JPS63266844A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS63266844A
JPS63266844A JP62099843A JP9984387A JPS63266844A JP S63266844 A JPS63266844 A JP S63266844A JP 62099843 A JP62099843 A JP 62099843A JP 9984387 A JP9984387 A JP 9984387A JP S63266844 A JPS63266844 A JP S63266844A
Authority
JP
Japan
Prior art keywords
film
semiconductor device
resin
lead wire
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62099843A
Other languages
Japanese (ja)
Inventor
Shiro Kobayashi
史朗 小林
Emiko Murofushi
室伏 恵美子
Masahiko Ito
雅彦 伊藤
Shigetoshi Kazama
風間 成年
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62099843A priority Critical patent/JPS63266844A/en
Publication of JPS63266844A publication Critical patent/JPS63266844A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/4569Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48799Principal constituent of the connecting portion of the wire connector being Copper (Cu)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85009Pre-treatment of the connector or the bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85053Bonding environment
    • H01L2224/85054Composition of the atmosphere
    • H01L2224/85075Composition of the atmosphere being inert
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01018Argon [Ar]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

PURPOSE:To improve the corrosion resistance of a Cu lead wirings and to obtain a resin-sealed semiconductor device having excellent moisture resistance reliability by bonding a semiconductor element to a lead frame by the Cu-lead wirings, and then covering the surfaces of the wirings with a film having high bondability to resin and base metal Cu and high corrosion resistance protection. CONSTITUTION:A primary electrode 2 made of Fe-42Ni alloy or partly plated with Ag on a Cu alloy lead frame 1 and a secondary aluminum electrode 5 on a semiconductor element 4 die bonded on a tab 3 are wire bonded by Cu-lead wirings 6 in a reduced atmosphere. Then, it is oxidized in argon gas. Further, it is dipped in an isopropyl alcohol which contains benzotriazole to form a compound film 7 on the Cu wire surface. A semiconductor device is manufactured by sealing it treated as above with sealing resin 8 made of epoxy resin. Thus, the bondability of the wiring to the resin is enhanced to prevent moisture from invading externally into the device and to further improve the corrosion resistance of the wirings.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、Cu線をリードワイヤとして用いる樹脂封止
型半導体装置に係り、特に、耐湿信頼性に優れた半導体
装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a resin-sealed semiconductor device using Cu wire as a lead wire, and particularly to a method for manufacturing a semiconductor device with excellent moisture resistance and reliability.

〔従来の技術〕[Conventional technology]

従来、半導体装置の製造には、半導体素子とリードフレ
ームとを電気的に接続するリードワイヤの材料として、
Au線、Au線あるいはCu線が使用されている。Cu
線は、上記三種類の材料の中で、最も電気抵抗が小さく
、また、機械的強度やボンディング強度も高く、細線化
による高密度、高集積化が図れる上、低価格であるなど
の利点がある。そこで、近年、このようなCu線の利点
を生かして、Cuリードワイヤを用いた半導体装置が製
造されるようになってきている。そして、従来リードワ
イヤとしてAu線しか用いられていなかった樹脂封止型
半導体装置でも、Cu線がリードワイヤとして用いられ
るようになってきている。
Conventionally, in the manufacture of semiconductor devices, lead wires that electrically connect semiconductor elements and lead frames are made of
Au wire, Au wire or Cu wire is used. Cu
Wire has the advantages of having the lowest electrical resistance among the three types of materials mentioned above, high mechanical strength and bonding strength, high density and high integration due to thinning of the wire, and low cost. be. Therefore, in recent years, semiconductor devices using Cu lead wires have been manufactured by taking advantage of such advantages of Cu wires. Further, Cu wires are now being used as lead wires even in resin-sealed semiconductor devices in which conventionally only Au wires have been used as lead wires.

しかし、樹脂封止型半導体装置には樹脂パッケージとリ
ードとの界面を通じて外部から内部に水分が侵入し易い
という欠点がある。パッケージ内部に侵入した水分は、
リードワイヤとしてCu線を用いている場合には、これ
を腐食させ、さらに、リードワイヤとボンディングして
いる半導体素子上のAQ配線膜の腐食を引起こし、配線
の断線不良が発生する可能性があった。特に、Cu線が
腐食した場合には、溶出したCuz+イオンがAQ配線
膜上に還元析出し、それが再溶出と再析出を繰返すため
に、配線膜が自己触媒的に著しく腐食していくおそれが
ある。
However, the resin-sealed semiconductor device has a drawback in that moisture easily enters the device from the outside through the interface between the resin package and the leads. Moisture that has entered the inside of the package will
If a Cu wire is used as a lead wire, it may corrode the lead wire and cause corrosion of the AQ wiring film on the semiconductor element that is bonded to the lead wire, resulting in a disconnection failure in the wiring. there were. In particular, when the Cu wire corrodes, the eluted Cuz+ ions are reduced and precipitated on the AQ wiring film, which repeats re-elution and reprecipitation, so there is a risk that the wiring film will corrode significantly in an autocatalytic manner. There is.

従来、Cuリードワイヤの腐食を抑える方法として、特
開昭61−7654号公報に記載のように、半導体素子
とリードフレームとを還元性雰囲気中でCuリードワイ
ヤによりワイヤボンディングした後、Cuの有機系腐食
抑制剤であるベンゾトリアゾール、あるいは、その誘導
体をCuワイヤの表面に付着させる防食処理法がある。
Conventionally, as a method for suppressing corrosion of Cu lead wires, as described in JP-A-61-7654, after wire bonding a semiconductor element and a lead frame with Cu lead wires in a reducing atmosphere, There is an anticorrosion treatment method in which benzotriazole, which is a corrosion inhibitor, or a derivative thereof is attached to the surface of a Cu wire.

この方法では、腐食抑制剤がCuと反応してワイヤ表面
に安定な防食皮膜が形成されればCuワイヤの腐食を、
比較的容易に抑制することができる。
In this method, if the corrosion inhibitor reacts with Cu and forms a stable anticorrosive film on the wire surface, corrosion of the Cu wire can be prevented.
It can be suppressed relatively easily.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、この防食処理法では、還元状態にあるCuワイ
ヤ表面とベンゾトリアゾールのような有機系腐食抑制剤
との付着性や反応性の点については考慮されていない。
However, this anticorrosion treatment method does not take into consideration the adhesion and reactivity between the Cu wire surface in a reduced state and an organic corrosion inhibitor such as benzotriazole.

すなわち、ベンゾトリアゾールのような有機系腐食抑制
剤は還元状態の金属Cuとは反応性が低く、そのため、
Cuと未反応の腐食抑制剤は、防食処理後の洗浄時や樹
脂モールド時にワイヤ表面から脱離してしまう。その結
果、Cuリードワイヤの防食処理が不完全になり易く、
半導体装置としての耐湿信頼性が低下するという問題が
あった。
That is, organic corrosion inhibitors such as benzotriazole have low reactivity with metal Cu in a reduced state, and therefore,
The corrosion inhibitor that has not reacted with Cu is detached from the wire surface during cleaning after anticorrosion treatment or during resin molding. As a result, the anti-corrosion treatment of the Cu lead wire tends to be incomplete.
There was a problem in that the moisture resistance reliability as a semiconductor device deteriorated.

本発明の目的は、Cuリードワイヤの耐食性を改善し、
耐湿信頼性の優れた樹脂封止型半導体装置の製造方法を
提供することにある。
The purpose of the present invention is to improve the corrosion resistance of Cu lead wire,
An object of the present invention is to provide a method for manufacturing a resin-sealed semiconductor device with excellent moisture resistance and reliability.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、樹脂封止型半導体装置の製造方法に関する発
明であって、Cuリードワイヤの耐食性を改善し、半導
体装置としての耐湿性を高めるために、半導体素子とリ
ードフレームとをCu IJ −ドワイヤでワイヤボン
ディングした後、Cuリードワイヤの表面を、樹脂及び
下地の金属Cuとのいずれにも密着性が高く、かつ、耐
食保護性の高い皮膜で被覆する工程を包含することを特
徴とする。
The present invention relates to a method for manufacturing a resin-sealed semiconductor device, and in order to improve the corrosion resistance of Cu lead wires and increase the moisture resistance of the semiconductor device, a semiconductor element and a lead frame are bonded to a Cu IJ-wire After wire bonding, the method includes a step of coating the surface of the Cu lead wire with a film that has high adhesion to both the resin and the underlying metal Cu, and has high corrosion resistance protection.

発明者らは、Cu上に生成する種々の化合物皮膜の物理
的及び化学的性質について研究することにより本発明に
至った。
The inventors arrived at the present invention by studying the physical and chemical properties of various compound films formed on Cu.

すなわち、本発明は、Cuリードワイヤの表面を、下地
の金属Cuとの密着性の高い酸化物膜と樹脂との密着性
の高い有機系腐食抑制剤を反応させ、下地の金属Cu及
び樹脂とのいずれにも、密着性が高く、かつ、耐食性の
高い化合物皮膜で被覆し、水分の侵入とCuリードワイ
ヤからのCuz+イオンの溶出を抑制することにより、
樹脂封止型半導体装置の耐湿信頼性を向上させたもので
ある。
That is, in the present invention, the surface of the Cu lead wire is made to react with an oxide film that has high adhesion to the underlying metal Cu and an organic corrosion inhibitor that has high adhesion to the resin. Both are coated with a highly adhesive and highly corrosion resistant compound film to suppress moisture intrusion and the elution of Cuz+ ions from the Cu lead wire.
This improves the moisture resistance reliability of resin-sealed semiconductor devices.

〔作用〕[Effect]

樹脂パッケージ内部に侵入してくる水分は、侵入する過
程で、外部及び樹脂から、CQ”−、B r−。
In the process of invading the inside of the resin package, moisture enters the resin package from the outside and from the resin.

Sb8+、H+などのイオンを溶解し、Cu  リード
ワイヤ上やAQ配線膜」二に液膜を形成する。この液膜
は、そのp T(が3〜4と酸性であり、また、このイ
オンの存在により、腐食性の強い水になっている。
Ions such as Sb8+ and H+ are dissolved to form a liquid film on the Cu lead wire and the AQ wiring film. This liquid film is acidic with a pT of 3 to 4, and the presence of these ions makes the water highly corrosive.

Cu及びAflは、いずれも両性金属であるため、溶液
のp Hが酸性、アルカリ性のいずれにも溶解する。こ
こで、侵入水の液膜は酸性であるため、パッケージ内部
に侵入した水は、まず、Cuリードワイヤを腐食し、C
u2+イオンを溶解させる。
Since both Cu and Afl are amphoteric metals, they dissolve in both acidic and alkaline pH solutions. Here, since the liquid film of the invading water is acidic, the water that intrudes into the package first corrodes the Cu lead wires, and the C
Dissolve u2+ ions.

さらに、リードワイヤよりも内部、すなわち、AQ配線
膜」二に侵入した水分は、AQをCuと同様に腐食させ
ていく。特に、その液膜中にCuリードワイヤから腐食
により、溶解したCuz+イオンが存在する場合には、
これがAQ配線膜上に、Cuとして還元析出する。この
還元析出する際、Cuz+イオンはAQより電子を奪う
ために、電子を奪われたAnはAQ3+に酸化されて腐
食する。
Furthermore, moisture that has entered the inside of the lead wire, that is, the AQ wiring film 2, corrodes AQ in the same way as Cu. In particular, if there are Cuz+ ions dissolved in the liquid film due to corrosion from the Cu lead wire,
This is reduced and precipitated as Cu on the AQ wiring film. During this reduction and precipitation, the Cuz+ ions steal electrons from AQ, so that the An deprived of electrons is oxidized to AQ3+ and corrodes.

還元析出したCuは、腐食性の液膜と接しているために
、再び溶解し、さらにAQ配線膜」二に再析出を繰り返
し起こすので、AQ配線膜はCuz+イオンの触媒作用
によって著しく腐食が進行する。
Since the reduced and precipitated Cu is in contact with the corrosive liquid film, it is dissolved again and redeposited repeatedly on the AQ wiring film, so the corrosion of the AQ wiring film progresses significantly due to the catalytic action of Cuz+ ions. do.

Cuリードワイヤ、及び、AQ配線膜の腐食を抑制する
には、樹脂パッケージ内部、特に、リードワイヤとパッ
ケージとの界面への水分の侵入を防げ、たとえ水分が侵
入しても、CuリードワイヤやAfl配線膜が腐食され
ないように、ワイヤの表面を樹脂パッケージとの密着性
が高く、かつ、耐食性の高い安定な保護皮膜で皮膜する
方法が考えられる。そこで、このような性質を併せもつ
皮膜の形成法について検討した。
In order to suppress corrosion of the Cu lead wire and AQ wiring film, it is necessary to prevent moisture from entering inside the resin package, especially at the interface between the lead wire and the package. In order to prevent the Afl wiring film from being corroded, a method can be considered in which the surface of the wire is coated with a stable protective film that has high adhesion to the resin package and is highly corrosion resistant. Therefore, we investigated a method for forming a film that has both of these properties.

Cuの保護皮膜には、酸化物膜、無機化合物皮膜、有機
化合物皮膜の三種類が考えられる。この内、酸化物膜及
び無機化合物皮膜はいずれも無機物なので有機物である
樹脂パッケージとの密着性に乏しいが、下地の金属Cu
との密着性は良好で、特に、下地の金属Cuを酸化する
ことにより得られる酸化物膜は、その密着性が最も高い
。一方、有機化合物皮膜は、無機物膜に比べて、樹脂と
の密着性は良好である。以上の様な各保護皮膜の特性を
生かし、Cuリードワイヤの表面に、下地の金属Cuと
密着性の高い酸化物膜を形成し、その上に酸化物膜と樹
脂のいずれにも密着性の高い有機化合物皮膜を形成する
ことにより、Cuリードワイヤと樹脂との密着性を向上
させることができる。
There are three types of Cu protective films: oxide films, inorganic compound films, and organic compound films. Among these, the oxide film and the inorganic compound film are both inorganic and therefore have poor adhesion to the resin package, which is an organic material.
In particular, the oxide film obtained by oxidizing the base metal Cu has the highest adhesion. On the other hand, organic compound films have better adhesion to resins than inorganic films. Taking advantage of the characteristics of each protective film as described above, an oxide film with high adhesion to the underlying metal Cu is formed on the surface of the Cu lead wire, and on top of that, an oxide film with high adhesion to both the oxide film and the resin is formed. By forming a high organic compound film, the adhesion between the Cu lead wire and the resin can be improved.

Cuの酸化物膜には、CuzO膜、CuO膜。The Cu oxide film includes a CuzO film and a CuO film.

Cu2OCu○混合膜の三種類がある。このうち、Cu
 20は結晶性が高く、構造もち密で、下地の金属Cu
との密着性が高い。また、Cu2Oは、それ自体、水に
難溶性であるので耐食性も高い。一方、他の酸化物は、
いずれも針状結晶や多孔性結晶に成長し易く、ち密性や
密着性に乏しく、また、水に対しても溶解し易い。従っ
て、Cuリードワイヤの表面に形成させる酸化物膜はC
u2O膜が好ましい。
There are three types of Cu2OCu○ mixed films. Of these, Cu
20 has high crystallinity and a dense structure, and the underlying metal Cu
High adhesion with. In addition, Cu2O itself is poorly soluble in water and therefore has high corrosion resistance. On the other hand, other oxides are
All of them tend to grow into needle-like crystals or porous crystals, have poor compactness and adhesion, and are also easily soluble in water. Therefore, the oxide film formed on the surface of the Cu lead wire is C
A u2O film is preferred.

Cuと安定な耐食性有機化合物皮膜を形成する物質とし
て、有機系腐食抑制剤がある。この腐食抑制剤は、Cu
と反応してその表面にち密な化合物皮膜を形成する。こ
の皮膜は、疎水性で、かつ、H+やCQ−イオン等の腐
食性イオンの下地Cuへの侵食を抑制する性質をもって
いる。しかし、この有機系腐食抑制剤は、金属状態にあ
るCuとの反応性は低く、安定な皮膜を形成させるには
、Cu表面を有機系腐食抑制剤との反応性の高い酸化状
態にしておく必要がある。従って、Cuリードワイヤの
表面に、予め、酸化物膜を形成させておくことは、安定
な有機化合物皮膜を形成させるためにも効果がある。
As a substance that forms a stable corrosion-resistant organic compound film with Cu, there is an organic corrosion inhibitor. This corrosion inhibitor is Cu
reacts with the compound to form a dense compound film on its surface. This film is hydrophobic and has the property of suppressing corrosion of corrosive ions such as H+ and CQ- ions into the underlying Cu. However, this organic corrosion inhibitor has low reactivity with Cu in the metallic state, and in order to form a stable film, the Cu surface must be in an oxidized state that is highly reactive with the organic corrosion inhibitor. There is a need. Therefore, forming an oxide film on the surface of the Cu lead wire in advance is effective in forming a stable organic compound film.

Cuに対する有機系腐食抑制剤は多数の種類があり、そ
の代表的なものに、ベンゾトリアゾール類、メルカプト
ベンゼン化合物、トリアジンチオール類、オキシン、ク
フエロン、ジチオカルボン酸類、チオ尿素、チオセミカ
ルバジド等がある。
There are many types of organic corrosion inhibitors for Cu, typical examples of which include benzotriazoles, mercaptobenzene compounds, triazinethiols, oxine, cupferon, dithiocarboxylic acids, thiourea, and thiosemicarbazide.

この内、ベンゾトリアゾール類化合物、メルカプトベン
ゼン化合物及び1−リアジンチオール化合物は、Cuの
酸化物膜との反応性が高く、化学的にも物理的にも安定
な化合物皮膜を形成するので、皮膜形成処理剤として有
利である。
Among these, benzotriazole compounds, mercaptobenzene compounds, and 1-riazinethiol compounds have high reactivity with Cu oxide films and form chemically and physically stable compound films, so they can be used to form a film. It is advantageous as a forming treatment agent.

ベンゾトリアゾール類としては、ベンゾトリアゾール及
びベンゾトリアゾールのベンゼン核に置換基をもつトリ
ルトリアゾール、ニトロベンゾトリアゾール、クロロベ
ンゾトリアゾール、カルボキシベンゾトリアゾール等が
有効である。
As the benzotriazoles, tolyltriazole, nitrobenzotriazole, chlorobenzotriazole, carboxybenzotriazole, etc. having a substituent on the benzene nucleus of benzotriazole and benzotriazole are effective.

メルカプトベンゼン化合物は、メルカプトベンゾチアゾ
ール、ベンゾイミダゾールチオール、ペンゾオキサザー
ルチオール及び各化合物のベンゼン核の置換誘導体が有
効である。
As the mercaptobenzene compound, mercaptobenzothiazole, benzimidazole thiol, penzoxazal thiol, and substituted derivatives of the benzene nucleus of each compound are effective.

トリアジンチオール類では、トリアジンチオール及びト
リアジン環に置換基をもつ誘導体が有効で、特に、置換
基としてアミノ基やアルキルアミノ基をもつ誘導体はそ
の有効性が高い。
Among triazinethiols, triazinethiol and derivatives having a substituent on the triazine ring are effective, and derivatives having an amino group or an alkylamino group as a substituent are particularly effective.

Cuリードワイヤ表面に形成させた酸化物膜に、上記の
有機系腐食抑制剤を接触させると、酸化物と腐食抑制剤
が反応し、表面に化合物皮膜が形成される。この化合物
皮膜は、下地の金属Cuならびに樹脂との密着性も高く
、また、耐食保護性に優れている。この化合物皮膜の存
在により、Cuリードワイヤと樹脂との密着性が向上し
水分の侵入を防げ、また、たとえ水分が侵入しても、C
uリードワイヤからのCuz+イオンの溶出は起りにく
い。その結果、半導体装置としての耐湿信頼性は著しく
改善される。
When the above organic corrosion inhibitor is brought into contact with the oxide film formed on the surface of the Cu lead wire, the oxide and the corrosion inhibitor react to form a compound film on the surface. This compound film has high adhesion to the underlying metal Cu and resin, and also has excellent corrosion resistance and protection. The presence of this compound film improves the adhesion between the Cu lead wire and the resin and prevents moisture from entering.
Elution of Cuz+ ions from the u-lead wire is unlikely to occur. As a result, the moisture resistance reliability of the semiconductor device is significantly improved.

Cuリードワイヤ表面へ、化合物皮膜を形成させる処理
工程は、樹脂封止型半導体装置の製造プロセス上、ワイ
ヤをボンディングする前かあるいは後に処理するかの、
二通りの工程が考えられる。
The process of forming a compound film on the surface of the Cu lead wire can be performed before or after wire bonding in the manufacturing process of resin-sealed semiconductor devices.
Two processes are possible.

しかし、ワイヤをボンディングする前にCuリードワイ
ヤを処理すると、表面に安定な化合物皮膜があるため、
ボンディングが困難となり不良が発生し易い。一方、ボ
ンディングした後に酸化処理するとリードワイヤのみな
らず、半導体素子上のAQ配線膜やリードフレーム等の
構成金属材料上にも化合物皮膜が形成され、構成材料の
保護性が向上する点で好都合である。なお、化合物皮膜
形成処理により、半導体素子中の回路膜の変質が懸念さ
れるが、論理回路の最上層にはSiの窒化物膜、ガラス
膜、ポリイミド膜等の保護膜が形成されているために、
皮膜形成処理によって直接的に論理回路膜を変質させる
ことはない。
However, if the Cu lead wire is treated before wire bonding, there will be a stable compound film on the surface.
Bonding becomes difficult and defects are likely to occur. On the other hand, oxidation treatment after bonding is advantageous in that a compound film is formed not only on the lead wire but also on the constituent metal materials such as the AQ wiring film on the semiconductor element and the lead frame, improving the protection of the constituent materials. be. There is a concern that the compound film formation process may cause deterioration of the circuit film in the semiconductor element, but since a protective film such as a Si nitride film, glass film, or polyimide film is formed on the top layer of the logic circuit. To,
The film forming process does not directly alter the logic circuit film.

化合物皮膜形成処理工程は、酸化処理工程と有機系腐食
抑制剤との接触工程の二段階の工程がある。この内、酸
化処理の方法としては、水溶液系で処理する方法と気相
系で処理する方法の二通りの方法が考えられる。水溶液
系における酸化処理では、溶液中の腐食性イオンや水分
が、処理後、構成材料上に残存、付着し、回路の汚染に
よる誤動作や、腐食性液膜の形成の原因となる可能性が
ある。従って、酸化処理は、気相系で、処理した方が有
利である。気相系の酸化処理では、02゜08、H2O
等のガス状態化剤とCuリードワイヤとを接触させるこ
とによりワイヤ表面に酸化物膜を形成させる。Cu2O
を主成分とする酸化物膜を形成させるには、雰囲気の温
度と酸化剤分圧を制御する必要がある。例えば、02雰
囲気で処理する場合には、02分圧を10−8〜1 +
nmHg、温度を50〜300℃の条件下で処理すると
、比較的短時間にち密なCuzO膜が得られる。酸化物
膜の厚さは、膜の保護性を維持し、かつ、下地のCuワ
イヤとの機械的ひずみによるはく離を抑えるために、1
0Å以上で、ワイヤ径の1%以下の範囲が望ましい。
The compound film forming treatment process includes two steps: an oxidation treatment step and a contact step with an organic corrosion inhibitor. Among these methods, two methods can be considered for the oxidation treatment: a method using an aqueous solution system and a method using a gas phase system. In oxidation treatment in an aqueous solution, corrosive ions and water in the solution may remain or adhere to the constituent materials after treatment, potentially causing malfunctions due to circuit contamination or the formation of a corrosive liquid film. . Therefore, it is more advantageous to carry out the oxidation treatment in a gas phase system. In gas phase oxidation treatment, 02°08, H2O
An oxide film is formed on the wire surface by bringing the Cu lead wire into contact with a gasifying agent such as the above. Cu2O
In order to form an oxide film containing as a main component, it is necessary to control the temperature of the atmosphere and the partial pressure of the oxidizing agent. For example, when processing in a 02 atmosphere, the 02 partial pressure is 10-8 to 1 +
When processed under conditions of nmHg and temperature of 50 to 300°C, a dense CuzO film can be obtained in a relatively short time. The thickness of the oxide film is set to 1 to maintain the protective properties of the film and to suppress peeling from the underlying Cu wire due to mechanical strain.
A range of 0 Å or more and 1% or less of the wire diameter is desirable.

有機系腐食抑制剤とリードワイヤとを接触させる方法と
しては、腐食抑制剤を溶媒に溶かした溶液中に浸漬する
方法、溶液を噴霧状態にして塗布する方法、腐食抑制剤
を気化させ蒸着させる三通りの方法があるが、溶液状態
にして接触させる方法がプロセス上と被覆率の点で好ま
しい。腐食抑制剤を溶かす溶媒には、水等の無機系溶媒
とアルコール、アセトン、フレオン等の有機系溶媒があ
る。この内、有機系溶媒は、腐食抑制剤の溶解度も高く
、一般に、蒸気圧が高いために処理後の溶媒の残存も少
ないので好ましい溶媒である。
There are three methods for bringing the organic corrosion inhibitor into contact with the lead wire: immersing the corrosion inhibitor in a solution dissolved in a solvent, applying the solution as a spray, and vaporizing the corrosion inhibitor and depositing it. Although there are various methods, the method of contacting the solution in the form of a solution is preferable from the viewpoint of process and coverage. Solvents for dissolving corrosion inhibitors include inorganic solvents such as water and organic solvents such as alcohol, acetone, and freon. Among these, organic solvents are preferable because they have a high solubility of the corrosion inhibitor and generally have a high vapor pressure so that little solvent remains after treatment.

上記の工程によりCuリードワイヤ上に付着した有機系
腐食抑制剤は、既存の酸化物膜と反応し、化合物皮膜を
形成する。この化合物皮膜は、処理後の洗浄工程や樹脂
モールド時にも安定に保持されているので、パッケージ
内部への水分の侵入を妨げ、またCuリードワイヤの耐
食性を保つ保護膜として有効である。
The organic corrosion inhibitor deposited on the Cu lead wire through the above steps reacts with the existing oxide film to form a compound film. This compound film is stably maintained during post-processing cleaning steps and resin molding, so it is effective as a protective film that prevents moisture from entering the package and maintains the corrosion resistance of the Cu lead wire.

〔実施例〕 以下、本発明の一実施例を図により説明する。〔Example〕 Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

Fe−42Ni合金、あるいは、Cu合金製のリードフ
レーム1上の部分Agめっきを施こした一次側電極2と
、タブ3上にダイボンディングした半導体素子4上のA
Q二次側電極5とを還元雰囲気中でCuリードワイヤ6
でワイヤボンディングする。その後、1 mm Hgの
08を含むアルゴムガス中(温度150℃)で−分間酸
化処理する。
A primary electrode 2 partially plated with Ag on a lead frame 1 made of Fe-42Ni alloy or Cu alloy, and A on a semiconductor element 4 die-bonded on a tab 3.
The Q secondary electrode 5 is connected to the Cu lead wire 6 in a reducing atmosphere.
Do wire bonding. Thereafter, it is oxidized for 1 minute in Al rubber gas containing 1 mm Hg of 08 (temperature: 150° C.).

さらに、0.1%のベンゾトリアゾールを含むイソプロ
ピルアルコール(液温60℃)中に二分間浸漬し、Cu
ワイヤ表面に化合物皮膜7を形成させる。以上の処理を
施こしたものを、エポキシ系樹脂からなる封止樹脂8で
封止して半導体装置を製造した。
Furthermore, the Cu
A compound film 7 is formed on the wire surface. The product subjected to the above treatment was sealed with a sealing resin 8 made of epoxy resin to produce a semiconductor device.

比較のために、リードワイヤとしてAu線を用いたもの
と、化合物皮膜処理を施こさないものについても、同様
な工程で半導体装置を製造した。
For comparison, semiconductor devices were manufactured using the same process using Au wires as lead wires and those not subjected to compound film treatment.

こうして製造した半導体装置を、温度120°C5相対
湿度95%のプレツシャークツ力中に放置し、Afl配
線断線不良発生時間を測定した。その結果を、第1表に
示す。
The semiconductor device manufactured in this way was left in a pressurizing force at a temperature of 120° C. and a relative humidity of 95%, and the time required for Afl wiring disconnection failure to occur was measured. The results are shown in Table 1.

第  1  表 第1表から明らかなように、本発明方法Nα1゜2によ
り製造された半導体装置は、従来の耐湿性の高いAuリ
ードワイヤを用いたものNn5.6と同程度の耐湿性信
頼性をもっている。しかし、従来方法による化合物皮膜
処理を施こさずにCuリードワイヤを用いた半導体装置
の耐湿信頼性は著しく劣っていることがわかる。
Table 1 As is clear from Table 1, the semiconductor device manufactured by the method of the present invention Nα1゜2 has moisture resistance reliability comparable to that of the conventional Nn5.6 device using Au lead wires with high moisture resistance. have. However, it can be seen that the moisture resistance reliability of a semiconductor device using a Cu lead wire without performing a compound film treatment by the conventional method is significantly inferior.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、Cuリードワイヤと樹脂との密着性を
高め、外部から半導体装置内部への水分の侵入を防げ、
さらに、Cuリードワイヤの耐食性を向上させることが
できるので、耐湿信頼性の優れた半導体装置を提供する
ことができる。
According to the present invention, it is possible to improve the adhesion between the Cu lead wire and the resin, and to prevent moisture from entering the inside of the semiconductor device from the outside.
Furthermore, since the corrosion resistance of the Cu lead wire can be improved, a semiconductor device with excellent moisture resistance and reliability can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例の半導体装置の断面図である。 1・・・リードフレーム、2・・・1次側電極、3・・
・タブ、4・・・半導体素子、5・・AQ2次側電極、
6・・・Cu八 1  S 4−
The figure is a sectional view of a semiconductor device according to an embodiment of the present invention. 1...Lead frame, 2...Primary side electrode, 3...
・Tab, 4... Semiconductor element, 5... AQ secondary side electrode,
6...Cu 8 1 S 4-

Claims (1)

【特許請求の範囲】 1、半導体素子とリードフレームとを、Cuリードワイ
ヤによりワイヤボンディングした後、前記Cuリードワ
イヤの表面を酸化処理し、有機系腐食抑制剤と接触させ
、前記Cuリードワイヤ表面に酸化物と前記有機系腐食
抑制剤との化合物皮膜を形成させることを特徴とする半
導体装置の製造方法。 2、前記酸化処理を、成分としてO_2、O_3及びH
_2Oよりなる群から選択した少なくとも一種の酸化剤
を含んだ気相雰囲気中で酸化処理することを特徴とする
特許請求の範囲第1項記載の半導体装置の製造方法。 3、前記有機系腐食抑制剤は、式( I )で示されるベ
ンゾトリアゾール類化合物、式(II)で示されるメルカ
プトベンゼン化合物、式(III)で示されるトリアジン
チオール化合物(式中、Rは水素又は炭化水素基又はニ
トロ基又はハロゲン基又はカルボキシル基又はアミノ基
又はヒドロキシル基を、XはO又はS又はNHを、R′
及びR″は水素又は炭化水素基を、各々表わす)▲数式
、化学式、表等があります▼・・・( I ) ▲数式、化学式、表等があります▼・・・(II) ▲数式、化学式、表等があります▼・・・(III) よりなる群から選択した少なくとも一種の有機化合物で
あることを特徴とする特許請求の範囲第1項または第2
項に記載の半導体装置の製造方法。 4、前記有系腐食抑制剤との接触を、前記有機系腐食抑
制剤を有機溶媒に溶かした溶液と前記Cuリードワイヤ
とを接触させることにより行うことを特徴とする特許請
求の範囲第3項記載の半導体装置の製造方法。
[Claims] 1. After wire bonding a semiconductor element and a lead frame using a Cu lead wire, the surface of the Cu lead wire is oxidized and brought into contact with an organic corrosion inhibitor, so that the surface of the Cu lead wire is A method for manufacturing a semiconductor device, comprising forming a compound film of an oxide and the organic corrosion inhibitor. 2. The above oxidation treatment is performed using O_2, O_3 and H as components.
2. The method of manufacturing a semiconductor device according to claim 1, wherein the oxidation treatment is performed in a gas phase atmosphere containing at least one oxidizing agent selected from the group consisting of _2O. 3. The organic corrosion inhibitor may be a benzotriazole compound represented by formula (I), a mercaptobenzene compound represented by formula (II), or a triazinethiol compound represented by formula (III) (wherein R is hydrogen). or a hydrocarbon group, a nitro group, a halogen group, a carboxyl group, an amino group or a hydroxyl group, X is O, S or NH, R'
and R'' represent hydrogen or a hydrocarbon group, respectively) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼... (I) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼... (II) ▲ Numerical formulas, chemical formulas , tables, etc. ▼...(III) Claim 1 or 2, characterized in that it is at least one organic compound selected from the group consisting of:
A method for manufacturing a semiconductor device according to paragraph 1. 4. Contact with the organic corrosion inhibitor is carried out by bringing the Cu lead wire into contact with a solution in which the organic corrosion inhibitor is dissolved in an organic solvent. A method of manufacturing the semiconductor device described above.
JP62099843A 1987-04-24 1987-04-24 Manufacture of semiconductor device Pending JPS63266844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62099843A JPS63266844A (en) 1987-04-24 1987-04-24 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62099843A JPS63266844A (en) 1987-04-24 1987-04-24 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS63266844A true JPS63266844A (en) 1988-11-02

Family

ID=14258083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62099843A Pending JPS63266844A (en) 1987-04-24 1987-04-24 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS63266844A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018037639A (en) * 2016-08-31 2018-03-08 株式会社東芝 Semiconductor package and semiconductor package manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018037639A (en) * 2016-08-31 2018-03-08 株式会社東芝 Semiconductor package and semiconductor package manufacturing method

Similar Documents

Publication Publication Date Title
KR900007303B1 (en) Resin packed semiconductor device
US6933614B2 (en) Integrated circuit die having a copper contact and method therefor
US6566253B2 (en) Method of making electrical interconnection for attachment to a substrate
US9012263B1 (en) Method for treating a bond pad of a package substrate
US6979647B2 (en) Method for chemical etch control of noble metals in the presence of less noble metals
US7262126B2 (en) Sealing and protecting integrated circuit bonding pads
KR100300462B1 (en) Silicon semiconductor device and manufacturing method thereof
US6784088B2 (en) Method to selectively cap interconnects with indium or tin bronzes and/or oxides thereof and the interconnect so capped
JP2006196648A (en) Electronic component having external junction electrode and manufacturing method thereof
JPS63266844A (en) Manufacture of semiconductor device
JPH0253945B2 (en)
WO2003075340A2 (en) Method for obtaining metal to metal contact between a metal surface and a bonding pad.
WO2013028309A1 (en) Tarnish inhibiting composition for metal leadframes
JP2018040030A (en) Surface treatment method of copper component and production method of semiconductor packaging substrate
Chyan et al. Mechanistic Investigation and Prevention of Al Bond Pad Corrosion in Cu Wire-bonded Device Assembly
JPS63187656A (en) Semiconductor device
JPH0478173B2 (en)
JP3590603B2 (en) Semiconductor device and manufacturing method thereof
JPH1070128A (en) Method of formation of palladium contact bump on semiconductor circuit carrier
CN108315725A (en) A kind of minimizing technology of the impurity on silver bonding wire surface
JPS63310152A (en) Manufacture of lead frame
JPS63291443A (en) Manufacture of semiconductor device
JPH0476921A (en) Manufacture of semiconductor device
JPH0974159A (en) Treating method for iron lead frame and lead frame
JPH04215463A (en) Method of plating terminal of glass-sealed package