JPS62293206A - Formation of optical element - Google Patents

Formation of optical element

Info

Publication number
JPS62293206A
JPS62293206A JP61136498A JP13649886A JPS62293206A JP S62293206 A JPS62293206 A JP S62293206A JP 61136498 A JP61136498 A JP 61136498A JP 13649886 A JP13649886 A JP 13649886A JP S62293206 A JPS62293206 A JP S62293206A
Authority
JP
Japan
Prior art keywords
optical
substrate
forming
optical element
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61136498A
Other languages
Japanese (ja)
Other versions
JPH0731287B2 (en
Inventor
Kazuhisa Yamamoto
和久 山本
Tetsuo Taniuchi
哲夫 谷内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61136498A priority Critical patent/JPH0731287B2/en
Publication of JPS62293206A publication Critical patent/JPS62293206A/en
Publication of JPH0731287B2 publication Critical patent/JPH0731287B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/134Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms
    • G02B6/1345Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms using ion exchange

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To easily form an optical element having resistance to optical injuries with good controllability by coating an acid which is liquid at <=90 deg.C after external diffusion onto the surface of a ferroelectric substrate, then subjecting the coating to a heat treatment. CONSTITUTION:An LiNbO3 substrate 1 is heat-treated in oxygen kept at 1000 deg.C to form an external diffusion layer 2 on a +Z surface 3. A protective mask 4 consisting of Ta is provided and pyrophosphoric acid 6 is coated thereon and is heat-treated in an oven 7 heated to 20 deg.C. The protective mask 4 consisting of Ta is removed by a soln. of sodium hydroxide after cooling, then a high-refractive index layer 9 is formed by a proton exchange right under a slit 5. The threshold value of the optical injuries is improved by >=1 digit if the external diffusion layer 2 is formed in the above-mentioned manner. The element is extremely effective as an optical waveguide for short waves.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はコヒーレント光を使用する光情報処理分野ある
いは光通信、光応用計測制御分野に使用される光導波路
およびマイクロレンズなどに用いる光素子形成方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for forming optical elements used in optical waveguides and microlenses used in the field of optical information processing using coherent light, optical communications, and optical applied measurement and control fields. It is something.

従来の技術 従来、強誘電体であるL I NbO3基板を160″
C〜250°C程度の安息香酸溶液中で熱処理を行いL
 I NbO5基板のLi と安息香酸中のHを交換さ
せ高屈折率層(最大屈折率差Δn = 0.13程度・
)を形成し光導波路としていた。「ジェー・エル・シャ
ツケル、シー・イー・ライス及びジェー・ジェー・ベセ
ルカ1プロトン イクスチェンジ フォーハイ−インデ
ックス ウニイブガイド力インL I NbO3”  
アブライドフィジクス レター、41巻、7号607−
608頁(1982)(T 、L、Jackel、 C
,E 、Rice and J、J、Veselka。
Conventional technology Conventionally, a ferroelectric L I NbO3 substrate was
Heat treatment is performed in a benzoic acid solution at a temperature of about
By exchanging Li in the I NbO5 substrate and H in benzoic acid, a high refractive index layer (maximum refractive index difference Δn = about 0.13
) was used as an optical waveguide. “J.L. Shatkel, C.E. Rice and J.J. Veselka 1 Proton Exchange For High-Index Unibu Guide Power In LI NbO3”
Abride Physics Letters, Volume 41, No. 7 607-
608 pages (1982) (T.L., Jackel, C.
, E., Rice and J., Veselka.

”Proton exchange for high
−index waveguidesin LiNbO
3,” Appl 、Phys 、Let t 、Vo
141 、 A 7 。
”Proton exchange for high
-index wave guides in LiNbO
3,” Appl, Phys, Let t, Vo
141, A7.

P P2O3−608(1982) ) J@照。P2O3-608 (1982)) J@Teru.

以下光素子として光導波路を例にとりその形成方法につ
いて説明する。第2図に従来の溶液中でのプロトン交換
方法を用いた光導波路形成法の具体的構成図を示す。1
は強誘電体基板であるL i NbO3基板、4′はA
℃による保護マスク、6はフォトプロセスおよびエツチ
ングにより保護マスク4′上に形成されたスリットであ
る。上記保護マスク4′スリツト6が形成されたL 1
Nbo3基板1を安息香酸の溶液6′中に浸す。溶液6
′はヒータ7′により加熱されたビニ力10を介して一
定温度200°Cに保たれている。この溶液6′中でL
 zNbO3基板1を60分熱処理を行った後、メタノ
ールにより洗浄を行う。こうして安息香酸溶液6′中の
HとL x NbO5基板1中のLiが交換し高屈折率
層9が形成される。この高屈折率層9が厚み0.6μm
程度の光導波路となる。
Hereinafter, a method for forming an optical waveguide will be described as an example of an optical element. FIG. 2 shows a specific configuration diagram of a method for forming an optical waveguide using a conventional proton exchange method in a solution. 1
is a ferroelectric substrate L i NbO3 substrate, 4' is A
℃ protection mask, 6 is a slit formed on the protection mask 4' by photo process and etching. L1 where the protective mask 4' slit 6 is formed
The Nbo3 substrate 1 is immersed in a solution 6' of benzoic acid. Solution 6
' is maintained at a constant temperature of 200°C via a vinyl power 10 heated by a heater 7'. In this solution 6', L
After heat-treating the zNbO3 substrate 1 for 60 minutes, it is cleaned with methanol. In this way, H in the benzoic acid solution 6' and Li in the L x NbO5 substrate 1 are exchanged to form a high refractive index layer 9. This high refractive index layer 9 has a thickness of 0.6 μm.
It becomes an optical waveguide of about

発明が解決しようとする問題点 このような溶液中での光素子の形成方法は以下に示すよ
うな問題点を有していた。
Problems to be Solved by the Invention This method of forming an optical element in a solution has the following problems.

(1)  O,aμm以下の短波長領域において光損傷
を生じる。
(1) Optical damage occurs in the short wavelength region of O, a μm or less.

(2)安息香酸をビーカ中に入れ攪拌されるため溶液中
に不純物が溶は込みLiNbO3中に入り光損傷がさら
に助長される。
(2) Since benzoic acid is placed in a beaker and stirred, impurities dissolve into the solution and enter LiNbO3, further promoting optical damage.

問題点を解決するだめの手段 本発明は上記問題点を解消するもので、光素子の形成方
法に新たな工夫を加えることにより光損傷を大幅に低減
させたものである。すなわち本発明の光素子の形成方法
は、L I NbXT a(1−x )O3(0≦x≦
1)基板を500°C以上の温度で外拡散を行う工程と
、前記基板の表面に融点が90°C以下である液状の酸
を塗布した後、前記基板を100°C以上の温度で熱処
理する工程とを施すものである。
Means for Solving the Problems The present invention solves the above-mentioned problems and significantly reduces optical damage by adding new ideas to the method of forming optical elements. That is, the method for forming an optical element of the present invention is as follows: L I NbXT a (1-x ) O3 (0≦x≦
1) A process of externally diffusing the substrate at a temperature of 500°C or higher, and after applying a liquid acid with a melting point of 90°C or lower to the surface of the substrate, heat treating the substrate at a temperature of 100°C or higher. The process of

作  用 本発明は上記手段により溶液中への不純物の溶は込みを
防止するという効果とともに、外拡散によりさらに光損
傷に強い光素子の形成を可能とする。
Function The present invention not only has the effect of preventing impurities from dissolving into the solution by the above-mentioned means, but also makes it possible to form an optical element that is more resistant to optical damage due to external diffusion.

実施例 本発明の光素子の形成方法の第1の実施例を第1図に示
す。この第1の実施例では光素子の形成方法としてL 
I NbC)a基板上にピロ燐酸(H4P2O7)を塗
布し光導波路を形成する方決について説明する。第1図
(、)で1は+2板(+Z軸に垂直に切り出された基板
)であるLiNbO3基板、ZはLiNb03L I 
NkyC)3基板1を熱処理を行った結果、表面のL 
120が外拡散されて形成されたもので厚み70μm程
度となっている。また4はTaによる保護マスク、6は
フォトプロセスおよびリフトオフにより保護マスク4に
形成されたスリットである。同図<b)において純度9
5%のピロ燐酸6をスピンナーを用いて塗布を行った。
Embodiment A first embodiment of the method for forming an optical device according to the present invention is shown in FIG. In this first embodiment, the method for forming the optical element is L.
A method of forming an optical waveguide by coating pyrophosphoric acid (H4P2O7) on an I NbC)a substrate will be explained. In Figure 1 (,), 1 is a LiNbO3 substrate which is a +2 plate (a substrate cut perpendicular to the +Z axis), and Z is a LiNb03L I
As a result of heat treatment of NkyC) 3 substrate 1, the surface L
120 is diffused out and has a thickness of about 70 μm. Further, 4 is a protective mask made of Ta, and 6 is a slit formed in the protective mask 4 by photo process and lift-off. Purity 9 in the same figure <b)
5% pyrophosphoric acid 6 was applied using a spinner.

具体的には回転数300 rpmで20秒スピンコード
を行った。
Specifically, a spin code was performed for 20 seconds at a rotation speed of 300 rpm.

次に同図(C)のように200°Cに加熱されたオーブ
ン7中で60分間熱処理を行った。8は温度の均一化を
図るためのA2プレートである。最後にAl1.プレー
ト8ごとオープン7より取り出し冷却6・\−7゛ を行った後、水酸化ナトリウム系の溶液でTaによる保
護マスク4を除去したのが同図(d)である。
Next, heat treatment was performed for 60 minutes in an oven 7 heated to 200° C., as shown in FIG. 3(C). 8 is an A2 plate for making the temperature uniform. Finally, Al1. The plate 8 was taken out from the open 7 and cooled 6.\-7', and then the protective mask 4 made of Ta was removed using a sodium hydroxide solution, as shown in FIG. 4(d).

スリット6の直下にプロトン交換により高屈折率層9が
形成された。この高屈折率層9の厚みは0.6μmであ
り波長1.3μm以下の光が導波可能な光導波路となる
。He−Neレーザ光(波長0.633μm)を導波さ
せたところ10mWでも光損傷が生じなかった。このよ
うに外拡散層2を形成することにより光損傷のしきい値
が1桁以上アップし短波用光導波路として非常に有効で
あることがわかる。またピロ燐酸処理により形成した高
屈折率層9のLiNbO3基板1との最大屈折率差は0
.145 と安息香酸の溶液処理に比べ10%以上高く
洸φ閉bMの大きな光導波路の形成が可能となる。また
ピロ燐酸6は安息香酸などに比べ極端に蒸発量が少いこ
とおよび一度の光素子作製に使用する量が1co以下と
非常に少いことなどのため安全面および溶液の交換など
の保守の面を考えた場合、作業性が飛躍的に向上する。
A high refractive index layer 9 was formed directly under the slit 6 by proton exchange. This high refractive index layer 9 has a thickness of 0.6 μm and serves as an optical waveguide capable of guiding light with a wavelength of 1.3 μm or less. When a He-Ne laser beam (wavelength: 0.633 μm) was guided, no optical damage occurred even at 10 mW. It can be seen that by forming the outer diffusion layer 2 in this way, the optical damage threshold increases by more than one order of magnitude, making it very effective as a short wave optical waveguide. Furthermore, the maximum refractive index difference between the high refractive index layer 9 formed by pyrophosphoric acid treatment and the LiNbO3 substrate 1 is 0.
.. 145 and benzoic acid solution treatment, it is possible to form an optical waveguide with a large radius φ closed bM, which is 10% higher than that of solution treatment using 145 and benzoic acid. In addition, pyrophosphoric acid 6 has an extremely small amount of evaporation compared to benzoic acid, etc., and the amount used for one photonic device fabrication is very small, less than 1 co, so it requires safety and maintenance such as solution replacement. When considering this aspect, work efficiency is dramatically improved.

またTaはピロ燐酸などの燐酸系でエツチングされない
上パターン形成も簡単に行え保護マスクとして有効であ
ると思われる。
Further, Ta can be easily formed into an upper pattern that is not etched using a phosphoric acid such as pyrophosphoric acid, and is considered to be effective as a protective mask.

なお実施例では200°Cで熱処理を行ったが100°
C〜300”C程度の温度範囲で熱処理が可能である。
In addition, in the example, heat treatment was performed at 200°C, but at 100°C.
Heat treatment is possible in a temperature range of approximately 300"C to 300"C.

また90″C以上での塗布は基板の割れなどを生じ易い
。また+Z板を用いて光素子の形成を行ったが−Z板な
どでも、他のX、Y板等に比べ化学損傷が無く良質の光
素子の形成が可能である。また外拡散は500″C以」
二の温度で行うのが量産性、制御性の点で良い。
Also, coating at temperatures above 90"C tends to cause cracks in the substrate.Also, +Z plates were used to form optical elements, but even -Z plates do not cause chemical damage compared to other X and Y plates. It is possible to form high-quality optical elements. Also, the external diffusion temperature is 500"C or higher."
It is better to carry out the process at the second temperature in terms of mass production and controllability.

発明の効果 以」二のように本発明の光素子の形成方法によれば、外
拡散後90″C以下で液状である酸を強誘電体基板の表
面に塗布し熱処理することにより簡単に制御性良く光損
傷に強い光素子の形成が可能となる。さらに熱処理にお
ける不純物混入を防ぐことも可能となる。
Effects of the Invention According to the method for forming an optical device of the present invention, as described in Section 2, the process can be easily controlled by coating the surface of the ferroelectric substrate with an acid that is liquid at 90"C or less after external diffusion and heat-treating it. It becomes possible to form an optical element with good properties and resistance to optical damage.Furthermore, it becomes possible to prevent impurities from being mixed in during heat treatment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における光素子の形成方法の
工程断面図、第2図は従来の光素子の形成方法を説明す
る構成図である。 1・・・・・・LiNbO3基板、2・・・・・外拡散
層、4・・・・・・保護マスク、6・・・・・・ピロ燐
酸、9・・・・・・高屈折率層。
FIG. 1 is a process cross-sectional view of a method for forming an optical element according to an embodiment of the present invention, and FIG. 2 is a block diagram illustrating a conventional method for forming an optical element. 1...LiNbO3 substrate, 2...Outer diffusion layer, 4...Protective mask, 6...Pyrophosphoric acid, 9...High refractive index layer.

Claims (4)

【特許請求の範囲】[Claims] (1)LiNb_xTa_(_1_−_x_)O_3(
0≦x≦1)基板を500℃以上の温度で外拡散を行う
工程と、前記 LiNb_xTa_(_1_−_x_)O_3(0≦x
≦1)基板の表面に融点が90℃以下である液状の酸を
塗布した後、前記LiNb_xTa_(_1_−_x_
)O_3(0≦x≦1)基板を100℃以上の温度で熱
処理する工程を含んでなる光素子の形成方法。
(1) LiNb_xTa_(_1_-_x_)O_3(
0≦x≦1) a step of externally diffusing the substrate at a temperature of 500° C. or higher;
≦1) After coating the surface of the substrate with a liquid acid having a melting point of 90°C or less, the LiNb_xTa_(_1_−_x_
) O_3 (0≦x≦1) A method for forming an optical device, comprising a step of heat-treating a substrate at a temperature of 100° C. or higher.
(2)LiNb_xTa_(_1_−_x_)O_3(
0≦x≦1)基板が+Z板または−Z板である特許請求
の範囲第(1)項記載の光素子の形成方法。
(2) LiNb_xTa_(_1_-_x_)O_3(
0≦x≦1) The method for forming an optical element according to claim (1), wherein the substrate is a +Z plate or a -Z plate.
(3)ピロ燐酸(H_4P_2O_7)を主成分とする
酸を用いたことを特徴とする特許請求の範囲第(1)項
記載の光素子の形成方法。
(3) A method for forming an optical element according to claim (1), characterized in that an acid whose main component is pyrophosphoric acid (H_4P_2O_7) is used.
(4)LiNb_xTa_(_1_−_x_)O_3(
0≦x≦1)基板の表面にTaによる保護マスクパター
ンが形成されている特許請求の範囲第(1)項記載の光
素子の形成方法。
(4) LiNb_xTa_(_1_-_x_)O_3(
0≦x≦1) The method for forming an optical device according to claim (1), wherein a protective mask pattern made of Ta is formed on the surface of the substrate.
JP61136498A 1986-06-12 1986-06-12 Method of forming optical element Expired - Fee Related JPH0731287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61136498A JPH0731287B2 (en) 1986-06-12 1986-06-12 Method of forming optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61136498A JPH0731287B2 (en) 1986-06-12 1986-06-12 Method of forming optical element

Publications (2)

Publication Number Publication Date
JPS62293206A true JPS62293206A (en) 1987-12-19
JPH0731287B2 JPH0731287B2 (en) 1995-04-10

Family

ID=15176571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61136498A Expired - Fee Related JPH0731287B2 (en) 1986-06-12 1986-06-12 Method of forming optical element

Country Status (1)

Country Link
JP (1) JPH0731287B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0635735A1 (en) * 1993-07-21 1995-01-25 Litton Systems, Inc. Electro-optic waveguides and phase modulators and methods for making them
CN104852271A (en) * 2015-05-29 2015-08-19 南京信息工程大学 Preparation method of waveguide laser

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3750129B2 (en) * 1998-03-18 2006-03-01 株式会社アテックス Electric vehicle control device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS607403A (en) * 1983-06-28 1985-01-16 Canon Inc Forming method of thin film type optical waveguide
JPS60133405A (en) * 1983-12-22 1985-07-16 Canon Inc Formation of pattern
JPS6170541A (en) * 1984-09-14 1986-04-11 Canon Inc Thin film type optical element and its manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS607403A (en) * 1983-06-28 1985-01-16 Canon Inc Forming method of thin film type optical waveguide
JPS60133405A (en) * 1983-12-22 1985-07-16 Canon Inc Formation of pattern
JPS6170541A (en) * 1984-09-14 1986-04-11 Canon Inc Thin film type optical element and its manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0635735A1 (en) * 1993-07-21 1995-01-25 Litton Systems, Inc. Electro-optic waveguides and phase modulators and methods for making them
CN104852271A (en) * 2015-05-29 2015-08-19 南京信息工程大学 Preparation method of waveguide laser

Also Published As

Publication number Publication date
JPH0731287B2 (en) 1995-04-10

Similar Documents

Publication Publication Date Title
US4705346A (en) Thin film type optical device
JP2750231B2 (en) Method of manufacturing waveguide type second harmonic generation element
US4799750A (en) Optical function element and a method for manufacturing the same
CN112965166A (en) Z-cut lithium niobate tapered waveguide and preparation method thereof
US7170671B2 (en) High efficiency wavelength converters
JPS62293206A (en) Formation of optical element
US5218661A (en) Device for doubling the frequency of a light wave
JP3898585B2 (en) Method for manufacturing member with optical waveguide
JP3863277B2 (en) Processing method of ferroelectric crystal substrate
JPS62293208A (en) Formation of optical element
JPH05107421A (en) Method of forming partial polarization inverting layer and manufacture of second harmonic wave generating element
JPH04335329A (en) Production of second harmonic generating element having dielectric polarization inversion grating
KR0178474B1 (en) Process of manufacturing upheaval type lithium niobate optical waveguide
JPH05333224A (en) Production of optical waveguide
JP2948042B2 (en) How to use the second harmonic generation element
JP2590807B2 (en) Manufacturing method of optical waveguide
JPH05142438A (en) Formation of optical element
JPS6175307A (en) Formation of light guide
JP3165756B2 (en) Second harmonic generation element and method of manufacturing the same
Jackel Buried proton-exchanged lithium niobate waveguides
JP3006217B2 (en) Optical wavelength conversion element and method of manufacturing the same
Hou et al. Proton-exchanged optical waveguides in Y-cut MgO: LiNbO3
JPH05289129A (en) Lithium niobate single crystal substrate having partial polarization inversion structure and its production
Onoe et al. Fabrication of periodic domain-inversion in x-cut LiTaO3 by heat treatment technique in an electric field
EP0922793A2 (en) A method of processing a substrate made of a ferroelectric crystalline material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees