1984-12-07 1984-12-07 Manufacture of glass capillary tube Granted JPS61136931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25766384A JPS61136931A (en) 1984-12-07 1984-12-07 Manufacture of glass capillary tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25766384A JPS61136931A (en) 1984-12-07 1984-12-07 Manufacture of glass capillary tube

Publications (2)

Publication Number Publication Date
JPS61136931A true JPS61136931A (en) 1986-06-24
JPH0535094B2 JPH0535094B2 (en) 1993-05-25

Family

ID=17309370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25766384A Granted JPS61136931A (en) 1984-12-07 1984-12-07 Manufacture of glass capillary tube

Country Status (1)

Country Link
JP (1) JPS61136931A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1559691A1 (en) * 2002-06-19 2005-08-03 Sumitomo Electric Industries, Ltd. Method for drawing glass parent material and drawing machine for use therein
JP2007212947A (en) * 2006-02-13 2007-08-23 Mitsubishi Cable Ind Ltd Manufacturing method for double cladding fiber, and double cladding fiber
JP2020059646A (en) * 2018-10-09 2020-04-16 ヘレーウス クヴァルツグラース ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトHeraeus Quarzglas GmbH & Co. KG Capillary tube, and method for manufacturing the same
CN111580473A (en) * 2020-04-10 2020-08-25 彩虹集团有限公司 Method for automatically controlling glass extraction amount of liquid crystal substrate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169136A (en) * 1980-05-30 1981-12-25 Furukawa Electric Co Ltd:The Manufacture of glass capillary tube

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169136A (en) * 1980-05-30 1981-12-25 Furukawa Electric Co Ltd:The Manufacture of glass capillary tube

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1559691A1 (en) * 2002-06-19 2005-08-03 Sumitomo Electric Industries, Ltd. Method for drawing glass parent material and drawing machine for use therein
EP1559691A4 (en) * 2002-06-19 2006-03-01 Sumitomo Electric Industries Method for drawing glass parent material and drawing machine for use therein
US7886561B2 (en) 2002-06-19 2011-02-15 Sumitomo Electric Industries, Ltd. Method for drawing glass parent material and drawing machine for use therein
JP2007212947A (en) * 2006-02-13 2007-08-23 Mitsubishi Cable Ind Ltd Manufacturing method for double cladding fiber, and double cladding fiber
JP4546407B2 (en) * 2006-02-13 2010-09-15 三菱電線工業株式会社 Manufacturing method of double clad fiber
JP2020059646A (en) * 2018-10-09 2020-04-16 ヘレーウス クヴァルツグラース ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトHeraeus Quarzglas GmbH & Co. KG Capillary tube, and method for manufacturing the same
CN111580473A (en) * 2020-04-10 2020-08-25 彩虹集团有限公司 Method for automatically controlling glass extraction amount of liquid crystal substrate
CN111580473B (en) * 2020-04-10 2021-05-28 彩虹集团有限公司 Method for automatically controlling glass extraction amount of liquid crystal substrate

Also Published As

Publication number Publication date
JPH0535094B2 (en) 1993-05-25

Similar Documents

Publication Publication Date Title
JP2765033B2 (en) Optical fiber drawing method
US7197898B2 (en) Robust diameter-controlled optical fiber during optical fiber drawing process
JP3159116B2 (en) Stretching machine and stretching method for glass base material
US6010741A (en) Apparatus and method for controlling the coating thickness of an optical glass fiber
JPH09132424A (en) Method for drawing optical fiber
JPS61136931A (en) Manufacture of glass capillary tube
US20060130995A1 (en) System and process for forming glass-coated microwires, including a cooling system and process
JPS6229377B2 (en)
JP2671069B2 (en) Control method of optical fiber drawing furnace
CN103809618B (en) A kind of drawing process applies method and the device thereof of the on-line automatic control of diameter
JP4466036B2 (en) Optical fiber manufacturing method
JP4169997B2 (en) Optical fiber drawing method
JPS62153137A (en) Wire drawing of optical fiber
US20050172672A1 (en) Method for drawing glass patent material and drawing machine for use therein
JPH0251439A (en) Production of optical fiber
JP7554355B2 (en) Optical fiber manufacturing method and optical fiber manufacturing apparatus
JPS5850938B2 (en) Optical fiber manufacturing method and nozzle for optical fiber manufacturing
JP3126307B2 (en) Optical fiber resin coating method
JPS61158838A (en) Production of quartz hollow fiber
JPH02149451A (en) Production of inorganic coated optical fiber and device therefor
JPH0337129A (en) Production of optical glass fiber
JPS5941936B2 (en) Optical fiber coating method
JPS6323142B2 (en)
JPH11106239A (en) Coating device in optical fiber drawing
JPS61270237A (en) Production of metal-coated optical fiber and apparatus therefor