JPS61158838A - Production of quartz hollow fiber - Google Patents

Production of quartz hollow fiber

Info

Publication number
JPS61158838A
JPS61158838A JP59276431A JP27643184A JPS61158838A JP S61158838 A JPS61158838 A JP S61158838A JP 59276431 A JP59276431 A JP 59276431A JP 27643184 A JP27643184 A JP 27643184A JP S61158838 A JPS61158838 A JP S61158838A
Authority
JP
Japan
Prior art keywords
fiber
spinning
pressure
furnace
hollow fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59276431A
Other languages
Japanese (ja)
Inventor
Hiromi Hidaka
日高 啓視
Takeru Fukuda
福田 長
Takao Shioda
塩田 孝夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP59276431A priority Critical patent/JPS61158838A/en
Publication of JPS61158838A publication Critical patent/JPS61158838A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/029Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/0253Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/14Non-solid, i.e. hollow products, e.g. hollow clad or with core-clad interface
    • C03B2203/16Hollow core
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/08Sub-atmospheric pressure applied, e.g. vacuum
    • C03B2205/09Sub-atmospheric pressure applied, e.g. vacuum to the outside of the preform or fibre

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To mold stably hollow optical fiber having improved fiber hollow molding properties, and especially large diameter and a small thickness, by making the pressure in a spinning furnace lower than the inner pressure of quartz tube, and carrying out spinning. CONSTITUTION:The quartz tube 1 is gradually sent to the spinning furnace 2 kept at about 1,800-2,000, and wound by the winder 5 to give the hollow fiber 4. In the operation, the outer diameter of the fiber is controlled by regulating the winding speed of the winder 5 depending upon the measured result of the instrument 6 for outer diameter of the fiber. The inner diameter of the fiber is controlled by driving the reduced pressure regulator 9 depending upon the measured result of the instrument 7 for inner diameter of the fiber and regulating the degree of reduced pressure in the spinning furnace 2. The prepared hollow fiber 4 is provided with a resin, metal, etc., as a reinforcing layer by the coater 8. Since spinning is carried out by reducing the pressure in the furnace 2 to a given degree of reduced pressure lower than the pressure (atmospheric pressure) in the quartz tube 1, the hollow fiber having improved fiber hollow molding properties, especially large diameter and small thickness can be stably molded.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、石英(シリカ)中空ファイバーの製造方法、
特に大口径、肉薄の石英中空ファイバーの製造に有用な
製造方法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention provides a method for producing quartz (silica) hollow fiber;
In particular, the present invention relates to a manufacturing method useful for manufacturing large-diameter, thin-walled quartz hollow fibers.

(従来の技術〉 従来、一般的な石英中空ファイバーの製造は、石英管を
オープン方式の紡糸炉内(石英管の内外圧が大気圧と同
圧)で溶融・紡糸することにより行っていた。
(Conventional technology) Conventionally, general quartz hollow fibers have been manufactured by melting and spinning a quartz tube in an open spinning furnace (the pressure inside and outside the quartz tube is the same as atmospheric pressure).

〈発明が解決しようとする問題点〉 そして、上記方法では、ファイバー内径の制御を、主に
炉内温度の制御により行っているが、応答性が悪く、最
適制御が極めて難しかった。
<Problems to be Solved by the Invention> In the above method, the inner diameter of the fiber is controlled mainly by controlling the furnace temperature, but the response is poor and optimal control is extremely difficult.

そこで、近年、紡糸炉内で紡糸する場合、石英管内圧を
炉内圧力より加圧することにより、内径を制御する方法
(管内加圧制御方式)が試みられているが、石英間内径
が小さく、その内部容量が限られるため、供給ガス流量
が極めて微量となり、十分な圧力制御が得られていない
のが現状である。
Therefore, in recent years, when spinning in a spinning furnace, attempts have been made to control the inner diameter by increasing the internal pressure of the quartz tubes above the furnace pressure (tube pressure control method), but the inner diameter between the quartz tubes is small, Since the internal capacity is limited, the flow rate of the supplied gas is extremely small, and the current situation is that sufficient pressure control cannot be obtained.

く問題点を解決するための手段〉 本発明は、上記従来技術に於ける内径制御の困難性に鑑
みてなされたもので、その特徴とする構成は、基本的に
は、紡糸時、炉内圧力を、石英管内部の圧力(大気圧)
より減圧して紡糸する点にある。そして、好ましくは、
上記紡糸炉内の減圧度を、中空ファイバーの内径若しく
は肉厚を測定し、設定値とのずれに応じて、70〜40
0mmHgの範囲で制御するものである。
Means for Solving the Problems> The present invention has been made in view of the difficulty in controlling the inner diameter in the above-mentioned conventional technology, and its characteristic configuration is basically that Pressure is the pressure inside the quartz tube (atmospheric pressure)
The point is that the spinning process is performed at a lower pressure. And preferably,
The degree of vacuum in the spinning furnace is determined by measuring the inner diameter or wall thickness of the hollow fiber, and adjusting the degree of pressure reduction in the spinning furnace from 70 to 40 depending on the deviation from the set value.
It is controlled within a range of 0 mmHg.

(作用〉 この炉内圧力(石英管外側)の減圧状態での紡糸により
、石英管では、内圧(大気圧)が相対的に外圧より高く
なるため、中空成形性が良く、特に大口径、薄肉の中空
ファイバー成形が容易になり、又このときの減圧制御も
、十分な容量を持つ炉内の真空度を調整するのみでよく
簡単に行える。
(Function) By spinning in a reduced furnace pressure (on the outside of the quartz tube), the internal pressure (atmospheric pressure) is relatively higher than the external pressure in the quartz tube, so it has good blow formability, especially for large diameter and thin walled quartz tubes. Hollow fiber molding becomes easy, and depressurization control at this time can be easily performed by simply adjusting the degree of vacuum in a furnace with sufficient capacity.

〈実施例〉 第1図は本発明を実施するために用いる装置系の概略を
示したものである。
<Example> FIG. 1 schematically shows an apparatus system used to carry out the present invention.

図に於いて、1はファイバー母材の石英管、2は気密に
保持された紡糸炉、3は炉2内に設置した加熱ヒーター
、4は紡糸後の中空ファイバー、5はファイバー4の巻
取り装置、6は紡糸出口側のファイバー走行途中に設置
したファイバー外径測定器、7は外径測定器6の近傍に
設置したファイバー内径測定器、8はファイバー4の外
側に補強層を被覆するためのコーテング装置、9は紡糸
炉2と接続され当該炉2内の減圧度を制御するための減
圧制御器(例えば、真空ポンプ等)である。
In the figure, 1 is a quartz tube of the fiber base material, 2 is an airtight spinning furnace, 3 is a heating heater installed in the furnace 2, 4 is a hollow fiber after spinning, and 5 is a winding of the fiber 4. 6 is a fiber outer diameter measuring device installed in the middle of the fiber traveling on the spinning exit side; 7 is a fiber inner diameter measuring device installed near the outer diameter measuring device 6; 8 is a device for coating the outside of the fiber 4 with a reinforcing layer; The coating device 9 is connected to the spinning furnace 2 and is a pressure reduction controller (for example, a vacuum pump, etc.) for controlling the degree of pressure reduction in the furnace 2.

この装置系で、上記巻取り装置5はファイバー外径測定
器6と連動しており、当該ファイバー外径測定器6の測
定結果により、その巻取り速度が制御されるようになっ
ている。又上記減圧制御器9はファイバー内径測定器7
と連動し、当該ファイバー内径測定器7の測定結果によ
り、上記紡糸炉2内の減圧度を制御するようになってい
る。
In this device system, the winding device 5 is linked with a fiber outer diameter measuring device 6, and the winding speed is controlled based on the measurement results of the fiber outer diameter measuring device 6. Further, the pressure reduction controller 9 is a fiber inner diameter measuring device 7.
In conjunction with this, the degree of vacuum in the spinning furnace 2 is controlled based on the measurement results of the fiber inner diameter measuring device 7.

次に、この装置系で、本発明のファイバー製造方法につ
いて、述べる。
Next, the fiber manufacturing method of the present invention will be described using this apparatus system.

先ず、石英管1を1800〜2000℃程度に保った紡
糸炉2内に徐々に送り出し、巻取り装置5により巻き取
り中空ファイバー4を得る。このとき、ファイバー外径
の制御は、ファイバー外径測定器6の測定結果により、
巻取り装置5の巻取り速度を調整して行う。又、一方、
ファイバー内径の制御は、ファイバー内径測定器7の測
定結果により、減圧制御器9を駆動させ、紡糸炉2内の
減圧度を調整して行う。
First, the quartz tube 1 is gradually fed into a spinning furnace 2 kept at about 1800 to 2000°C, and wound into a hollow fiber 4 by a winding device 5. At this time, the fiber outer diameter is controlled by the measurement results of the fiber outer diameter measuring device 6.
This is done by adjusting the winding speed of the winding device 5. Also, on the other hand,
The fiber inner diameter is controlled by driving the pressure reduction controller 9 and adjusting the degree of pressure reduction in the spinning furnace 2 based on the measurement result of the fiber inner diameter measuring device 7.

このようにして得た中空ファイバー4には走行途中のコ
ーテング装置8で、樹脂や金属等を補強層として施す。
The hollow fiber 4 thus obtained is coated with a reinforcing layer such as resin or metal by a coating device 8 while the fiber is traveling.

この製造方法に於いて、上記紡糸炉2を1700〜21
00℃で加熱した場合、石英管1の最高温度は1600
〜2000℃程度にも及び、紡糸によるファイバーの内
径/外径比は、コラップス現象により減少し、その減少
率は高温である程大きい。一方、石英の粘度はこの温度
範囲で大きく変化し、粘度が小さくなる高温になる程、
圧力の変化に対して鋭敏になる。又低温ではコラップス
現象が抑えられるものの紡糸する際の張力が大きくなり
、安定な紡糸は難しくなる。
In this manufacturing method, the spinning furnace 2 is
When heated at 00℃, the maximum temperature of quartz tube 1 is 1600℃.
The inner diameter/outer diameter ratio of the spinning fiber decreases due to the collapse phenomenon, and the rate of decrease increases as the temperature increases. On the other hand, the viscosity of quartz changes greatly within this temperature range, and the higher the temperature becomes, the lower the viscosity becomes.
Be sensitive to changes in pressure. Furthermore, although the collapse phenomenon can be suppressed at low temperatures, the tension during spinning increases, making stable spinning difficult.

これらの理由から、紡糸炉2の最適保持温度は、上述の
ように1800〜2000℃程度が好ましい、又この温
度で、上記コラップス現象を最も有効に抑えつつ、大口
径、薄肉の中空ファイバー4を得るには、溶融石英管1
の内外の圧力差、即ち紡糸炉2内の減圧度を70〜40
0mmHgの範囲に保つと良い。7QmmHg未満では
、紡糸可能の下限である1600℃に於いてさえ、コラ
ップス現象の方が勝り、管内が潰れてしまうためで、4
00mmHgを越えると、紡糸可能範囲全域に於いて、
紡糸始端部に圧力差により破裂が生じるためであるから
である。
For these reasons, the optimal holding temperature of the spinning furnace 2 is preferably about 1,800 to 2,000°C, as described above, and at this temperature, the large-diameter, thin-walled hollow fiber 4 can be formed while suppressing the collapse phenomenon most effectively. To obtain fused quartz tube 1
The pressure difference between the inside and outside of the spinning furnace 2, that is, the degree of vacuum inside the spinning furnace 2, is set to 70 to 40.
It is best to keep it within the range of 0mmHg. If the temperature is less than 7QmmHg, even at 1600℃, which is the lower limit for spinning, the collapse phenomenon will prevail and the inside of the tube will collapse.
When it exceeds 00mmHg, in the entire spinnable range,
This is because rupture occurs due to the pressure difference at the spinning start end.

実際の製造試験を行ったところ、炉内温度を1800℃
として、ファイバー内径を250〜300μmφとする
ためには、炉内減圧度は70〜15QmmHgの範囲が
好ましく、又炉内温度を2000℃としたときには、炉
内減圧度は200〜400mmHgの範囲が好ましかっ
た。
When we conducted an actual manufacturing test, we found that the temperature inside the furnace was 1800℃.
In order to set the fiber inner diameter to 250 to 300 μmφ, the degree of vacuum in the furnace is preferably in the range of 70 to 15 QmmHg, and when the temperature in the furnace is 2000°C, the degree of vacuum in the furnace is preferably in the range of 200 to 400 mmHg. It was true.

〈発明の効果) 本発明によると、紡糸時、炉内圧力を、石英管内部の圧
力(大気圧)より、所定の減圧度で減圧して紡糸するた
め、ファイバーの中空成形性が良く、特に大口径、薄肉
の中空ファイバーを安定して成形することができる。こ
れは、例えば、ガスクロマトグラフ装置用の石英カラム
等の製造に最適である。又このときの減圧制御も、従来
の管内加圧制御方式に比べて、十分な容量を持つ炉内の
ガス流量(真空度)を調整するのみでよく、極めて節単
に行える利点がある。
<Effects of the Invention> According to the present invention, during spinning, the pressure inside the furnace is reduced to a predetermined degree of pressure reduction compared to the pressure inside the quartz tube (atmospheric pressure), so that the fiber has good hollow formability, and especially Large-diameter, thin-walled hollow fibers can be stably molded. This is ideal for, for example, manufacturing quartz columns for gas chromatograph devices. Also, the pressure reduction control at this time has the advantage that it can be performed extremely economically, as it only requires adjusting the gas flow rate (degree of vacuum) in a furnace having sufficient capacity, compared to the conventional in-pipe pressure control method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施するための装置系の一例を示
す概略縦断面図である。 図中、1・・・石英管、 2・・・紡糸炉、 4・・・中空ファイバー、 5・・・巻取り装置、 6・・・ファイバー外径測定器、 7・・・ファイバー内径測定器、 8・・・コーテング装置、 9・・・減圧制御器。 第1図
FIG. 1 is a schematic vertical sectional view showing an example of an apparatus system for carrying out the method of the present invention. In the figure, 1...quartz tube, 2...spinning furnace, 4...hollow fiber, 5...winding device, 6...fiber outer diameter measuring device, 7... fiber inner diameter measuring device , 8... coating device, 9... pressure reduction controller. Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)、石英管を紡糸炉内で加熱溶融し、線引して中空
ファイバーを製造する方法に於いて、上記紡糸炉内の圧
力を、上記石英管内部の圧力(大気圧)より減圧して紡
糸することを特徴とする石英中空ファイバーの製造方法
(1) In the method of heating and melting a quartz tube in a spinning furnace and drawing it to produce a hollow fiber, the pressure inside the spinning furnace is reduced from the pressure inside the quartz tube (atmospheric pressure). 1. A method for producing quartz hollow fiber, which comprises spinning the quartz hollow fiber.
(2)、上記紡糸炉内の減圧度を、中空ファイバーの内
径若しくは肉厚を測定し、設定値とのずれに応じて、7
0〜400mmHgの範囲で制御することを特徴とする
特許請求の範囲第1項記載の石英中空ファイバーの製造
方法。
(2) The degree of vacuum in the spinning furnace is determined by measuring the inner diameter or wall thickness of the hollow fiber, and adjusting the degree of vacuum in the spinning furnace to 7 depending on the deviation from the set value.
2. The method for producing a quartz hollow fiber according to claim 1, wherein the quartz hollow fiber is controlled within a range of 0 to 400 mmHg.
JP59276431A 1984-12-28 1984-12-28 Production of quartz hollow fiber Pending JPS61158838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59276431A JPS61158838A (en) 1984-12-28 1984-12-28 Production of quartz hollow fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59276431A JPS61158838A (en) 1984-12-28 1984-12-28 Production of quartz hollow fiber

Publications (1)

Publication Number Publication Date
JPS61158838A true JPS61158838A (en) 1986-07-18

Family

ID=17569317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59276431A Pending JPS61158838A (en) 1984-12-28 1984-12-28 Production of quartz hollow fiber

Country Status (1)

Country Link
JP (1) JPS61158838A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005012197A3 (en) * 2003-07-24 2005-07-14 Blazephotonics Ltd Methods for drawing optical hollow fibres under reduced or over-pressure
WO2011150056A1 (en) * 2010-05-27 2011-12-01 Corning Incorporated Method for producing optical fiber at reduced pressure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005012197A3 (en) * 2003-07-24 2005-07-14 Blazephotonics Ltd Methods for drawing optical hollow fibres under reduced or over-pressure
WO2011150056A1 (en) * 2010-05-27 2011-12-01 Corning Incorporated Method for producing optical fiber at reduced pressure
CN102906040A (en) * 2010-05-27 2013-01-30 康宁股份有限公司 Method for producing optical fiber at reduced pressure
JP2013529174A (en) * 2010-05-27 2013-07-18 コーニング インコーポレイテッド Method of manufacturing an optical fiber under reduced pressure
US8573008B2 (en) 2010-05-27 2013-11-05 Corning Incorporated Method for producing optical fiber at reduced pressure

Similar Documents

Publication Publication Date Title
US4437870A (en) Optical waveguide fiber cooler
US8132429B2 (en) Method for fabricating an optical fiber, preform for fabricating an optical fiber, optical fiber and apparatus
KR900002260B1 (en) Method and apparatus for overcladding a glass rod
JPH02275727A (en) Drawing method for optical fiber
CA2488087A1 (en) Glass tube processing method, apparatus and glass tube
JP2798486B2 (en) Method and apparatus for producing hermetic coated optical fiber
EP0079186A1 (en) Apparatus for drawing optical fibers
JPH09132424A (en) Method for drawing optical fiber
WO2006067787A2 (en) Forming and cooling glass-coated microwires
WO1998009184A2 (en) Multi-cylinder apparatus for making optical fibers, process and product
JPS61158838A (en) Production of quartz hollow fiber
JPS6229377B2 (en)
JPS60260439A (en) Forming device of parent material for optical fiber
JP2612928B2 (en) Glass fiber manufacturing method
US7069749B2 (en) Method of manufacturing a solid preform
JP2682603B2 (en) Inorganic coated optical fiber manufacturing apparatus and manufacturing method
JPH0337129A (en) Production of optical glass fiber
JPH11337745A (en) Apparatus for production of plastic optical fiber and its production
JPS6323142B2 (en)
JPH10167745A (en) Control of outer diameter of preform and drawing apparatus of preform
JPS61136931A (en) Manufacture of glass capillary tube
JPS60112638A (en) Manufacture of optical fiber
JPH0651138A (en) Method and apparatus for production of optical fiber
JPH07138038A (en) Method for controlling dimension of glass tube
JPS5941936B2 (en) Optical fiber coating method