JPS62291123A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS62291123A
JPS62291123A JP61133860A JP13386086A JPS62291123A JP S62291123 A JPS62291123 A JP S62291123A JP 61133860 A JP61133860 A JP 61133860A JP 13386086 A JP13386086 A JP 13386086A JP S62291123 A JPS62291123 A JP S62291123A
Authority
JP
Japan
Prior art keywords
copper
semiconductor device
lead wire
wire
moisture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61133860A
Other languages
Japanese (ja)
Other versions
JPH0478173B2 (en
Inventor
Shiro Kobayashi
史朗 小林
Masahiko Ito
雅彦 伊藤
Shigetoshi Kazama
風間 成年
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61133860A priority Critical patent/JPS62291123A/en
Publication of JPS62291123A publication Critical patent/JPS62291123A/en
Publication of JPH0478173B2 publication Critical patent/JPH0478173B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45565Single coating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/45686Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/45686Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2224/45687Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

PURPOSE:To provide excellent moisture and corrosion resistance reliability of a semiconductor device by providing an oxide film which mainly consists of Cu2O on the surface of copper lead wirings. CONSTITUTION:An oxide film which mainly consists of Cu2O with high bondability with both resin and base copper is formed on the surface of lead wirings made of copper wires. The Cu2O has insolubility in water, and is changed to CuO or Cu(OH)2 even when reacted with the water. Thus, it is hard to dissolve in water. Further, the Cu2O has a dense structure, high bondability to a base copper, and high protective property for corrosion. Thus, since the bondability of the lead wirings with sealing resin is enhanced to prevent moisture from invading from an exterior into a semiconductor device, the moisture resistance reliability can be remarkably improved.

Description

【発明の詳細な説明】 &発明の詳細な説明 〔産業上の利用分野〕 本発明は、銅線をリードワイヤとして用いる樹脂封止型
半導体装置に係り、特に耐湿性、耐食性に優れた半導体
装置及びその製造方法に関する。
[Detailed Description of the Invention] &Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a resin-encapsulated semiconductor device using copper wire as a lead wire, and in particular a semiconductor device with excellent moisture resistance and corrosion resistance. and its manufacturing method.

〔従来の技術〕[Conventional technology]

従来、半導体装置の製造においては、半導体ベレット上
に形成した電極パッドと、リードフレームとを電気的に
接続するリードワイヤの材料として、金線、アルミニウ
ム線あるいは銅線が使用されている。銅線は、上記3種
類の材料の中で、最も電気抵抗が小さく、細線化による
高密度、高集積化が図れる上、低価格であるなどの利点
を有している。そこで、近年、半導体装置の高密度、高
集積化と製造コストの低減の要求を満たすため、銅線を
リードワイヤとして用いた半導体装置が製造されるよう
になってきている。また、従来リードワイヤとして主に
金線しか用いられていなかった樹脂封止型半導体装置に
おいても、銅線がリードワイヤとして用いられるように
なってきている。
Conventionally, in the manufacture of semiconductor devices, gold wire, aluminum wire, or copper wire has been used as a material for lead wires that electrically connect electrode pads formed on semiconductor pellets and lead frames. Copper wire has the advantages of having the lowest electrical resistance among the three types of materials mentioned above, allowing for high density and high integration by thinning the wire, and being inexpensive. Therefore, in recent years, semiconductor devices using copper wires as lead wires have been manufactured in order to meet the demands for higher density, higher integration, and lower manufacturing costs of semiconductor devices. Furthermore, copper wires are now being used as lead wires even in resin-sealed semiconductor devices, where conventionally only gold wires have been mainly used as lead wires.

しかし、樹脂封止型半導体装i1は樹脂パッケージとリ
ードとの界面を通じて外部から内部に水分が浸入し易い
という欠点がある。パッケージ内部に浸入した水分は、
リードワイヤとして銅線を用いている場合には、これを
腐食させ、更にリードワイヤとボンディングされている
ペレット上のアルミニウム電極パッドや配線膜の腐食を
引起こし、断線不良が発生する可能性があった。特に、
銅線が腐食した場合には、溶解したCu叶イオンがアル
ミニウム電極や配線上に電析し、それが再溶解と再析出
を繰返しながら、電極や配線が自己触媒的に著しく浸食
されていくおそれがある。
However, the resin-sealed semiconductor device i1 has a drawback in that moisture easily infiltrates from the outside into the inside through the interface between the resin package and the leads. Moisture that has entered the inside of the package will
If a copper wire is used as the lead wire, it may corrode the copper wire and cause corrosion of the aluminum electrode pad or wiring film on the pellet that is bonded to the lead wire, which may lead to disconnection. Ta. especially,
When copper wires corrode, dissolved Cu ions are deposited on aluminum electrodes and wiring, and as they repeatedly re-dissolve and redeposit, there is a risk that the electrodes and wiring will be significantly eroded in an autocatalytic manner. There is.

従来、リードワイヤとパッケージとの界面への水分の浸
入を抑える方法として、特開昭58−103146号公
報に示されるように、リードワイヤ表面にシリコーン油
等、樹脂と金属との双方にぬれ性が良い疎水性油脂膜f
:塗布する方法がある。また、特開昭58−15566
0号公報に示されるように、リードワイヤ表面に水との
反応性の高いアルミニウム薄膜を形成させる方法がある
Conventionally, as a method of suppressing moisture intrusion into the interface between the lead wire and the package, as shown in Japanese Patent Laid-Open No. 58-103146, silicone oil or the like is applied to the surface of the lead wire, which is wettable to both resin and metal. A good hydrophobic oil film f
: There is a method to apply it. Also, JP-A-58-15566
As shown in Japanese Patent No. 0, there is a method of forming an aluminum thin film that is highly reactive with water on the surface of a lead wire.

これらの方法では、水分浸入に対する防止膜の性能が完
全に発揮されれば、パッケージ内部への水分の浸入速度
を遅くする効果がある。
These methods have the effect of slowing down the rate of moisture infiltration into the package if the performance of the moisture infiltration prevention film is fully demonstrated.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、リードワイヤ表面に防止膜を形成後、樹
脂モールド時等の加熱時に、油脂膜の蒸発や分解、アル
ミニウム薄膜の酸化等による防止膜の劣化の可能性につ
いては考慮されていなかった0 本発明の目的は、上記問題点を解決し、耐湿及び耐食信
頼性の優れた樹脂封止型半導体装置及びその製造方法を
提供することにある。
However, after the preventive film is formed on the surface of the lead wire, the possibility of deterioration of the preventive film due to evaporation or decomposition of the oil film, oxidation of the aluminum thin film, etc. during heating during resin molding was not considered. An object of the present invention is to solve the above-mentioned problems and provide a resin-sealed semiconductor device with excellent moisture resistance and corrosion resistance reliability, and a method for manufacturing the same.

〔問題点を解決するための手段〕[Means for solving problems]

本発明を概説すれば、本発明の第1の発明は、半導体装
置に関する発明であって、銅線をリードワイヤとして用
いる半導体装置において、該銅リードワイヤが、その表
面に、Cu2Oを主成分とする酸化物膜を有することt
−特徴とする。
To summarize the present invention, a first invention of the present invention relates to a semiconductor device, and in a semiconductor device using a copper wire as a lead wire, the copper lead wire has a surface containing Cu2O as a main component. having an oxide film that
-Characteristics.

そして、本発明の第2の発明は、半導体装置の製造方法
に関する発明であって、第1の発明の半導体装置を製造
する方法において、銅線ヲリードワイヤとして電極パッ
ドにボンディングさせた後、酸化処理することにより、
該銅リードワイヤの表面に、Cu意0tl−主成分とす
る酸化物膜を形成させる工程を包含することを特徴とす
る。
A second invention of the present invention relates to a method for manufacturing a semiconductor device, and in the method for manufacturing a semiconductor device according to the first invention, the copper wire is bonded to an electrode pad as a lead wire, and then oxidized. By this,
The method is characterized in that it includes a step of forming an oxide film mainly composed of Cu on the surface of the copper lead wire.

本発明者らは、リードワイヤとレジンパッケージとの界
面から浸入してくる水分、樹脂及びリードワイヤ材、特
に銅線との物理的及び化学的な相互作用について研究す
ることにより、本発明に至った。
The present inventors arrived at the present invention by researching the physical and chemical interactions between moisture that enters from the interface between the lead wire and the resin package, resin, and lead wire materials, especially copper wire. Ta.

すなわち、本発明は銅線からなるリードワイヤの表面に
樹脂及び下地の金属銅との双方に密着性が高い主成分が
Cu2Oからなる酸化物膜全形成させ、水分の浸入と下
地の金属銅の腐食全抑制することにより、樹脂封止型半
導体の耐湿性及び耐食性を改善させたものである。
That is, in the present invention, an oxide film whose main component is Cu2O, which has high adhesion to both the resin and the underlying metal copper, is completely formed on the surface of the lead wire made of copper wire, thereby preventing the infiltration of moisture and the underlying metal copper. By completely inhibiting corrosion, the moisture resistance and corrosion resistance of resin-sealed semiconductors are improved.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

樹脂パッケージ内部に没入してくる水分は、浸入の過程
で、外部及び樹脂から、Ct−、Br−、Na”、NH
4”、sbs+などのイオンが溶解する結果、比較的電
導度の高い水となる。また、浸入水のpHは5〜4と酸
性であり、上記の腐食性イオンの存在により、腐食性の
強い水となル、それが銅リードワイヤ上、アルミニウム
電極や配線面に到達して、そこに液膜を形成する。
During the process of infiltration, water that enters the inside of the resin package collects Ct-, Br-, Na'', and NH from the outside and the resin.
As a result of the dissolution of ions such as 4'' and sbs+, water becomes relatively conductive.Also, the pH of the infiltrating water is acidic at 5 to 4, and the presence of the above corrosive ions makes it highly corrosive. The water reaches the copper lead wire, aluminum electrode, and wiring surface, forming a liquid film there.

銅は両性金属であるために、液膜のpHが酸性、アルカ
リ性のいずれにおいても溶解する。ここで上記し次様に
、銅リードワイヤの表面に形成される浸入水の液膜は酸
性であるため、銅は腐食しCu”イオンとして溶解する
。一方、銅表面には腐食に伴って、CuOあるいはCu
(OH)、からなる腐食生成物が沈殿、析出してくる。
Since copper is an amphoteric metal, it dissolves whether the pH of the liquid film is acidic or alkaline. As described above, since the liquid film of infiltrated water that forms on the surface of the copper lead wire is acidic, the copper corrodes and dissolves as Cu'' ions.On the other hand, as the copper surface corrodes, CuO or Cu
Corrosion products consisting of (OH) precipitate and precipitate.

この腐食生成物は、下地の銅の腐食全ある程度抑制する
作用がある。
This corrosion product has the effect of suppressing the corrosion of the underlying copper to some extent.

しかし、このような水溶液系で生成する腐食生成皮膜は
、結晶性が低く、かつ構造が粗雑でその保護性は乏しい
。また液膜中に含まれているCt−1Br−などのハロ
ゲンイオンやNH4+イオンは、皮膜の成分であるCu
OやCu(OH)1と反応して可溶性の錯イオンを形成
し、この腐食生成皮膜を破壊する作用があり、腐食を更
に進行させる。
However, the corrosion film produced in such an aqueous solution system has low crystallinity and a rough structure, and its protective properties are poor. In addition, halogen ions such as Ct-1Br- and NH4+ ions contained in the liquid film are removed from Cu, which is a component of the film.
It reacts with O and Cu(OH)1 to form soluble complex ions, which has the effect of destroying this corrosion-generated film and further progressing corrosion.

リードワイヤよシも更に内部、すなわちアルミニウム電
極や配線面に浸入した水分は、アルミニウムを銅と同様
に腐食させていく。特に、液膜中に銅リードワイヤから
腐食により溶解したCu計イオンが存在する場合には、
これがアルミニウム電極や配線面上に、Cuとして還元
析出する。更に、この析出したCuは下地のアルミニウ
ムより電子を奪い再び溶解するが、その際電子を奪われ
たアルミニウムはAzj+に酸化され腐食する。そして
、このCu”のアルミニウム上への再析出と再溶解は繰
返し起るので、アルミニウムはcu′の触媒作用によっ
て著しく腐食が進行する結果となる。
Moisture that has entered the inside of the lead wire, ie, the aluminum electrode and wiring surface, corrodes aluminum in the same way as copper. In particular, if Cu ions dissolved from the copper lead wire due to corrosion are present in the liquid film,
This is reduced and precipitated as Cu on the aluminum electrode and wiring surface. Furthermore, this precipitated Cu takes electrons from the underlying aluminum and melts again, but at this time, the aluminum from which electrons are taken is oxidized to Azj+ and corrodes. Since this reprecipitation and redissolution of Cu'' on aluminum occur repeatedly, corrosion of aluminum progresses significantly due to the catalytic action of Cu'.

銅リードワイヤ及びアルミニウム電極や配線の腐食全抑
制するには、樹脂パッケージ内部、特にリードワイヤと
パッケージとの界面への水分の浸入を妨けるか、あるい
は、たとえ水分が浸入しても下地の金属銅が腐食されな
いようにリードワイヤの表面を1保護性の高い皮膜で被
榎しておくという2通りの方法が考えられる。
In order to completely suppress corrosion of copper lead wires and aluminum electrodes and wiring, it is necessary to prevent moisture from entering inside the resin package, especially at the interface between the lead wire and the package, or even if moisture does enter, it is necessary to prevent moisture from entering the underlying metal. Two methods can be considered: coating the surface of the lead wire with a highly protective film to prevent copper from corroding.

水分の浸入を抑える方法としては、リードワイヤと樹脂
パッケージとの密着性を上は物理的に浸入を防止するか
、あるいは浸入経路上に水分の捕そく剤あるいは疎水性
物質を形成させておく化学的な方法の2通シの方法が考
えられる。リードワイヤは平滑な表面を有する金属線で
あり、樹脂パッケージとの密着性は良くない。そこで、
樹脂封止する前に、リードワイヤの表面粗さを高め、樹
脂との接着面積を増加させ、かつ表面に水分及び腐食に
対し保護性の高い物質を形成させるような処理を施こす
ことにより、水分の浸入と腐食全抑制するという処理法
について検討した。
Methods to suppress moisture infiltration include physically preventing infiltration by increasing the adhesion between the lead wire and the resin package, or chemically forming a moisture scavenger or hydrophobic substance on the ingress route. There are two possible methods. The lead wire is a metal wire with a smooth surface, and its adhesion to the resin package is poor. Therefore,
Before resin sealing, the lead wire is treated to increase its surface roughness, increase the bonding area with the resin, and form a substance on the surface that is highly protective against moisture and corrosion. We investigated a treatment method that completely suppresses moisture intrusion and corrosion.

リードワイヤの表面粗さを高める方法としては、ワイヤ
の表面全機械的あるいは化学的にエツチングする方法、
表面にワイヤとの密着性に優れかつ表面粗度の高い性質
′!il−有する物質を形成させる方法の2通りの方法
が考えられる。しかし、エツチングによる方法は、リー
ドワイヤが極めて細く短かいために機械的エツチングは
非常に難しい。1次、リードワイヤのみ全選択的に化学
エツチングするのも極めて困難である。したがって、ワ
イヤ表面に密着性が高くかつ表面粗さの高い物質を形成
させる方法の方が、有利である。上記の性質を有する物
質としては、下地の金属銅を酸化することにより得られ
る酸化物が好ましい。
Methods of increasing the surface roughness of the lead wire include etching the entire surface of the wire mechanically or chemically;
The surface has excellent adhesion to the wire and has a high surface roughness! There are two possible ways to form a material having il-. However, in the etching method, mechanical etching is extremely difficult because the lead wire is extremely thin and short. It is also extremely difficult to selectively chemically etch only the primary lead wire. Therefore, a method of forming a substance with high adhesion and high surface roughness on the wire surface is more advantageous. As the substance having the above-mentioned properties, an oxide obtained by oxidizing the underlying metal copper is preferable.

銅ヲ酸化すると、Cu2O1CuO、Cu2OとCuO
との混合敵化物の3種類の内、いずれかが生成する。
When copper is oxidized, Cu2O1CuO, Cu2O and CuO
One of three types of mixed enemy monsters will be generated.

このうち、CuzOは結晶性が尚く、構造もち密で、下
地の金属銅との密着性が高い。他の酸化物は、いずれも
針状結晶や多孔性結晶が成長し易く、ち密性や密着性に
乏しい。したがって、銅リードワイヤの表面に形成させ
る酸化物としてはCul Oが好ましい。
Among these, CuzO has good crystallinity, a dense structure, and high adhesion to the underlying metallic copper. All other oxides tend to grow needle-like crystals or porous crystals, and are poor in compactness and adhesion. Therefore, Cul 2 O is preferable as the oxide formed on the surface of the copper lead wire.

Cu2Oは、大きな結晶に成長し易く、その表面積は下
地の平滑な金属鋼のそれに比べて数倍から数10倍に達
する。このことは、リードワイヤの表面粗さを高め、樹
脂との接着面積を増加させる結果となり、水分の浸入を
防ぐ上で極めて都合がよい。また、Cu2Oはち密な構
造を有し、かつ下地の金属鋼との密着性に優れている点
でも、水分の浸入を物理的に阻止する物質として有利で
ある。
Cu2O easily grows into large crystals, and its surface area is several to several tens of times larger than that of the underlying smooth metal steel. This results in an increase in the surface roughness of the lead wire and an increase in the adhesive area with the resin, which is extremely convenient for preventing moisture intrusion. Furthermore, Cu2O has a dense structure and excellent adhesion to the underlying metal steel, making it advantageous as a substance that physically prevents moisture from entering.

一方、化学的性質については、CuzOは浸入してくる
水分と反応してCuOあるいij Cu(OH)zに変
化するので、水分の捕そく作用も有している。また、反
応により生成したCuOあるいはCu(OH)1は、腐
食に対する保護作用も有している。したがって、表面に
Cu鵞Ot’影形成せたリードワイヤ全樹脂封止すると
、Cu2Oが安定的に水分の浸入阻止物として働く作用
を有し、有利である。
On the other hand, in terms of chemical properties, CuzO reacts with infiltrating moisture and changes into CuO or ij Cu(OH)z, so it also has a moisture trapping effect. Further, CuO or Cu(OH)1 produced by the reaction also has a protective effect against corrosion. Therefore, it is advantageous to encapsulate the entire lead wire with a CuOt' shadow formed on the surface, since Cu2O has the effect of stably acting as a moisture infiltration barrier.

Cu2Oはそれ自体水に難溶性で、また水と反応しても
CuO+cu(oH)、に変化するので水には溶解しに
くい。その上、CuzOは構造がち密で、かつ下地の銅
との密着性が高く、腐食に対し極めて高い保護性金有し
ている。したがって、表面にCu20全形成させた銅リ
ードワイヤに、たとえ水と接触しても、腐食しにくい。
Cu2O itself is poorly soluble in water, and even if it reacts with water, it changes to CuO+cu(oH), so it is difficult to dissolve in water. Moreover, CuzO has a dense structure, has high adhesion to the underlying copper, and has extremely high corrosion protection. Therefore, even if the copper lead wire with Cu20 formed entirely on its surface comes into contact with water, it is unlikely to corrode.

またアルミニウム電極や配線の腐食を促進するCu計イ
オンの銅リードワイヤからの溶解速度も極めて小さくな
る等、腐食の面でもCJ Oの形成は効果がある。
The formation of CJO is also effective in terms of corrosion, such as by extremely reducing the rate of dissolution of Cu ion from the copper lead wire, which promotes corrosion of aluminum electrodes and wiring.

銅リードワイヤ上へ、cu、o  t”形成させる酸化
処理工程は、半導体装置の製造プロセス上、ワイヤをボ
ンディングする前かあるいはその後に処理するかの、2
通シの工程が考えられる。しかし、ワイヤをボンディン
グする前に銅リードワイヤを酸化処理すると、表面に安
定な酸化物膜があるために、ボンディングが困難となり
効率が低下する可能性がある。一方、ボンディングした
後に酸化処理するとリードワイヤのみならず、S1チツ
プ上の電極や配線、リードフレーム等の構成金属材料上
にも酸化物膜が形成され、構成材料の保護性が向上する
点で好都合である。なお、酸化処理によるS1チツプ中
の81回路膜の酸化が懸念されるが、論理回路の最上層
にはSlの窒化物膜やガラス膜等の保護膜が形成されて
いるために、酸化処理によって論理回路が直接醸化され
ることはない。
The oxidation process to form cu,ot" on the copper lead wire is performed in two steps in the manufacturing process of semiconductor devices, whether it is performed before or after bonding the wire.
A continuous process can be considered. However, if the copper lead wire is oxidized before wire bonding, the presence of a stable oxide film on the surface may make bonding difficult and reduce efficiency. On the other hand, oxidation treatment after bonding is advantageous in that an oxide film is formed not only on the lead wires but also on the constituent metal materials such as the electrodes, wiring, and lead frames on the S1 chip, improving the protection of the constituent materials. It is. There is a concern that the 81 circuit film in the S1 chip may be oxidized due to oxidation treatment, but since a protective film such as a Sl nitride film or a glass film is formed on the top layer of the logic circuit, oxidation treatment may cause oxidation of the 81 circuit film in the S1 chip. Logic circuits are not directly cultivated.

酸化処理の方法としては、溶液系で処理する方法と気相
系で処理する方法の2通シの方法が考えられる。溶液系
における酸化処理において、HNO,。
As the oxidation treatment method, two methods can be considered: a solution system treatment method and a gas phase treatment method. In oxidation treatment in a solution system, HNO.

CrO3、H2O2等の強い酸化剤の溶液中で処理する
と、表面には厚い酸化物膜が形成されるが、ち密なCu
gOFi生成しにくい。1次02やNo、−等の酸化力
の低い酸化剤の溶液中では、薄いが比較的ち密なCu2
Oが生成する。しかし、溶液中で酸化処理すると、溶液
中の共存金属イオンや不純物イオンが、構成材料上に残
存、付着し、回路の汚染による誤動作や、腐食性液膜の
形成の原因となる可能性がある。したがって、酸化処理
は、気相系で処理した方が有利である。
When treated in a solution of strong oxidizing agents such as CrO3 and H2O2, a thick oxide film is formed on the surface, but a dense Cu
It is difficult to generate gOFi. In a solution of an oxidizing agent with low oxidizing power such as primary 02, No, -, thin but relatively dense Cu2
O is generated. However, when oxidation treatment is performed in a solution, coexisting metal ions and impurity ions in the solution may remain or adhere to the component materials, potentially causing malfunctions due to circuit contamination or the formation of a corrosive liquid film. . Therefore, it is more advantageous to carry out the oxidation treatment in a gas phase system.

気相系における酸化処理には、大気圧下における空気酸
化による方法、0意、os % Hgo等のガス状酸化
剤會真空系に注入し減圧下で処理する方法及び上記ガス
状酸化剤を含んだHeやAr等の不活性キャリヤガス中
で処理する方法の5通夛の方法がある。空気酸化による
処理では、雰囲気の湿度制御を必要とし、また後述する
O寞分圧の関係から、CU、Oは生成しにくい。減圧下
での処理法では、真空装置系を必要とし、また真空度が
上がるのに時間を要し、処理時間が長くかかる可能性が
ある〇一方、不活性キャリヤガス中で処理する方法は、
雰囲気制御も容易で、特別な装置を必要とせず、更に処
理時間が短時間で済む等の点で好都合である0 気相系における鋼上でのCU、O膜の形成は、雰囲気の
温度と酸化剤の種類及びその濃度に依存する。例えば、
02ヲ酸化剤として用いた場合には、O意  分圧が1
01〜1献2の低い濃度範囲では、温度にかかわらず、
CuzOが生成し易い。逆に酸化剤濃度が高い場合には
、CuOが生成し易い。また、温度が高いほど、Cu!
Oが生成し易くなる。
Oxidation treatment in a gas phase system includes a method of air oxidation under atmospheric pressure, a method of injecting a gaseous oxidizing agent such as 0% Hgo into a vacuum system and processing under reduced pressure, and a method of treating the above gaseous oxidizing agent under reduced pressure. There are five methods for processing in an inert carrier gas such as He or Ar. In the treatment by air oxidation, it is necessary to control the humidity of the atmosphere, and CU and O are difficult to generate due to the relationship with the partial pressure of O, which will be described later. The processing method under reduced pressure requires a vacuum equipment system and takes time to increase the degree of vacuum, so the processing time may be long. On the other hand, the method of processing in an inert carrier gas ,
It is convenient because the atmosphere can be easily controlled, no special equipment is required, and the processing time is short.0 The formation of CU and O films on steel in a gas phase system depends on the temperature of the atmosphere and Depends on the type of oxidizing agent and its concentration. for example,
When 02 is used as an oxidizing agent, the partial pressure is 1
In the low concentration range of 01 to 1 and 2, regardless of the temperature,
CuzO is easily generated. Conversely, when the oxidizing agent concentration is high, CuO is likely to be produced. Also, the higher the temperature, the higher the Cu!
O becomes easier to generate.

しかし、300℃を超えて加熱すると、ボンディングし
た銅ワイヤと、ut極スパッドの接合部において銅とア
ルミニウムとの化合物が成長し接合強度が低下した9、
論理回路中の構成元素の拡散やマイグレーションが起こ
り好ましくない。一方、100℃未満ではCul Oの
成長速度が遅いために、処理時間が長くかかり好ましく
ない。したがって、銅リードワイヤ上にCu2Ok形成
させる処理条件としては、酸化剤濃度が低く、温度が1
00〜300℃の範囲の条件が好ましい0 ガス状酸化剤の種類としては、0!、03、H鵞O等が
あり、いずれも銅を酸化し、CutO’t”形成する。
However, when heated above 300°C, a compound of copper and aluminum grew at the joint between the bonded copper wire and the UT pole spud, reducing the joint strength9.
Diffusion and migration of constituent elements in the logic circuit occur, which is undesirable. On the other hand, if it is less than 100° C., the growth rate of Cul 2 O is slow, so the processing time is undesirably long. Therefore, the processing conditions for forming Cu2Ok on the copper lead wire include a low oxidizing agent concentration and a temperature of 1.
Conditions in the range of 00 to 300°C are preferred 0 As for the type of gaseous oxidizing agent, 0! , 03, H-O, etc., all of which oxidize copper to form CutO't''.

Os  ’fr使用する場合には、その発生装置が必要
である。一方、H,Oの場合には、被処理品や処理装置
の表面への水分の凝縮を防ぎ、均一な雰囲気を保つため
に、水を乾燥水蒸気あるいは過熱水蒸気にして注入する
必要がある。したがって、酸化剤としては、プロセス及
び叡扱い上、0言が最も好ましい。そして、0雪の濃度
条件は、上記の様にCuzOが温度に依存せずに生成し
易い、分圧が10−a〜11fの範囲が好ましい。
When using Os'fr, a generator is required. On the other hand, in the case of H and O, it is necessary to inject water in the form of dry steam or superheated steam in order to prevent moisture from condensing on the surfaces of the processing target or processing equipment and to maintain a uniform atmosphere. Therefore, as the oxidizing agent, zero is most preferable in terms of process and handling. The concentration condition for 0 snow is preferably a partial pressure in the range of 10-a to 11f, where CuzO is easily generated independent of temperature as described above.

リードワイヤ上の酸化物膜の厚さ値、酸化処理の温度、
酸化剤の種類及びその濃度、処理時間に依存するが、酸
化物膜の保護性を保持するためには、鋼上のCu30 
 からなる不働態皮膜の最小厚さが10又であるので、
少なくともIOA以上の岸さが必要である。一方、リー
ドワイヤ上に、ワイヤ径の10%を超える酸化物膜が存
在すると、機械的ひずみにより下地の銅ワイヤから酸化
物膜がはく離する可能性がある。したがって、酸化物膜
の厚さは、10又以上で、ワイヤ径の10%以下の範囲
が好ましい。
The thickness of the oxide film on the lead wire, the temperature of the oxidation treatment,
Although it depends on the type of oxidizing agent, its concentration, and treatment time, in order to maintain the protective properties of the oxide film, Cu30 on the steel
Since the minimum thickness of the passive film consisting of is 10,
A shoreline of at least IOA is required. On the other hand, if an oxide film exceeding 10% of the wire diameter exists on the lead wire, the oxide film may peel off from the underlying copper wire due to mechanical strain. Therefore, the thickness of the oxide film is preferably 10 or more and 10% or less of the wire diameter.

〔実施例〕〔Example〕

以下、本発明全実施例により更に具体的に説明するが、
本発明はこれら実施例に限定されない。
Hereinafter, the present invention will be explained in more detail with reference to all examples,
The invention is not limited to these examples.

実施例1 第1図に断面図を示す銅ワイヤボンディング半導体装置
を用いて一実施例を説明する。すなわち、第1図は本発
明の半導体装置の一実施例の断面図である。第1図にお
いて符号1はリードフレーム、2は1次側電極、5はタ
ブ、4Fiシリコンベレツト、5はアルミニウム2次側
電極、6は銅リードワイヤ、7は酸化物膜、8は封止樹
脂を意味する。
Example 1 An example will be described using a copper wire bonding semiconductor device whose cross-sectional view is shown in FIG. That is, FIG. 1 is a sectional view of one embodiment of the semiconductor device of the present invention. In Figure 1, 1 is a lead frame, 2 is a primary electrode, 5 is a tab, 4Fi silicon beret, 5 is an aluminum secondary electrode, 6 is a copper lead wire, 7 is an oxide film, and 8 is a sealing means resin.

リードフレーム1上の金めつきを施こした1次側11E
&2と、タブ5上にマウントしたシリコンペレット4上
のアルミニウム2次側電極5に、銅リードワイヤ6全ボ
ンデイングする。その後、この半導体装置を次の条件に
調整したガス雰囲気中で、種々の温度で酸化処理し、銅
リードワイヤ6上にCub Oからなる酸化物膜7を形
成させる。
Primary side 11E with gold plating on lead frame 1
&2, and the entire copper lead wire 6 is bonded to the aluminum secondary electrode 5 on the silicon pellet 4 mounted on the tab 5. Thereafter, this semiconductor device is oxidized at various temperatures in a gas atmosphere adjusted to the following conditions to form an oxide film 7 made of CubO on the copper lead wire 6.

温  度 :  I  Do、200.300℃ガス組
成 : 分圧cL1wI(tのOx k含むAr処理時
間 = 60秒 その後にエポキシ系樹脂からなる封止樹脂8で封止する
。そして、その封止した半導体装ilを、120℃、2
気圧の高温高湿度条件下で耐湿信頼性試験し、断線不良
発生時間を測定した。その結果を表−1に示す。
Temperature: I Do, 200.300℃ Gas composition: Partial pressure cL1wI (tOx k Ar treatment time = 60 seconds Then, sealing is performed with sealing resin 8 made of epoxy resin. Then, the sealed Semiconductor device IL at 120℃, 2
A moisture resistance reliability test was conducted under high temperature and high humidity conditions at atmospheric pressure, and the time required for disconnection failure to occur was measured. The results are shown in Table-1.

表−1 表−1から明らかなように、比較例である酸化処理して
いない半導体装置は650時間で腐食による断線不良が
発生するのに対し、本発明になる半導体装tはいずれの
温度で処理したものでも2000時間経過後も不良は発
生せず、酸化処理によって形成されたCul O膜が水
分の浸入金防ぎ、腐食が抑制されている。
Table 1 As is clear from Table 1, the semiconductor device of the comparative example that was not subjected to oxidation treatment suffered disconnection due to corrosion after 650 hours, whereas the semiconductor device of the present invention suffered from a disconnection failure at any temperature. Even after 2000 hours, no defects occurred even after the treatment, and the Cul 2 O film formed by the oxidation treatment prevents moisture from penetrating the metal and suppresses corrosion.

実施例2 実施例1と同様に組立後、銅リードワイヤをボンディン
グした半導体装を金、次の条件に1鴫整したガス雰囲気
中で、種々の処理時間で酸化処理し、銅リードワイヤ上
にCJOからなる酸化物膜全形成させた。
Example 2 After assembly in the same manner as in Example 1, a semiconductor device to which copper lead wires were bonded was oxidized with gold for various treatment times in a gas atmosphere prepared under the following conditions, and then bonded to copper lead wires. The entire oxide film consisting of CJO was formed.

温   度 : 200℃ ガス組成 : 分圧111 waifの03を含むAy
処理時間= 5.5D160.600秒その後、実施例
1と同様に、樹脂封止し、耐湿信頼性を試験した。その
結果t1表−2に示す。
Temperature: 200℃ Gas composition: Partial pressure 111 Ay including waif 03
Processing time = 5.5D160.600 seconds Thereafter, resin sealing was performed in the same manner as in Example 1, and moisture resistance reliability was tested. The results are shown in t1 Table-2.

表−2 表−2から明らかなように、比較例である酸化処理して
いない半導体装tF1650時間で断線不良が発生する
のに対し、本発明になる半導体装置は、いずれの時間処
理したものでも、不良が発生しにくくなっている。処理
時間が長くなるにつれて、 Cu2O膜が厚く成長し、
水分の浸入及び腐食に対する抑制時間が向上している。
Table 2 As is clear from Table 2, a disconnection failure occurs in the semiconductor device of the comparative example which was not subjected to oxidation treatment after 1650 hours of oxidation treatment, whereas in the semiconductor device of the present invention, it was treated for any time. , defects are less likely to occur. As the treatment time increases, the Cu2O film grows thicker,
Improved control time against moisture ingress and corrosion.

実施例6 実施例1と同様に組立、ボンディングした半導体装置を
、以下に示す種々のO,分圧に調整したガス雰囲気中で
酸化処理した。
Example 6 A semiconductor device assembled and bonded in the same manner as in Example 1 was oxidized in a gas atmosphere adjusted to various O and partial pressures shown below.

温   度 : 200℃ O2分圧:α001、α1.1 、l 1 [IvxH
yキャリヤガス 二Ar 処理時間: 60秒 その後、実施例1と同様に、樹脂封止し、耐湿信頼性を
試験した。その結果を、表−5に示す。
Temperature: 200°C O2 partial pressure: α001, α1.1, l 1 [IvxH
yCarrier gas: 2Ar Processing time: 60 seconds Thereafter, in the same manner as in Example 1, resin sealing was performed, and moisture resistance reliability was tested. The results are shown in Table-5.

表−6 表−5から明らかなように、比較例である無処理のもの
は650時間で断線不良が発生するのに対し、本発明に
なる半導体装tは、いずれの02分圧下で処理したもの
でも、不良が発生しにくくなっている。O2分圧が低く
なるにつれて、酸化物中に含まれるCu2Oの割合が増
加し、水分の浸入及び腐食に対する抑制作用が向上して
いる。
Table 6 As is clear from Table 5, disconnection failure occurred in the untreated comparative example after 650 hours, whereas the semiconductor device t of the present invention was processed under any partial pressure of 0.2 hours. Even with products, defects are less likely to occur. As the O2 partial pressure decreases, the proportion of Cu2O contained in the oxide increases, and the inhibiting effect against moisture intrusion and corrosion is improved.

実施例4 実施例1と同様に組立後、径が30μmの銅リードワイ
ヤをボンディングした半導体装重金、酸化処理し、種々
の厚さの酸化物膜を形成させた。
Example 4 After assembly in the same manner as in Example 1, semiconductor devices to which copper lead wires having a diameter of 30 μm were bonded were subjected to oxidation treatment to form oxide films of various thicknesses.

酸化物膜厚:10−1,10″″!、1.5μmその後
、実施例1と同様に、樹脂封止し、耐湿信頼性を試験し
た。その結果を、表−4に示す。
Oxide film thickness: 10-1,10″″! , 1.5 μm Thereafter, in the same manner as in Example 1, resin sealing was performed, and moisture resistance reliability was tested. The results are shown in Table-4.

表−4 表−4から明らかなように、比較例である無処理のもの
は650時間で断線不良が発生するのに対し、本発明に
なる半導体装fItは、いずれの膜厚に処理したもので
も、不良が発生しにくくなっている。厚さがワイヤ径3
0μmの10%以下の範囲では酸化物の厚さが厚くなる
につれて、水分の浸入と腐食に対する抑制作用が向上し
ている。
Table 4 As is clear from Table 4, disconnection failure occurs in the untreated comparative example after 650 hours, whereas the semiconductor device fIt of the present invention was treated with any film thickness. However, defects are less likely to occur. Thickness is wire diameter 3
In the range of 10% or less of 0 μm, as the oxide thickness increases, the inhibiting effect against moisture intrusion and corrosion improves.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、リードワイヤと
封止する樹脂との密着性を高め、外部から半導体装置内
部への水分の浸入全阻止できるので、耐湿信頼性の著し
く優れた牛導体装!全提供することができる。
As explained above, according to the present invention, it is possible to improve the adhesion between the lead wire and the sealing resin, and completely prevent moisture from entering the inside of the semiconductor device from the outside. Attire! All can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体装置の一実施例の断面図である
。 1:リードフレーム、2:1次側電極、3:タブ、4:
シリコンベレット、5ニアルミニウム2次側電極、6:
銅リードワイヤ、7二酸化物膜、8:封止樹脂
FIG. 1 is a sectional view of one embodiment of the semiconductor device of the present invention. 1: Lead frame, 2: Primary side electrode, 3: Tab, 4:
Silicon pellet, 5 Ni aluminum secondary electrode, 6:
Copper lead wire, 7: Dioxide film, 8: Sealing resin

Claims (1)

【特許請求の範囲】 1、銅線をリードワイヤとして用いる半導体装置におい
て、該銅リードワイヤが、その表面に、Cu_2Oを主
成分とする酸化物膜を有することを特徴とする半導体装
置。 2、銅線をリードワイヤとして用いる半導体装置を製造
する方法において、銅線をリードワイヤとして電極パッ
ドにボンディングさせた後、酸化処理することにより、
該銅リードワイヤの表面に、Cu_2Oを主成分とする
酸化物膜を形成させる工程を包含することを特徴とする
半導体装置の製造方法。 3、該酸化処理を、温度100〜300℃、成分として
O_2、O_3及びH_2Oよりなる群から選択した少
なくとも1種の酸化剤を含んだ気相雰囲気中で酸化処理
することにより行う特許請求の範囲第2項記載の半導体
装置の製造方法。 4、該酸化処理を、O_2分圧が10^−^3〜1mm
Hgの気相雰囲気中で酸化処理することにより行う特許
請求の範囲第2項記載の半導体装置の製造方法。 5、該酸化処理で、10Å以上でリードワイヤ径の10
%以下の範囲の厚さを有する酸化物膜を形成させる特許
請求の範囲第2項〜第4項のいずれかに記載の半導体装
置の製造方法。
[Scope of Claims] 1. A semiconductor device using a copper wire as a lead wire, wherein the copper lead wire has an oxide film containing Cu_2O as a main component on its surface. 2. In a method for manufacturing a semiconductor device using a copper wire as a lead wire, the copper wire is bonded to an electrode pad as a lead wire, and then oxidized.
A method for manufacturing a semiconductor device, comprising the step of forming an oxide film containing Cu_2O as a main component on the surface of the copper lead wire. 3. Claims in which the oxidation treatment is carried out at a temperature of 100 to 300°C in a gaseous atmosphere containing at least one oxidizing agent selected from the group consisting of O_2, O_3 and H_2O. 2. The method for manufacturing a semiconductor device according to item 2. 4. Perform the oxidation treatment at an O_2 partial pressure of 10^-^3 to 1 mm.
The method for manufacturing a semiconductor device according to claim 2, which is carried out by performing oxidation treatment in a gas phase atmosphere of Hg. 5. The oxidation treatment reduces lead wire diameter by 10 Å or more.
The method for manufacturing a semiconductor device according to any one of claims 2 to 4, wherein an oxide film having a thickness in a range of % or less is formed.
JP61133860A 1986-06-11 1986-06-11 Semiconductor device and manufacture thereof Granted JPS62291123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61133860A JPS62291123A (en) 1986-06-11 1986-06-11 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61133860A JPS62291123A (en) 1986-06-11 1986-06-11 Semiconductor device and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS62291123A true JPS62291123A (en) 1987-12-17
JPH0478173B2 JPH0478173B2 (en) 1992-12-10

Family

ID=15114737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61133860A Granted JPS62291123A (en) 1986-06-11 1986-06-11 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS62291123A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196920A (en) * 2003-04-16 2006-07-27 Shinko Electric Ind Co Ltd Conductor substrate, semiconductor device, and production method thereof
JP2008085319A (en) * 2006-08-31 2008-04-10 Nippon Steel Materials Co Ltd Copper alloy bonding wire for semiconductor device
DE102018107563A1 (en) * 2018-03-29 2019-10-02 Infineon Technologies Austria Ag SEMICONDUCTOR DEVICE WITH COPPER STRUCTURE

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224255A (en) * 1984-04-20 1985-11-08 Hitachi Cable Ltd Bonding wire and manufacture thereof
JPS6175554A (en) * 1984-09-21 1986-04-17 Hitachi Ltd Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224255A (en) * 1984-04-20 1985-11-08 Hitachi Cable Ltd Bonding wire and manufacture thereof
JPS6175554A (en) * 1984-09-21 1986-04-17 Hitachi Ltd Semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196920A (en) * 2003-04-16 2006-07-27 Shinko Electric Ind Co Ltd Conductor substrate, semiconductor device, and production method thereof
JP2008085319A (en) * 2006-08-31 2008-04-10 Nippon Steel Materials Co Ltd Copper alloy bonding wire for semiconductor device
JP4705078B2 (en) * 2006-08-31 2011-06-22 新日鉄マテリアルズ株式会社 Copper alloy bonding wire for semiconductor devices
DE102018107563A1 (en) * 2018-03-29 2019-10-02 Infineon Technologies Austria Ag SEMICONDUCTOR DEVICE WITH COPPER STRUCTURE
US10937720B2 (en) 2018-03-29 2021-03-02 Infineon Technologies Austria Ag Semiconductor device with copper structure
DE102018107563B4 (en) 2018-03-29 2022-03-03 Infineon Technologies Austria Ag SEMICONDUCTOR DEVICE WITH COPPER STRUCTURE AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE

Also Published As

Publication number Publication date
JPH0478173B2 (en) 1992-12-10

Similar Documents

Publication Publication Date Title
US6566253B2 (en) Method of making electrical interconnection for attachment to a substrate
KR900007303B1 (en) Resin packed semiconductor device
US7312164B2 (en) Selective passivation of exposed silicon
KR0133869B1 (en) Chemically etching method of semiconductor device
JP2007524996A (en) Integrated circuit die having copper contacts and method for the integrated circuit die
US6664175B2 (en) Method of forming ruthenium interconnect for an integrated circuit
US5446625A (en) Chip carrier having copper pattern plated with gold on one surface and devoid of gold on another surface
JP2002083835A (en) Method for manufacturing semiconductor device
JPS62145758A (en) Method for protecting copper bonding pad from oxidation using palladium
US8012886B2 (en) Leadframe treatment for enhancing adhesion of encapsulant thereto
US6362089B1 (en) Method for processing a semiconductor substrate having a copper surface disposed thereon and structure formed
EP0078173B1 (en) Process for fabricating a semiconductor device having a phosphosilicate glass layer
KR20210039179A (en) Etchant for etching Ti-W film
JPS62291123A (en) Semiconductor device and manufacture thereof
US5833758A (en) Method for cleaning semiconductor wafers to improve dice to substrate solderability
KR20150032424A (en) Liquid composition for etching metal containing Cu and method of fabricating a semiconductor device using the same
US3714521A (en) Semiconductor device or monolithic integrated circuit with tungsten interconnections
US6479402B1 (en) Method to improve adhesion of molding compound by providing an oxygen rich film over the top surface of a passivation layer
Chyan et al. Mechanistic Investigation and Prevention of Al Bond Pad Corrosion in Cu Wire-bonded Device Assembly
JP3590603B2 (en) Semiconductor device and manufacturing method thereof
JPH09148331A (en) Semiconductor integrated circuit device and method for manufacturing the same
JP2892055B2 (en) Resin-sealed semiconductor device
JPH0546978B2 (en)
JPS63272042A (en) Semiconductor device
JPS63266844A (en) Manufacture of semiconductor device