JPS62293679A - Field-effect semiconductor device and manufacture thereof - Google Patents

Field-effect semiconductor device and manufacture thereof

Info

Publication number
JPS62293679A
JPS62293679A JP13717986A JP13717986A JPS62293679A JP S62293679 A JPS62293679 A JP S62293679A JP 13717986 A JP13717986 A JP 13717986A JP 13717986 A JP13717986 A JP 13717986A JP S62293679 A JPS62293679 A JP S62293679A
Authority
JP
Japan
Prior art keywords
layer
gaas
ingaas
source
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13717986A
Other languages
Japanese (ja)
Other versions
JP2645993B2 (en
Inventor
Kenichi Imamura
健一 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61137179A priority Critical patent/JP2645993B2/en
Publication of JPS62293679A publication Critical patent/JPS62293679A/en
Application granted granted Critical
Publication of JP2645993B2 publication Critical patent/JP2645993B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/452Ohmic electrodes on AIII-BV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/802Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with heterojunction gate, e.g. transistors with semiconductor layer acting as gate insulating layer, MIS-like transistors

Abstract

PURPOSE:To make it possible to form a very low resistance ohmic contact without heat treatment of alloy after evaporation, by using InGaAs for an ohmic-contact forming semiconductor layer. CONSTITUTION:On a GaAs semi-insulating substrate 1, the following layers are sequentially formed: an n-GaAs layer 2 having a thickness of 500 Angstrom and a carrier concentration of 1X10<18>/cm<3>; an n-AlGaAs layer 3 having a thickness of 5 Angstrom and a carrier concentration of 1X10<18>/cm<3>; and an n<+>-InGaAs layer 4 having a thickness of 2,000 Angstrom and a carrier concentration of 1X10<19>/cm<3>. Then a gate electrode undergoes selective etching using CCl2F2, with a resist pattern 5 as a mask, and a window is provided. The etching is stopped at the AlGaAs 3. Then, a source electrode S, ohmic contact of a drain electrode D and a gate electrode G are formed simultaneously using Cr/Au by mask alignment of one time.

Description

【発明の詳細な説明】 ム発明の詳細な説明 〔概要〕 InGaAsのノンブロイ・オーミックコンタクトを用
いることにより、ゲート、ソースおよびドレイン電極を
一度のプロセスで形成することを基本とする電界効果型
半導体装置とその製造方法であり、高速、低消費電力化
を可能にする。
[Detailed Description of the Invention] Detailed Description of the Invention [Summary] A field-effect semiconductor device based on forming gate, source, and drain electrodes in one process by using InGaAs non-blowing ohmic contacts. and its manufacturing method, which enables high speed and low power consumption.

〔産業上の利用分野〕[Industrial application field]

本発明はセルファライン型GILA8電界効果型半導体
装i (FET)に係シ、特にその寄生抵抗を低減し、
高速、低消費電力化を可能にする素子構造およびその製
造方法に関する。
The present invention relates to a self-line type GILA8 field effect semiconductor device i (FET), and particularly reduces its parasitic resistance.
The present invention relates to an element structure that enables high speed and low power consumption, and a manufacturing method thereof.

〔従来の技術〕[Conventional technology]

最近、化合物半導体装置の開発が盛んになってきてお夕
、特に、GaA1 MESFET (金属−半導体電界
効果型トランジスタ)は、Slの次のトランジスタとし
て注目されている。
Recently, development of compound semiconductor devices has become active, and in particular, GaA1 MESFET (metal-semiconductor field effect transistor) is attracting attention as the next transistor after Sl.

第2図に従来のGaAsMESFET の要部断面構成
を示している。図において、21が半絶縁性のSI−G
aAs基板であり、その上に活性層のn−GaAs層2
4が形成され、さらにソース、ドレイン領域の高濃度な
n  −GRAIL層22.23が形成され、それぞれ
ソース電極S、ドレイン電極り、およびゲート電極Gが
形成されている。しかしこの構造では、ゲート電極に対
して、n−GaAs層22 、25がセル7アラインで
形成されていないので、ゲートGとn+−GaAs層2
2 、25間に寄生的抵抗が生じ、ソース抵抗が高くな
るという問題がある。また、ゲートとソース、ドレイン
間に活性層24の比較的低抵抗のn−GaAs層が出て
いるので、表面空乏層の影響で、しきい値vthの均一
性が悪くなるという欠点が生じる。
FIG. 2 shows a cross-sectional configuration of essential parts of a conventional GaAs MESFET. In the figure, 21 is a semi-insulating SI-G
It is an aAs substrate with an n-GaAs layer 2 as an active layer on it.
4 are formed, and furthermore, high concentration n-GRAIL layers 22 and 23 in the source and drain regions are formed, and a source electrode S, a drain electrode, and a gate electrode G are formed, respectively. However, in this structure, since the n-GaAs layers 22 and 25 are not formed in cell 7 alignment with respect to the gate electrode, the gate G and the n+-GaAs layer 2
There is a problem in that parasitic resistance occurs between 2 and 25, increasing the source resistance. Further, since the n-GaAs layer of relatively low resistance of the active layer 24 is exposed between the gate, source, and drain, there is a drawback that the uniformity of the threshold value vth is deteriorated due to the effect of the surface depletion layer.

そこで、この欠点を改善する従来の方法として、第3図
に示すように、ゲートに高耐熱金属のWSt(タングス
テンシリサイド)G′を用い、それをマスクにしてソー
ス、ドレイン領域32 、33用のn+層をイオン注入
法で形成し、その鏡アニールを行い、ソース、ドレイン
電極領域を形成する方法がある。このセルファライン型
GaAgMESFIETは、ゲートとソースの間かn 
の高濃度層になっているので、抵抗が低減するとともに
、表面空乏層の影響を回避して、しきい値の変動を防止
することができる。それにより、このセルファライン型
GaAs Mg5FETは寄生抵抗、容量が小さくでき
、高速、低消費電力化に有利である。
Therefore, as a conventional method to improve this drawback, as shown in FIG. There is a method in which an n+ layer is formed by ion implantation and mirror annealing is performed to form source and drain electrode regions. This self-line type GaAg MESFIEET is
Since the layer has a high concentration of , the resistance is reduced, and the influence of the surface depletion layer can be avoided, thereby making it possible to prevent fluctuations in the threshold value. As a result, this self-line type GaAs Mg5FET can have small parasitic resistance and capacitance, and is advantageous for high speed and low power consumption.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記改良されたセル7アライン型GaA
s MESFETは、セル7アライン化のために用いる
ソース電極のWSlの抵抗が高いことから、ゲートの抵
抗が高くなるという問題がある。そこで、本発明はゲー
ト抵抗を低減するとともに、プロセスが容易なセル7ア
ライン型Gs+Aa Mg5FETを提供しようとする
ものである。
However, the improved cell 7 aligned GaA
The s MESFET has a problem in that the resistance of the gate becomes high because the resistance of the source electrode WSl used for aligning the cell 7 is high. Therefore, the present invention aims to provide a cell 7-aligned Gs+Aa Mg5FET that reduces gate resistance and is easy to process.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記問題点を解決するために、InGaAsの
ノンアロイ・オーミックコンタクトを用いることにより
、ゲート、ソースおよびドレイン電極を一度のプロセス
で形成することを基本とするセル7アライン型GaA@
MESFETを提供するものである。
In order to solve the above-mentioned problems, the present invention has developed a cell 7 aligned type GaA@ which is based on forming gate, source and drain electrodes in one process by using InGaAs non-alloy ohmic contacts.
MESFET is provided.

〔作用〕[Effect]

InGaAsは金属電極とノンアロイで極めて良好なオ
ーミックコンタクトを形成することができる。
InGaAs is non-alloyed and can form extremely good ohmic contact with metal electrodes.

そこで、本発明においては、これに着目して、ソース、
ドレインの電極部に1nGaAsを用いることにより、
ゲート電極の形成とソース、ドレインの金属電極に同一
金属を用い、同一プロセスで形成することを可能にした
。ノンアロイなので、ゲート電極形成後の熱処理がない
ので、しきい値の変動がなく、また、ソース、ドレイン
、ゲートの各電極間の距離を正確に規定することができ
、製造歩留を向上すると共に、素子の高速、低消費電力
化を可能にすることができる。
Therefore, in the present invention, focusing on this, the source,
By using 1nGaAs for the drain electrode part,
The same metal is used for the formation of the gate electrode and the source and drain metal electrodes, making it possible to form them in the same process. Since it is a non-alloy, there is no heat treatment after forming the gate electrode, so there is no fluctuation in threshold value, and the distance between the source, drain, and gate electrodes can be accurately defined, which improves manufacturing yield. , it is possible to achieve high speed and low power consumption of the device.

〔実施例〕〔Example〕

第1図に本発明の実施例の素子の製造工程の断面図を示
してお勺、以下これを用いて、本発明をさらに詳細に説
明する。
FIG. 1 shows a cross-sectional view of the manufacturing process of an element according to an embodiment of the present invention.The present invention will be explained in more detail below using this cross-sectional view.

第1図(A)参照 まず、GaAs半絶縁性基板1上に、次の層を順次形成
する。
Refer to FIG. 1(A) First, the following layers are sequentially formed on a GaAs semi-insulating substrate 1. Referring to FIG.

2・・・n−G凰A8層 厚さsoo X キャリア濃度I X 10”/ cd 3 ・= n −AtGaAs層 厚さ5人 キャリア濃度I X 10”/ cdlA Lz G 
a I −X A s と表すときのX=α34− n
+−InGaAs層 厚さ2000 A キャリア濃度I X 10 ”/ crAIn、 Gt
l−、Amとしたときのy = a、s第1図(B)参
照 その後、ゲート電極部をレジストパターン5をマスクに
用いて、cct、y、で選択エツチングして窓開けする
。エツチングはAtGiAa3でストップする。
2...n-G 凰A8 layer thickness soo
X=α34-n when expressed as a I-X A s
+-InGaAs layer thickness 2000 A Carrier concentration I x 10''/crAIn, Gt
y = a, s when l-, Am. Refer to FIG. 1B. Thereafter, the gate electrode portion is selectively etched at cct, y using the resist pattern 5 as a mask to open a window. Etching is stopped at AtGiAa3.

第1図(C)参照 次に、1回の1スク合わせてCr / A uによシ、
ソース電極S、ドレイン電砥りのオーミックコンタクト
およびゲート電極Gを一度に形成する。
Refer to Figure 1 (C) Next, add Cr/A u in one scan,
A source electrode S, an ohmic contact for drain electric polishing, and a gate electrode G are formed at the same time.

それには、例えば、Cr(クローム)をEガン蒸着(電
子銃蒸着)で500^の厚さに付着し、次に抵抗加熱式
の通常の蒸着でAuを3000 Hの厚さに付着し、バ
ターニングして各電極な形成すれば良い。この場合、従
来のAuG・/Auのように、蒸着後アロイの熱処理を
行わなくても極めて低抵抗のオーミックコンタクトを形
成することができるため、ゲート電極は熱処理を受ける
ことがなく、シきい値vthの変動が生じることがない
For example, Cr (chromium) is deposited to a thickness of 500^ by E-gun deposition (electron gun deposition), Au is deposited to a thickness of 3000^ by ordinary deposition using resistance heating, and then the butter is deposited. It is only necessary to form each electrode by etching. In this case, unlike conventional AuG/Au, an extremely low resistance ohmic contact can be formed without heat treatment of the alloy after deposition, so the gate electrode does not undergo heat treatment and the threshold value No variation in vth occurs.

n+−InGaAsに対して、Cr / Auはノンア
ロイで極めて低抵抗のオーミックコンタクトを形成でき
、1×10″″′〜10−80−という低いコンタクト
抵抗を形成できる。
With respect to n+-InGaAs, Cr/Au is non-alloy and can form an extremely low-resistance ohmic contact, and can form a contact resistance as low as 1×10'''' to 10-80-.

以上のように1回のマスク合わせで、ゲート。As mentioned above, gate is created by matching the mask once.

ソースおよびドレイン電極相互がセルファライン的に形
成されたFETを作製することができ、プロセスも容易
化できる。また、ゲート電極Gとソース、ドレイン電極
を構成するn+−InGaAs層4との間隔は高精度の
ステッパによシ01μm程度に近接して形成可能でおる
A FET in which the source and drain electrodes are formed in a self-aligned manner can be manufactured, and the process can be simplified. Further, the distance between the gate electrode G and the n+-InGaAs layer 4 constituting the source and drain electrodes can be formed close to each other by about 0.1 μm using a high-precision stepper.

なお、上記実施例では、ソース、ドレイン電極およびゲ
ート電極の金属として、Cr/Auを示したが、本発明
はこれに限らず、他の金属材料を用いることが可能でら
シ、例えばTiPtAu、 Au、 At等を用いるこ
とができ、従来セルファライン型とするために用いてい
るWSlよシ低抗が(100分の1程度)小さな材料を
ゲートに用いることが可能となる。
In the above embodiments, Cr/Au is used as the metal of the source, drain electrode, and gate electrode, but the present invention is not limited to this, and other metal materials may be used, such as TiPtAu, Au, At, etc. can be used, and it is possible to use a material for the gate that has a lower resistance (about 1/100) than WSL, which is conventionally used for the self-line type.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば、InGaAsをオーミ
ックコンタクト形成用半導体層に用いることによシ、蒸
着後アロイの熱処理を行わなくても極めて低抵抗のオー
ミックコンタクトを形成することができるため、1回の
マスク合わせで、ゲート。
As described above, according to the present invention, by using InGaAs for the semiconductor layer for forming an ohmic contact, an ohmic contact with extremely low resistance can be formed without heat treatment of the alloy after vapor deposition. Gate with just one mask adjustment.

ソースおよびドレイン電極相互がセルファライン的に形
成されたFgTを作製することができ、プロセスも容易
化できる。また、ゲート電極はアロイの熱処理を受けな
いため、しきい値vthの変動が生じることがない。ま
た、従来のセル7アライン型のGaAsMESFεTよ
シ低抵抗なゲート電極材料の採用を可能とする。
An FgT in which the source and drain electrodes are formed in a self-aligned manner can be manufactured, and the process can be simplified. Further, since the gate electrode is not subjected to alloy heat treatment, the threshold value vth does not vary. Furthermore, it is possible to employ a gate electrode material having a lower resistance than that of the conventional cell 7-aligned type GaAs MESFεT.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)〜(C)は本発明の実施例の素子製造工程
の断面図、 第2図は従来例1の素子断面図、 第5図は従来例2の素子断面図である。 1・・・GaAg半絶嶽性基、仮 ’l −・−n −GIAB 11 3 =・n −ALGaAs層 4 ・ n+−InGaA@層 5・・・レジストパターン S・・・ソース電極 p・・・ドレイン電極 G・・・ゲート電極
1A to 1C are cross-sectional views of the device manufacturing process according to the embodiment of the present invention, FIG. 2 is a cross-sectional view of the device of Conventional Example 1, and FIG. 5 is a cross-sectional view of the device of Conventional Example 2. 1...GaAg semi-abundant group, tentative 'l--n-GIAB 11 3 =-n-ALGaAs layer 4/n+-InGaA@ layer 5...Resist pattern S...Source electrode p...・Drain electrode G...Gate electrode

Claims (2)

【特許請求の範囲】[Claims] (1)一導伝型のGaAsを活性層とした電界効果型半
導体装置において、 該活性層上にGaAsと格子整合する一導伝型の高濃度
InGaAs層からなるソースおよびドレインのコンタ
クト領域を有し、該各々のコンタクト領域を構成するI
nGaAs層上およびGaAs活性層上に同一金属材料
からなる電極が形成されてなることを特徴とする電界効
果型半導体装置。
(1) A field effect semiconductor device having an active layer of GaAs of one conductivity type, which has source and drain contact regions made of a high concentration InGaAs layer of one conductivity type that is lattice matched with GaAs on the active layer. and I constituting each contact region.
A field effect semiconductor device comprising electrodes made of the same metal material formed on an nGaAs layer and a GaAs active layer.
(2)基板上に活性層の一導伝型GaAs層を形成し、
該GaAs層上に一導伝型の高濃度InGaAs層を形
成し、該InGaAs層のゲート領域部分を除去し、そ
の後、該ゲート領域および該InGaAs層上に同一金
属材料を付着し、ソース、ドレイン電極およびゲート電
極を同時にノンアロイで形成する工程を有することを特
徴とする電界効果型半導体装置の製造方法。
(2) forming a single conductivity type GaAs layer as an active layer on the substrate;
A high concentration InGaAs layer of one conductivity type is formed on the GaAs layer, a gate region portion of the InGaAs layer is removed, and then the same metal material is deposited on the gate region and the InGaAs layer to form the source and drain. 1. A method for manufacturing a field effect semiconductor device, comprising the step of simultaneously forming an electrode and a gate electrode in a non-alloy manner.
JP61137179A 1986-06-12 1986-06-12 Field effect type semiconductor device and method of manufacturing the same Expired - Lifetime JP2645993B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61137179A JP2645993B2 (en) 1986-06-12 1986-06-12 Field effect type semiconductor device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61137179A JP2645993B2 (en) 1986-06-12 1986-06-12 Field effect type semiconductor device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPS62293679A true JPS62293679A (en) 1987-12-21
JP2645993B2 JP2645993B2 (en) 1997-08-25

Family

ID=15192658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61137179A Expired - Lifetime JP2645993B2 (en) 1986-06-12 1986-06-12 Field effect type semiconductor device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2645993B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01179461A (en) * 1988-01-07 1989-07-17 Fujitsu Ltd Field-effect transistor
EP0510705A2 (en) * 1991-04-26 1992-10-28 Sumitomo Electric Industries, Ltd. Field effect transistor
JPH05198598A (en) * 1992-01-22 1993-08-06 Mitsubishi Electric Corp Compound semiconductor device and manufacture thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56131965A (en) * 1980-02-15 1981-10-15 Siemens Ag Method of producing semiconductor device
JPS59123272A (en) * 1982-12-28 1984-07-17 Fujitsu Ltd Compound semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56131965A (en) * 1980-02-15 1981-10-15 Siemens Ag Method of producing semiconductor device
JPS59123272A (en) * 1982-12-28 1984-07-17 Fujitsu Ltd Compound semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01179461A (en) * 1988-01-07 1989-07-17 Fujitsu Ltd Field-effect transistor
EP0510705A2 (en) * 1991-04-26 1992-10-28 Sumitomo Electric Industries, Ltd. Field effect transistor
EP0510705A3 (en) * 1991-04-26 1995-05-24 Sumitomo Electric Industries
JPH05198598A (en) * 1992-01-22 1993-08-06 Mitsubishi Electric Corp Compound semiconductor device and manufacture thereof

Also Published As

Publication number Publication date
JP2645993B2 (en) 1997-08-25

Similar Documents

Publication Publication Date Title
JPS62239586A (en) Manufacture of fet device
EP0305975B1 (en) Compound semiconductor mesfet
JPH06232170A (en) Field effect transistor and its manufacture
JPS62293679A (en) Field-effect semiconductor device and manufacture thereof
JPS61188966A (en) Manufacture of high speed semiconductor device
JP2624642B2 (en) Semiconductor device manufacturing method
JPS61260679A (en) Field-effect transistor
JPH04282841A (en) Manufacture of semiconductor device
JPS6115375A (en) Hetero junction fet
JPH0349242A (en) Field effect transistor and its manufacture
JPH06232168A (en) Field effect transistor and its manufacture
JPS61177780A (en) Manufacture of semiconductor device
JP2514948B2 (en) Method for manufacturing semiconductor device
JPS6161549B2 (en)
JPS6272175A (en) Manufacture of semiconductor device
JPH04122033A (en) Manufacture of field effect transistor
JPS6143443A (en) Manufacture of semiconductor device
JPH0797634B2 (en) Field effect transistor and manufacturing method thereof
JPS59172776A (en) Manufacture of semiconductor device
JPS58202577A (en) Manufacture of field-effect transistor
JPS58107677A (en) Semiconductor device
JPS63158877A (en) Manufacture of field-effect transistor
JPH07106525A (en) Field-effect transistor and compound semiconductor integrated circuit
JPH02309649A (en) Field-effect transistor and manufacture thereof
JPS6249671A (en) Gallium-arsenide fe transistor and making thereof