JPS62293208A - Formation of optical element - Google Patents

Formation of optical element

Info

Publication number
JPS62293208A
JPS62293208A JP61136552A JP13655286A JPS62293208A JP S62293208 A JPS62293208 A JP S62293208A JP 61136552 A JP61136552 A JP 61136552A JP 13655286 A JP13655286 A JP 13655286A JP S62293208 A JPS62293208 A JP S62293208A
Authority
JP
Japan
Prior art keywords
substrate
refractive index
optical element
forming
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61136552A
Other languages
Japanese (ja)
Other versions
JPH0731288B2 (en
Inventor
Kazuhisa Yamamoto
和久 山本
Tetsuo Taniuchi
哲夫 谷内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61136552A priority Critical patent/JPH0731288B2/en
Publication of JPS62293208A publication Critical patent/JPS62293208A/en
Publication of JPH0731288B2 publication Critical patent/JPH0731288B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To easily form an optical element with good controllability by coating an acid which is liquid at <=90 deg.C on the surface of a ferroelectric substrate,a then subjecting the coating to a heat treatment. CONSTITUTION:A protective mask 2 consisting of Ta is formed on a +Z surface 3 of an LiNbO3 substrate 1 and pyrophosphoric acid 5 is coated thereon. The pyrophosphoric acid 5 is liquid at a room temp. and permits surface coating by spin coating, etc. The heat treatment is executed in an oven 6 heated to 200 deg.C and a plate 7 made of Al is used to uniform the temp. The substrate is finally taken together with the plate 7 out of the oven 6 and thereafter the protetive mask 2 consisting of Ta is removed by a soln. of sodium hydroxide. A high-refractive index layer 8 is then formed by a proton exchange right under a slit 4. The difference in the max. refractive index between the high refractive index layer 8 formed of the pyrophosphoric acid and the substrate 1 is high and the optical waveguide which confines light largely is manufactured.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明はコヒーレント光を使用する光情報処理分野ある
いは光通信、光応用計測制御分野に使用される光導波路
およびマイクロレンズなどに用いる光素子の形成方法に
関するものである。
Detailed Description of the Invention 3. Detailed Description of the Invention Industrial Application Field The present invention relates to optical waveguides and microlenses used in the field of optical information processing using coherent light, optical communications, and optical applied measurement and control fields. The present invention relates to a method for forming an optical element used for.

従来の技術 従来、強誘電体であるL i NbO3基板を160℃
〜250℃程度の安息香酸溶液中で熱処理を行い   
L I Nb0a基板のLi と安息香酸中のHを交換
させ高屈折率層(最大屈折率差Δn=0.13程度)を
形成し光導波路としていた。[ジュー・エル・シャツケ
ル、シー・イー・ライス及びジエー・ジューeベセルカ
“プロトン イクスチェンジ フォー ハイ−インデッ
クス ウニイブガイド インL I Nb0a ”アプ
ライド フィツクス レター。
Conventional technology Conventionally, a ferroelectric LiNbO3 substrate was heated at 160°C.
Heat treatment is performed in a benzoic acid solution at ~250℃.
A high refractive index layer (maximum refractive index difference Δn=about 0.13) was formed by exchanging Li in the L I Nb0a substrate with H in benzoic acid to form an optical waveguide. [J. L. Shatkel, C. E. Rice and G. J. Veselka, “Proton Exchange for High-Index Unib Guide in L I Nb0a” Applied Fixtures Letter.

41巻、7号607−608頁(19B2 )(J 、
L、Jackel 、C,E、Rice and I 
、1 、Veselka。
Volume 41, No. 7, pp. 607-608 (19B2) (J,
L., Jackel, C.E., Rice and I.
, 1, Veselka.

”Proton exchange for high
−tndexwaveguides in LiNbO
3,” Appl 、Phys 、Let t 。
”Proton exchange for high
-tndexwaveguides in LiNbO
3,” Appl, Phys, Let t.

Vo141.47.PP607−608(1982))
J参照。
Vo141.47. PP607-608 (1982))
See J.

以下光素子として光導波路を例にとりその形成方法につ
いて説明する。第5図に従来の溶液中での3・\ プロトン交換方法を用いた光導波路形成法の具体的構成
図を示す。1は強誘電体基板であるLiNbO3基板、
2′は八!による保護マスク、4はフォトプロセスおよ
びエツチングにより保護マスク2′上に液5′中に浸す
。溶液6′はヒータ9により加熱されたビー力10を介
して一定温度200″Gに保たれている。この溶液6′
中でL iNb Oa基板1を60分熱処理を行った後
、メタノールにより洗浄を行う。
Hereinafter, a method for forming an optical waveguide will be described as an example of an optical element. FIG. 5 shows a concrete block diagram of a method for forming an optical waveguide using the conventional 3.\proton exchange method in a solution. 1 is a LiNbO3 substrate which is a ferroelectric substrate;
2' is eight! A protective mask 4 is immersed in a liquid 5' onto the protective mask 2' by photoprocessing and etching. The solution 6' is maintained at a constant temperature of 200''G via a bead 10 heated by a heater 9.
After heat-treating the LiNb Oa substrate 1 for 60 minutes in the chamber, cleaning is performed with methanol.

こうして安息香酸溶液6′中のHとL I Nb Os
基板1中のLiが交換し高屈折率層8が形成される。こ
の高屈折率層8が厚み0.5μm程度の光導波路となる
Thus, H and L I Nb Os in the benzoic acid solution 6'
Li in the substrate 1 is exchanged to form a high refractive index layer 8. This high refractive index layer 8 becomes an optical waveguide with a thickness of about 0.5 μm.

発明が解決しようとする問題点 上記のような溶液中での光素子の形成方法は以下に示す
ような問題点を有していた。(1)溶液が発生する蒸気
のため作業性が悪くなる。(2)溶液の温度を均一化す
るため攪拌などの作業が必要となる。(3)基板を出入
する際罠急激な温度変化のため割れが生じ易い。(4)
プロトン交換したい面取外も溶液に浸されるためプロン
ト交換される。
Problems to be Solved by the Invention The method for forming an optical element in a solution as described above has the following problems. (1) Workability deteriorates due to the vapor generated by the solution. (2) Operations such as stirring are required to equalize the temperature of the solution. (3) Cracks are likely to occur due to rapid temperature changes when the board is moved in and out. (4)
The surface of the chamfer to which proton exchange is desired is also immersed in the solution, so proton exchange is performed.

(6)サンプルホルダごと溶液中に浸すので溶液の寿が
短く大量に使用せねばならない。
(6) Since the entire sample holder is immersed in the solution, the lifespan of the solution is short and a large amount must be used.

問題点を解決するための手段 本発明は上記問題点を解消するもので、光素子の形成方
法に新たな工夫を加えることにより作業性、制御性、量
産性を大0幅に向上させたものである。すなわち、本発
明の光素子の形成方法は、L I NbxT a (、
−x )O3(0≦x≦1)基板の表面に融点が90°
C以下である液状の酸を塗布した後、前記LiNbxT
a(1−x)O3(0≦x≦1)基板を100°C以上
の温度で熱処理する工程を含むものである。
Means for Solving the Problems The present invention solves the above problems and greatly improves workability, controllability, and mass productivity by adding new ideas to the method of forming optical elements. It is. That is, the method for forming an optical element of the present invention is based on L I NbxT a (,
-x ) O3 (0≦x≦1) The melting point is 90° on the surface of the substrate.
After applying a liquid acid having a concentration of C or less, the LiNbxT
The method includes a step of heat-treating the a(1-x)O3 (0≦x≦1) substrate at a temperature of 100° C. or higher.

作  用 本発明は上記手段により通常の拡散、アニールなどと同
様のプロセスでプロトン交換が行え作業性、制御性、量
産性が大幅に向上する。
Function The present invention allows proton exchange to be carried out in the same process as ordinary diffusion, annealing, etc. by the above-mentioned means, and workability, controllability, and mass productivity are greatly improved.

実施例 本発明の光素子の形成方法の第1の実施例を第1図に示
す。この第1の実施例では光素子の形成6/\−/゛ 法としてL iNb Os基板上にピロ燐酸(H4P2
0□)を塗布し光導波路を形成する方法について説明す
る。
Embodiment A first embodiment of the method for forming an optical device according to the present invention is shown in FIG. In this first embodiment, pyrophosphoric acid (H4P2
A method for forming an optical waveguide by applying a coating film (0□) will be explained.

第1図aで1は+Z板(+Z軸に垂直に切り出された基
板)のL zNb Oa基板、2はLiNbO3基板1
+Z面3上に形成されたTaによる保護マスクである。
In Figure 1a, 1 is the L zNb Oa substrate of the +Z board (a substrate cut perpendicular to the +Z axis), and 2 is the LiNbO3 substrate 1.
This is a protective mask made of Ta formed on the +Z plane 3.

保護マスク2の厚みは300八である。4はフォトプロ
セスおよびリフトオフプロセスにより保護マスク2に形
成されたスリットである。まず、同図すのように純度9
5%のど口燐酸5をスピンナーを用いてL i NbO
5基板1の+Z面3上に塗布を行った。具体的には回転
数3oorpmで20秒スピンコードを行った。純度9
5%のど口燐酸6は室温で液体でありスピンコードなど
の表面塗布が可能である。
The thickness of the protective mask 2 is 300 mm. 4 is a slit formed in the protective mask 2 by a photo process and a lift-off process. First, the purity is 9 as shown in the figure.
Add 5% phosphoric acid 5 to LiNbO using a spinner.
5. Coating was performed on the +Z surface 3 of the substrate 1. Specifically, a spin code was performed for 20 seconds at a rotation speed of 3 oorpm. Purity 9
5% throat phosphoric acid 6 is liquid at room temperature and can be applied to surfaces such as spin cord.

次に同図Cのように200°Cに加熱されたオープンθ
中で60分間熱処理を行った。7は温度の均一化を図る
ための八2で作られたプレートである。最後にプレート
7ごとオープン6より取り出し冷却を行った後水酸化ナ
トリウム系の溶液でTaによる保護マスク2を除去した
のが同図dである。
Next, open θ heated to 200°C as shown in Figure C.
Heat treatment was carried out for 60 minutes inside. 7 is a plate made of 82 to ensure temperature uniformity. Finally, the plate 7 was taken out from the open 6 and cooled, and the protective mask 2 made of Ta was removed using a sodium hydroxide solution, as shown in FIG.

6・\ 。6.\.

スリット4の直下にプロトン交換により高屈折率層8が
形成された。この高屈折率層8の厚みは0.5μmであ
り光導波路として機能している。なおピロ燐酸により形
成した高屈折率層8のL I NbO5基板1との最大
屈折率差Δnは0.145 と安息香酸の溶液処理に比
べて高くより光の閉じ込めの大きな光導波路の作製が可
能となる。ところでピロ燐酸6は安息香酸などに比べて
極端に蒸発量が少いことおよび一度の光素子作製に使用
する量が非常に少いことのため安全面および溶液の交換
オープンなどの手入れなどの保守面を考えた場合、作業
性が飛躍的に向上する。
A high refractive index layer 8 was formed directly under the slit 4 by proton exchange. This high refractive index layer 8 has a thickness of 0.5 μm and functions as an optical waveguide. The maximum refractive index difference Δn between the high refractive index layer 8 formed of pyrophosphoric acid and the L I NbO5 substrate 1 is 0.145, which is higher than that of benzoic acid solution treatment, making it possible to fabricate an optical waveguide with greater light confinement. becomes. By the way, the amount of evaporation of pyrophosphoric acid 6 is extremely small compared to benzoic acid, etc., and the amount used for one time optical device fabrication is very small, so it requires safety and maintenance such as changing the solution and opening. When considering this aspect, work efficiency is dramatically improved.

また本方法はL i NbO3基板1め割れ防止のため
のプレアニール工程および装置を必要としないことも特
徴の1つである。
Another feature of this method is that it does not require a pre-annealing process or equipment for preventing cracking of the LiNbO3 substrate 1.

またTaはピロ燐酸6などの燐酸系にエツチングされな
い保護マスクとして使用できる上パターン形成も簡単で
有効と思われる。
Furthermore, Ta can be used as a protective mask that is not etched by phosphoric acids such as pyrophosphoric acid 6, and pattern formation is also considered to be simple and effective.

本発明の光素子の形成方法の第2の実施例について説明
する。第2の実施例では光素子としてマイクロレンズを
形成する方法を示している。第2図はマイクロレンズ形
成方法の斜視図である。1はL I Nb0a基板6は
1キのピロ燐酸である。ピロ燐酸5は表面張力により広
がらずに一定の大きさを保っている。260°C,e時
間石英管中でプロトン交換を行うことにより液が徐々に
広がり、第3図のような中央に凸な高屈折率層8が形成
される。この高屈折率層8がマイクロレンズとなる。
A second embodiment of the method for forming an optical element of the present invention will be described. The second embodiment shows a method of forming a microlens as an optical element. FIG. 2 is a perspective view of the microlens forming method. 1 is L I Nb0a substrate 6 is 1K pyrophosphoric acid. Pyrophosphoric acid 5 does not spread due to surface tension and maintains a constant size. By performing proton exchange in a quartz tube at 260° C. for e hours, the liquid gradually spreads, and a high refractive index layer 8 having a convex central portion as shown in FIG. 3 is formed. This high refractive index layer 8 becomes a microlens.

以上のように本方法を用いると安息香酸では実現不可能
な260°C以上の温度でもプロトン交換が行え拡散定
数を大きくできプロセス時間の短縮が図れる。また所望
の部分だけに塗布可能であり保護マスク作製工程が省略
できる。
As described above, when this method is used, proton exchange can be performed even at temperatures of 260° C. or higher, which cannot be achieved with benzoic acid, the diffusion constant can be increased, and the process time can be shortened. Furthermore, it can be applied only to desired areas, and the process of manufacturing a protective mask can be omitted.

本発明の光素子の形成方法の第3の実施例についてL 
I T aOs基板1′上に光導波路を形成する場合に
ついて説明する。第4図は上記光素子の形成方法の断面
図である。1′はL iT aos基板、2はL I 
T a03基板1′の−2面3′」二に形成されたTa
による保護マスクである。4はフォトプロセスおよびリ
フトオフプロセスにより保護マスク2上に形成されたス
リットである。LiTaO3基板1′を70″Gに加熱
し純度100%のピロ燐酸6を注射器により塗布を行っ
た。次に280℃に加熱されたオーブン中で10時間熱
処理を行った。最後に保護マスクを除去した。このよう
にしてスリット4の直下にプロトン交換により前記実施
例と同様の高屈折率層(Δn−0,1)が形成された。
Regarding the third embodiment of the method for forming an optical element of the present inventionL
The case where an optical waveguide is formed on the ITaOs substrate 1' will be explained. FIG. 4 is a cross-sectional view of the method for forming the optical element. 1' is the L iT aos board, 2 is the L I
Ta formed on the -2 surface 3' of the Ta03 substrate 1'
It is a protective mask. 4 is a slit formed on the protective mask 2 by a photo process and a lift-off process. The LiTaO3 substrate 1' was heated to 70''G and 100% pure pyrophosphoric acid 6 was applied using a syringe. Next, heat treatment was performed for 10 hours in an oven heated to 280°C.Finally, the protective mask was removed. In this way, a high refractive index layer (Δn-0,1) similar to that of the previous example was formed directly under the slit 4 by proton exchange.

この高屈折率層が光導波路となる。This high refractive index layer becomes an optical waveguide.

以上のように本発明は高温処理が容易なためLiTaO
3基板1′にも光導波路形成が可能となる。
As described above, the present invention allows LiTaO to be easily processed at high temperatures.
It is also possible to form an optical waveguide on the third substrate 1'.

なお実施例では200°C以上で熱処理を行ったが、時
間をかければ100’C以上でも光素子の形成は可能で
ある。i!た90°C以上での塗布は作業上難しく90
℃以下で塗布を行うことが望ましい。
Although the heat treatment was performed at 200° C. or higher in the examples, it is possible to form optical elements at 100° C. or higher if time is taken. i! It is difficult to apply at temperatures above 90°C.
It is desirable to apply the coating at temperatures below ℃.

また、+Z板に光素子を形成したが−Z板などでも化学
損傷が無く良質の光素子の形成が可能である。特に、+
Z板又は−Z板を用いると、他のX又はY板等に比べて
、酸による表面の荒れ(化学損傷)が少なく好ましい。
Further, although the optical element was formed on a +Z plate, it is possible to form a high quality optical element on a -Z plate or the like without chemical damage. In particular, +
The use of the Z plate or -Z plate is preferable because the surface is less roughened (chemically damaged) by acid than other X or Y plates.

発明の効果 以上のように、本発明の光素子の形成方法によれば、9
0”C以下で液状である酸を強誘電体基板の表面に塗布
した後、熱処理することで簡単に制御性良く光素子を作
成することができる。また通常の半導体プロセスで用い
る拡散およびアニールなどと同様の熱処理によりプロト
ン交換が行えるので作業性、量産性が大幅に向上する。
Effects of the Invention As described above, according to the method for forming an optical element of the present invention, 9
Optical devices can be easily fabricated with good control by applying a liquid acid at 0"C or less to the surface of a ferroelectric substrate and then heat-treating it. In addition, it is possible to easily create optical devices with good controllability. Since proton exchange can be performed through heat treatment similar to that described above, workability and mass productivity are greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例における光素子の形成方
法の工程図、第2図は同第2の実施例方法を説明するた
めの斜視図、第3図は同第2の実施例方法を説明するだ
めの断面図、第4図は同第3の実施例方法を説明するた
めの断面図、第6図は従来の光素子の形成方法を説明す
るための構成図である。 1・・・・・・LtNbO3基板、2・・・・・・保護
マスク、3・・・・・・+Z面、4・・・・・・スリッ
ト、6・・・・・・ピロ燐酸、8・・・・・・高屈折率
層。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名区 
                8凶       
                      句城 
                憾こ       
   づ
FIG. 1 is a process diagram of the method for forming an optical element in the first embodiment of the present invention, FIG. 2 is a perspective view for explaining the method of the second embodiment, and FIG. 3 is a process diagram for explaining the method of the second embodiment. FIG. 4 is a cross-sectional view for explaining the method of the third embodiment, and FIG. 6 is a configuration diagram for explaining the conventional method for forming an optical element. 1...LtNbO3 substrate, 2...Protective mask, 3...+Z surface, 4...Slit, 6...Pyrophosphoric acid, 8 ...High refractive index layer. Name of agent: Patent attorney Toshio Nakao and 1 other person
8 evil
phrase castle
I regret it
zu

Claims (4)

【特許請求の範囲】[Claims] (1)LiNb_xTa_(_1_−_x_)O_3(
0≦x≦1)基板の表面に融点が90℃以下である液状
の酸を塗布した後、前記LiNb_xTd_(_1_−
_x_)O_3(0≦x≦1)基板を100℃以上の温
度で熱処理する工程を含んでなる光素子の形成方法。
(1) LiNb_xTa_(_1_-_x_)O_3(
0≦x≦1) After coating the surface of the substrate with a liquid acid having a melting point of 90°C or less, the LiNb_xTd_(_1_-
_x_)O_3 (0≦x≦1) A method for forming an optical device, comprising a step of heat-treating a substrate at a temperature of 100° C. or higher.
(2)LiNb_xTa_(_1_−_x_)O_3(
0≦x≦1)基板が+Z板または−Z板である特許請求
の範囲第(1)項記載の光素子の形成方法。
(2) LiNb_xTa_(_1_-_x_)O_3(
0≦x≦1) The method for forming an optical element according to claim (1), wherein the substrate is a +Z plate or a -Z plate.
(3)ピロ燐酸(H_4P_2O_7)を主成分とする
酸を用いた特許請求の範囲第(1)項記載の光素子の形
成方法。
(3) A method for forming an optical element according to claim (1) using an acid whose main component is pyrophosphoric acid (H_4P_2O_7).
(4)LiNb_xTa_(_1_−_x_)O_3(
0≦x≦1)基板の表面にTaによる保護マスクパター
ンが形成されている特許請求の範囲第(1)項記載の光
素子の形成方法。
(4) LiNb_xTa_(_1_-_x_)O_3(
0≦x≦1) The method for forming an optical device according to claim (1), wherein a protective mask pattern made of Ta is formed on the surface of the substrate.
JP61136552A 1986-06-12 1986-06-12 Method of forming optical element Expired - Fee Related JPH0731288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61136552A JPH0731288B2 (en) 1986-06-12 1986-06-12 Method of forming optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61136552A JPH0731288B2 (en) 1986-06-12 1986-06-12 Method of forming optical element

Publications (2)

Publication Number Publication Date
JPS62293208A true JPS62293208A (en) 1987-12-19
JPH0731288B2 JPH0731288B2 (en) 1995-04-10

Family

ID=15177888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61136552A Expired - Fee Related JPH0731288B2 (en) 1986-06-12 1986-06-12 Method of forming optical element

Country Status (1)

Country Link
JP (1) JPH0731288B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS607403A (en) * 1983-06-28 1985-01-16 Canon Inc Forming method of thin film type optical waveguide
JPS60133405A (en) * 1983-12-22 1985-07-16 Canon Inc Formation of pattern
JPS6170541A (en) * 1984-09-14 1986-04-11 Canon Inc Thin film type optical element and its manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS607403A (en) * 1983-06-28 1985-01-16 Canon Inc Forming method of thin film type optical waveguide
JPS60133405A (en) * 1983-12-22 1985-07-16 Canon Inc Formation of pattern
JPS6170541A (en) * 1984-09-14 1986-04-11 Canon Inc Thin film type optical element and its manufacture

Also Published As

Publication number Publication date
JPH0731288B2 (en) 1995-04-10

Similar Documents

Publication Publication Date Title
US6374005B2 (en) Integrated optic device produced by cyclically annealed proton exchange process
JPH04234005A (en) Manufacture of lightguide tube by ion exchange method
KR920005445B1 (en) Optical waveguide
JPS62293208A (en) Formation of optical element
JP3898585B2 (en) Method for manufacturing member with optical waveguide
JPS62293206A (en) Formation of optical element
JPH0313907A (en) Production of substrate type optical waveguide
JPS63303308A (en) Production of light guide
CN115182052B (en) Method for preparing micro-nano device on surface of thin film lithium niobate
JPH06174908A (en) Production of waveguide type diffraction grating
KR930010830B1 (en) Wave guide
JPS63158505A (en) Preparation of tapered optical waveguide
JPS62293203A (en) Manufacture of tapered optical waveguide
JPH05333224A (en) Production of optical waveguide
JPH05142438A (en) Formation of optical element
JPS6175307A (en) Formation of light guide
JPS61275806A (en) Formation of optical element
EP0445930B1 (en) Lithium niobate etchant
JPS62293202A (en) Manufacture of tapered optical waveguide
JPH06281830A (en) Manufacture of optical waveguide substrate
JP2004045536A (en) Member with optical waveguide and its manufacture method
JPS63158506A (en) Production of optical element
JPS6263903A (en) Production of optical waveguide
JPH03161702A (en) Proton exchange method in linbo3
JP2001208926A (en) Method of producing optical waveguide element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees