JPH0478173B2 - - Google Patents

Info

Publication number
JPH0478173B2
JPH0478173B2 JP61133860A JP13386086A JPH0478173B2 JP H0478173 B2 JPH0478173 B2 JP H0478173B2 JP 61133860 A JP61133860 A JP 61133860A JP 13386086 A JP13386086 A JP 13386086A JP H0478173 B2 JPH0478173 B2 JP H0478173B2
Authority
JP
Japan
Prior art keywords
copper
lead wire
wire
film
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61133860A
Other languages
Japanese (ja)
Other versions
JPS62291123A (en
Inventor
Shiro Kobayashi
Masahiko Ito
Shigetoshi Kazama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61133860A priority Critical patent/JPS62291123A/en
Publication of JPS62291123A publication Critical patent/JPS62291123A/en
Publication of JPH0478173B2 publication Critical patent/JPH0478173B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45565Single coating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/45686Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/45686Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2224/45687Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、銅線をリードワイヤとして用いる樹
脂封止型半導体装置に係り、特に耐湿性、耐食性
に優れた半導体装置の製造方法に関する。 〔従来の技術〕 従来、半導体装置の製造においては、半導体ペ
レツト上に形成した電極パツドと、リードフレー
ムとを電気的に接続するリードワイヤの材料とし
て、金線、アルミニウム線あるいは銅線が使用さ
れている。銅線は、上記3種類の材料の中で、最
も電気抵抗が小さく、細線化による高密度、高集
積化が図れる上、低価格であるなどの利点を有し
ている。そこで、近年、半導体装置の高密度、高
集積化と製造コストの低減の要求を満たすため、
銅線をリードワイヤとして用いた半導体装置が製
造されるようになつてきている。また、従来リー
ドワイヤとして主に金線しか用いられていなかつ
た樹脂封止型半導体装置においても、銅線がリー
ドワイヤとして用いられるようになつてきてい
る。 しかし、樹脂封止型半導体装置は樹脂パツケー
ジとリードとの界面を通じて外部から内部に水分
が浸入し易いという欠点がある。パツケージ内部
に浸入した水分は、リードワイヤとして銅線を用
いている場合には、これを腐食させ、更にリード
ワイヤとボンデイングされているペレツト上のア
ルミニウム電極パツドや配線膜の腐食を引起こ
し、断線不良が発生する可能性があつた。特に、
銅線が腐食した場合には、溶解したCu2+イオン
がアルミニウム電極や配線上に電析し、それが再
溶解と再析出を繰返しながら、電極や配線が自己
触媒的に著しく浸食されていくおそれがある。 従来、リードワイヤとパツケージとの界面への
水分の浸入を抑える方法として、特開昭58−
103146号公報に示されるように、リードワイヤ表
面にシリコーン油等、樹脂と金属との双方にぬれ
性が良い疎水性油脂膜を塗布する方法がある。ま
た、特開昭58−135660号公報に示されるように、
リードワイヤ表面に水との反応性の高いアルミニ
ウム薄膜を形成させる方法がある。これらの方法
では、水分浸入に対する防止膜の性能が完全に発
揮されれば、パツケージ内部への水分の浸入速度
を遅くする効果がある。 〔発明が解決しようとする問題点〕 しかしながら、リードワイヤ表面に防止膜を形
成後、樹脂モールド時等の加熱時に、油脂膜の蒸
発や分解、アルミニウム薄膜の酸化等による防止
膜の劣化の可能性については考慮されていなかつ
た。 本発明の目的は、上記問題点を解決し、耐湿及
び耐食信頼性の優れた樹脂封止型半導体装置及び
その製造方法を提供することにある。 〔問題点を解決するための手段〕 本発明を概説すれば、本発明は半導体装置の製
造方法に関する発明であつて、銅線をリードワイ
ヤとして用いる半導体装置を製造する方法におい
て、銅線をリードワイヤとして電極パツドにボン
デイングさせた後、O2分圧が10-3〜1mmHgの気
相雰囲気中、温度100〜300℃で酸化処理すること
により、該銅リードワイヤの表面に、CuO2を主
成分とする、膜厚が0.01〜1μmの酸化物膜を形成
させる工程を包含することを特徴とする。 本発明者らは、リードワイヤとレジンパツケー
ジとの界面から浸入してくる水分、樹脂及びリー
ドワイヤ材、特に銅線との物理的及び化学的な相
互作用について研究することにより、本発明に至
つた。 すなわち、本発明は銅線からなるリードワイヤ
の表面に樹脂及び下地の金属銅との双方に密着性
が高い主成分がCu2Oからなる酸化物膜を形成さ
せ、水分の浸入と下地の金属銅の腐食を抑制する
ことにより、樹脂封止型半導体の耐湿性及び耐食
性を改善させたものである。 以下、本発明を詳細に説明する。 樹脂パツケージ内部に浸入してくる水分は、浸
入の過程で、外部及び樹脂から、Cl-、Br-
Na+、NH4 +、Sb3+などのイオンが溶解する結
果、比較的電導度の高い水となる。また、浸入水
のPHは3〜4と酸性であり、上記の腐食性イオン
の存在により、腐食性の強い水となり、それが銅
リードワイヤ上、アルミニウム電極や配線面に到
達して、そこに液膜を形成する。 銅は両性金属であるために、液膜のPHが酸性、
アルカリ性のいずれにおいても溶解する。ここで
上記した様に、銅リードワイヤの表面に形成され
る浸入水の液膜は酸性であるため、銅は腐食し
Cu2+イオンとして溶解する。一方、銅表面には
腐食に伴つて、CuOあるいはCu(OH)2からなる
腐食生成物が沈殿、析出してくる。この腐食生成
物は、下地の銅の腐食をある程度抑制する作用が
ある。しかし、このような水溶液系で生成する腐
食生成皮膜は、結晶性が低く、かつ構造が粗雑で
その保護性は乏しい。また液膜中に含まれている
Cl-、Br-などのハロゲンイオンやNH4 +イオン
は、皮膜の成分であるCuOやCu(OH)2と反応し
て可溶性の錯イオンを形成し、この腐食生成皮膜
を破壊する作用があり、腐食を更に進行させる。 リードワイヤよりも更に内部、すなわちアルミ
ニウム電極や配線面に浸入した水分は、アルミニ
ウムを銅と同様に腐食させていく。特に、液膜中
に銅リードワイヤから腐食により溶解したCu2+
イオンが存在する場合には、これがアルミニウム
電極や配線面上に、Cuとして還元析出する。更
に、この析出したCuは下地のアルミニウムより
電子を奪い再び溶解するが、その際電子を奪われ
たアルミニウムはAl3+に酸化され腐食する。そ
して、このCu2+のアルミニウム上への再析出と
再溶解は繰返し起るので、アルミニウムはCu2+
の触媒作用によつて著しく腐食が進行する結果と
なる。 銅リードワイヤ及びアルミニウム電極や配線の
腐食を抑制するには、樹脂パツケージ内部、特に
リードワイヤとパツケージとの界面への水分の浸
入を妨げるか、あるいは、たとえ水分が浸入して
も下地の金属銅が腐食されないようにリードワイ
ヤの表面を、保護性の高い皮膜で被覆しておくと
いう2通りの方法が考えられる。 水分の浸入を抑える方法としては、リードワイ
ヤと樹脂パツケージとの密着性を上げ物理的に浸
入を防止するか、あるいは浸入経路上に水分の捕
そく剤あるいは疎水性物質を形成させておく化学
的な方法の2通りの方法が考えられる。リードワ
イヤは平滑な表面を有する金属線であり、樹脂パ
ツケージとの密着性は良くない。そこで、樹脂封
止する前に、リードワイヤの表面粗さを高め、樹
脂との接着面積を増加させ、かつ表面に水分及び
腐食に対し保護性の高い物質を形成させるような
処理を施こすことにより、水分の浸入と腐食を抑
制するという処理法について検討した。 リードワイヤの表面粗さを高める方法として
は、ワイヤの表面を機械的あるいは化学的にエツ
チングする方法、表面にワイヤとの密着性に優れ
かつ表面粗度の高い性質を有する物質を形成させ
る方法の2通りの方法が考えられる。しかし、エ
ツチングによる方法は、リードワイヤが極めて細
く短かいために機械的エツチングは非常に難し
い。また、リードワイヤのみを選択的に化学エツ
チングするのも極めて困難である。したがつて、
ワイヤ表面に密着性が高くかつ表面粗さの高い物
質を形成させる方法の方が、有利である。上記の
性質を有する物質としては、下地の金属銅を酸化
することにより得られる酸化物が好ましい。 銅を酸化すると、Cu2O、CuO、Cu2OとCuO
との混合酸化物の3種類の内、いずれかが生成す
る。このうち、Cu2Oは結晶性が高く、構造もち
密で、下地の金属銅との密着性が高い。他の酸化
物は、いずれも針状結晶や多孔性結晶が成長し易
く、ち密性や密着性に乏しい。したがつて、銅リ
ードワイヤの表面に形成させる酸化物としては
Cu2Oが好ましい。 Cu2Oは、大きな結晶に成長し易く、その表面
積は下地の平滑な金属銅のそれに比べて数倍から
数10倍に達する。このことは、リードワイヤの表
面粗さを高め、樹脂との接着面積を増加させる結
果となり、水分の浸入を防ぐ上で極めて都合がよ
い。また、Cu2Oはち密な構造を有し、かつ下地
の金属銅との密着性に優れている点でも、水分の
浸入を物理的に阻止する物質として有利である。
一方、化学的物質については、Cu2Oは浸入して
くる水分と反応してCuOあるいはCu(OH)2に変
化するので、水分の捕そく作用も有している。ま
た、反応により生成したCuOあるいはCu(OH)2
は、腐食に対する保護作用も有している。したが
つて、表面にCu2Oを形成させたリードワイヤを
樹脂封止すると、Cu2Oが安定的に水分の浸入阻
止物として働く作用を有し、有利である。 Cu2Oはそれ自体水に難溶性で、また水と反応
してもCuOやCu(OH)2に変化するので水には溶
解しにくい。その上、Cu2Oは構造がち密で、か
つ下地の銅との密着性が高く、腐食に対し極めて
高い保護性を有している。したがつて、表面に
Cu2Oを形成させた銅リードワイヤは、たとえ水
と接触しても、腐食しにくい。またアルミニウム
電極や配線の腐食を促進するCu2+イオンの銅リ
ードワイヤからの溶解速度も極めて小さくなる
等、腐食の面でもCu2Oの形成は効果がある。 銅リードワイヤ上へ、Cu2Oを形成させる酸化
処理工程は、半導体装置の製造プロセス上、ワイ
ヤをボンデイングする前かあるいはその後に処理
するかの、2通りの工程が考えられる。しかし、
ワイヤをボンデイングする前に銅リードワイヤを
酸化処理すると、表面に安定な酸化物膜があるた
めに、ボンデイングが困難となり効率が低下する
可能性がある。一方、ボンデイングした後に酸化
処理するとリードワイヤのみならず、Siチツプ上
の電極や配線、リードフレーム等の構成金属材料
上にも酸化物膜が形成され、構成材料の保護性が
向上する点で好都合である。なお、酸化処理によ
るSiチツプ中のSi回路膜の酸化が懸念されるが、
論理回路の最上層にはSiの窒化物膜やガラス膜等
の保護膜が形成されているために、酸化処理によ
つて論理回路が直接酸化されることはない。 酸化処理の方法としては、溶液系で処理する方
法と気相系で処理する方法の2通りの方法が考え
られる。溶液系における酸化処理において、
HNO3、CrO3、H2O2等の強い酸化剤の溶液中で
処理すると、表面には厚い酸化物膜が形成される
が、ち密なCu2Oは生成しにくい。またO2やNO2
等の酸化力の低い酸化剤の溶液中では、薄いが
比較的ち密なCu2Oが生成する。しかし、溶液中
で酸化処理すると、溶液中の共存金属イオンや不
純物イオンが、構成材料上に残存、付着し、回路
の汚染による誤動作や、腐食性液膜の形成の原因
となる可能性がある。したがつて、酸化処理は、
気相系で処理した方が有利である。 気相系における酸化処理には、大気圧下におけ
る空気酸化による方法、O2、O3、H2O等のガス
状酸化剤を真空系に注入し減圧下で処理する方法
及び上記ガス状酸化剤を含んだHeやAr等の不活
性キヤリヤガス中で処理する方法の3通りの方法
がある。空気酸化による処理では、雰囲気の湿度
制御を必要とし、また後述するO2分圧の関係か
ら、Cu2Oは生成しにくい。減圧下での処理法で
は、真空装置系を必要とし、また真空度が上がる
のに時間を要し、処理時間が長くかかる可能性が
ある。一方、不活性キヤリヤガス中で処理する方
法は、雰囲気制御も容易で、特別な装置を必要と
せず、更に処理時間が短時間で済む等の点で好都
合である。 気相系における銅上でのCu2O膜の形成は、雰
囲気の温度と酸化剤の種類及びその濃度に依存す
る。例えば、O2を酸化剤として用いた場合には、
O2分圧が10-3〜1mmHgの低い濃度範囲では、温
度にかかわらず、Cu2Oが生成し易い。逆に酸化
剤濃度が高い場合には、CuOが生成し易い。ま
た、温度が高いほど、Cu2Oが生成し易くなる。
しかし、300℃を超えて加熱すると、ボンデイン
グした銅ワイヤとAl電極パツドとの接合部にお
いて銅とアルミニウムとの化合物が成長し接合強
度が低下したり、論理回路中の構成元素の拡散や
マイグレーシヨンが起こり好ましくない。一方、
100℃未満ではCu2Oの成長速度が遅いために、
処理時間が長くかかり好ましくない。したがつ
て、銅リードワイヤ上にCu2Oを形成させる処理
条件としては、酸化剤濃度が低く、温度が100〜
300℃の範囲の条件が好ましい。 ガス状酸化剤の種類としては、O2、O3、H2
等があり、いずれも銅を酸化し、Cu2Oを形成す
る。O3を使用する場合には、その発生装置が必
要である。一方、H2Oの場合には、被処理品や
処理装置の表面への水分の凝縮を防ぎ、均一な雰
囲気を保つために、水を乾燥水蒸気あるいは過熱
水蒸気にして注入する必要がある。したがつて、
酸化剤としては、プロセス及び取扱い上、O2
最も好ましい。そして、O2の濃度条件は、上記
の様にCu2Oが温度に依存せずに生成し易い、分
圧が10-3〜1mmHgの範囲が好ましい。 リードワイヤ上の酸化物膜の厚さは、酸化処理
の温度、酸化剤の種類及びその濃度、処理時間に
依存するが、酸化物膜の保護性を保持するために
は、銅上のCu2Oからなる不働態皮膜の最小厚さ
が10Åであるので、少なくとも10Å以上の厚さが
必要である。一方、リードワイヤ上に、ワイヤ径
の10%を超える酸化物膜が存在すると、機械的ひ
ずみにより下地の銅ワイヤから酸化物膜がはく離
する可能性がある。したがつて、酸化物膜の厚さ
は、0.01〜1μm、ワイヤ径の10%以下の範囲が好
ましい。 〔実施例〕 以下、本発明を実施例により更に具体的に説明
するが、本発明はこれら実施例に限定されない。 実施例 1 第1図に断面図を示す銅ワイヤボンデイング半
導体装置を用いて一実施例を説明する。すなわ
ち、第1図は本発明の半導体装置の一実施例の断
面図である。第1図において符号1はリードフレ
ーム、2は1次側電極、3はタブ、4はシリコン
ペレツト、5はアルミニウム2次側電極、6は銅
リードワイヤ、7は酸化物膜、8は封止樹脂を意
味する。 リードフレーム1上の金めつきを施こした1次
側電極2と、タブ3上にマウントしたシリコンペ
レツト4上のアルミニウム2次側電極5に、銅リ
ードワイヤ6をボンデイングする。その後、この
半導体装置を次の条件に調整したガス雰囲気中
で、種々の温度で酸化処理し、銅リードワイヤ6
上にCu2Oからなる酸化物膜7を形成させる。 温 度:100,200,300℃ ガス組成:分圧0.1mmHgのO2を含むAr 処理時間:60秒 その後にエポキシ系樹脂からなる封止樹脂8で
封止する。そして、その封止した半導体装置を、
120℃、2気圧の高温高湿度条件下で耐湿信頼性
試験し、断線不良発生時間を測定した。その結果
を表−1に示す。
[Industrial Application Field] The present invention relates to a resin-sealed semiconductor device using a copper wire as a lead wire, and particularly to a method for manufacturing a semiconductor device with excellent moisture resistance and corrosion resistance. [Prior Art] Conventionally, in the manufacture of semiconductor devices, gold wire, aluminum wire, or copper wire has been used as the material for lead wires that electrically connect electrode pads formed on semiconductor pellets and lead frames. ing. Copper wire has the advantages of having the lowest electrical resistance among the three types of materials mentioned above, allowing for high density and high integration by thinning the wire, and being inexpensive. Therefore, in recent years, in order to meet the demands for higher density and higher integration of semiconductor devices and lower manufacturing costs,
Semiconductor devices using copper wires as lead wires are increasingly being manufactured. Furthermore, copper wires are now being used as lead wires even in resin-sealed semiconductor devices in which conventionally only gold wires have been mainly used as lead wires. However, resin-sealed semiconductor devices have a drawback in that moisture easily enters the device from the outside through the interface between the resin package and the leads. Moisture that has entered the inside of the package corrodes copper wires if they are used as lead wires, and also causes corrosion of the aluminum electrode pads and wiring film on the pellets that are bonded to the lead wires, causing disconnection. There was a possibility that defects would occur. especially,
When copper wires corrode, dissolved Cu 2+ ions are deposited on aluminum electrodes and wiring, and as they are repeatedly redissolved and reprecipitated, the electrodes and wiring are significantly eroded in an autocatalytic manner. There is a risk. Conventionally, as a method of suppressing moisture intrusion into the interface between the lead wire and the package, there was
As shown in Japanese Patent No. 103146, there is a method of applying a hydrophobic oil film such as silicone oil, which has good wettability to both resin and metal, to the surface of the lead wire. In addition, as shown in Japanese Patent Application Laid-Open No. 58-135660,
There is a method of forming a thin aluminum film that is highly reactive with water on the surface of the lead wire. These methods have the effect of slowing down the rate of moisture infiltration into the package if the performance of the moisture infiltration prevention film is fully demonstrated. [Problems to be solved by the invention] However, after the preventive film is formed on the surface of the lead wire, there is a possibility that the preventive film will deteriorate due to evaporation or decomposition of the oil film, oxidation of the aluminum thin film, etc. during heating during resin molding. was not considered. An object of the present invention is to solve the above-mentioned problems and provide a resin-sealed semiconductor device with excellent moisture resistance and corrosion resistance reliability, and a method for manufacturing the same. [Means for Solving the Problems] To summarize the present invention, the present invention relates to a method of manufacturing a semiconductor device, and the present invention relates to a method of manufacturing a semiconductor device using a copper wire as a lead wire. After bonding as a wire to an electrode pad, CuO 2 is mainly formed on the surface of the copper lead wire by oxidation treatment at a temperature of 100 to 300°C in a gas phase atmosphere with an O 2 partial pressure of 10 -3 to 1 mmHg. It is characterized by including a step of forming an oxide film having a thickness of 0.01 to 1 μm as a component. The present inventors arrived at the present invention by researching the physical and chemical interactions between moisture that enters from the interface between the lead wire and the resin package, resin, and lead wire materials, especially copper wire. Ivy. That is, the present invention forms an oxide film mainly composed of Cu 2 O, which has high adhesion to both the resin and the underlying metallic copper, on the surface of a lead wire made of a copper wire, thereby preventing water intrusion and the underlying metal. By suppressing copper corrosion, the moisture resistance and corrosion resistance of resin-sealed semiconductors are improved. The present invention will be explained in detail below. During the infiltration process, water that enters the resin package cage is converted into Cl -, Br - , Cl - from the outside and from the resin.
As a result of dissolving ions such as Na + , NH 4 + , and Sb 3+ , water becomes relatively highly conductive. In addition, the pH of the infiltrating water is acidic at 3 to 4, and the presence of the above-mentioned corrosive ions makes the water highly corrosive, which reaches the copper lead wire, aluminum electrode, and wiring surface. Forms a liquid film. Since copper is an amphoteric metal, the pH of the liquid film is acidic.
It dissolves in both alkaline conditions. As mentioned above, the liquid film of infiltrated water that forms on the surface of the copper lead wire is acidic, so copper will not corrode.
Dissolves as Cu 2+ ions. On the other hand, as the copper surface corrodes, corrosion products consisting of CuO or Cu(OH) 2 precipitate and precipitate. This corrosion product has the effect of suppressing the corrosion of the underlying copper to some extent. However, the corrosion film produced in such an aqueous solution system has low crystallinity and a rough structure, and its protective properties are poor. Also included in the liquid film
Halogen ions such as Cl - and Br - and NH 4 + ions react with the film components CuO and Cu(OH) 2 to form soluble complex ions, which have the effect of destroying this corrosion-produced film. , causing further corrosion. Moisture that has entered the interior of the lead wire, ie, the aluminum electrode and wiring surface, corrodes aluminum in the same way as copper. In particular, Cu 2+ dissolved by corrosion from the copper lead wire in the liquid film.
If ions are present, they are reduced and precipitated as Cu on the aluminum electrode or wiring surface. Furthermore, this precipitated Cu steals electrons from the underlying aluminum and dissolves again, but at this time, the aluminum that has been robbed of electrons is oxidized to Al 3+ and corroded. Since this redeposition and redissolution of Cu 2+ on aluminum occur repeatedly, aluminum becomes Cu 2+
As a result, corrosion progresses significantly due to the catalytic action of In order to suppress corrosion of copper lead wires and aluminum electrodes and wiring, it is necessary to prevent moisture from entering the inside of the resin package, especially at the interface between the lead wire and the package, or to protect the underlying metallic copper even if moisture does enter. Two methods can be considered: coating the surface of the lead wire with a highly protective coating to prevent corrosion. Methods to suppress moisture intrusion include physically preventing intrusion by increasing the adhesion between the lead wire and the resin package, or chemically creating a moisture scavenger or hydrophobic substance on the ingress route. There are two possible methods. The lead wire is a metal wire with a smooth surface, and its adhesion to the resin package is poor. Therefore, before resin sealing, a treatment is performed to increase the surface roughness of the lead wire, increase the adhesive area with the resin, and form a substance on the surface that is highly protective against moisture and corrosion. We investigated treatment methods to suppress moisture infiltration and corrosion. Methods for increasing the surface roughness of lead wires include mechanically or chemically etching the surface of the wire, and forming a material on the surface that has excellent adhesion to the wire and a high surface roughness. Two methods are possible. However, in the etching method, mechanical etching is extremely difficult because the lead wire is extremely thin and short. Furthermore, it is extremely difficult to selectively chemically etch only the lead wires. Therefore,
A method of forming a material with high adhesion and high surface roughness on the wire surface is more advantageous. As the substance having the above-mentioned properties, an oxide obtained by oxidizing the underlying metal copper is preferable. When copper is oxidized, Cu 2 O, CuO, Cu 2 O and CuO
One of three types of mixed oxides is produced. Among these, Cu 2 O has high crystallinity, a dense structure, and high adhesion to the underlying metallic copper. All other oxides tend to grow needle-like crystals or porous crystals, and are poor in compactness and adhesion. Therefore, the oxide to be formed on the surface of the copper lead wire is
Cu 2 O is preferred. Cu 2 O easily grows into large crystals, and its surface area is several to several tens of times larger than that of the underlying smooth metallic copper. This results in an increase in the surface roughness of the lead wire and an increase in the adhesive area with the resin, which is extremely convenient for preventing moisture intrusion. Furthermore, Cu 2 O has a dense structure and excellent adhesion to the underlying metal copper, making it advantageous as a substance that physically prevents moisture from penetrating.
On the other hand, regarding chemical substances, Cu 2 O reacts with invading moisture and changes into CuO or Cu(OH) 2 , so it also has a moisture trapping effect. In addition, CuO or Cu(OH) 2 produced by the reaction
also has a protective effect against corrosion. Therefore, it is advantageous to seal the lead wire with Cu 2 O formed on the surface with a resin because the Cu 2 O stably acts as a moisture infiltration barrier. Cu 2 O itself is poorly soluble in water, and even if it reacts with water, it changes to CuO or Cu(OH) 2 , so it is difficult to dissolve in water. Moreover, Cu 2 O has a dense structure, has high adhesion to the underlying copper, and has extremely high protection against corrosion. Therefore, on the surface
Copper lead wires formed with Cu 2 O are less likely to corrode even if they come into contact with water. Furthermore, the formation of Cu 2 O is also effective in terms of corrosion, as the rate of dissolution of Cu 2+ ions from the copper lead wire, which promotes corrosion of aluminum electrodes and wiring, becomes extremely low. The oxidation process for forming Cu 2 O on the copper lead wire can be performed in two ways, depending on the manufacturing process of the semiconductor device: before or after bonding the wire. but,
Oxidizing the copper lead wire before bonding the wire can make bonding difficult and reduce efficiency due to the presence of a stable oxide film on the surface. On the other hand, if oxidation treatment is performed after bonding, an oxide film will be formed not only on the lead wire but also on the constituent metal materials such as the electrodes and wiring on the Si chip and the lead frame, which is advantageous in that it improves the protection of the constituent materials. It is. There is a concern that the Si circuit film in the Si chip may be oxidized due to oxidation treatment.
Since a protective film such as a Si nitride film or a glass film is formed on the top layer of the logic circuit, the logic circuit is not directly oxidized by the oxidation treatment. There are two possible oxidation treatment methods: a solution-based treatment method and a gas-phase treatment method. In solution-based oxidation treatment,
When treated in a solution of a strong oxidizing agent such as HNO 3 , CrO 3 or H 2 O 2 , a thick oxide film is formed on the surface, but dense Cu 2 O is difficult to form. Also O 2 and NO 2
In a solution of an oxidizing agent with low oxidizing power such as - , thin but relatively dense Cu 2 O is produced. However, when oxidation treatment is performed in a solution, coexisting metal ions and impurity ions in the solution may remain or adhere to the component materials, potentially causing malfunctions due to circuit contamination or the formation of a corrosive liquid film. . Therefore, oxidation treatment is
It is more advantageous to process in a gas phase system. Oxidation treatment in a gas phase system includes a method of air oxidation under atmospheric pressure, a method of injecting a gaseous oxidizing agent such as O 2 , O 3 , H 2 O into a vacuum system and processing under reduced pressure, and the above gaseous oxidation method. There are three methods: processing in an inert carrier gas such as He or Ar containing a chemical agent. Treatment by air oxidation requires atmospheric humidity control, and Cu 2 O is difficult to generate due to the O 2 partial pressure, which will be described later. The processing method under reduced pressure requires a vacuum equipment system, and it takes time to increase the degree of vacuum, so the processing time may take a long time. On the other hand, the method of processing in an inert carrier gas is advantageous in that the atmosphere can be easily controlled, no special equipment is required, and the processing time is short. The formation of a Cu 2 O film on copper in a gas phase system depends on the temperature of the atmosphere and the type and concentration of the oxidizing agent. For example, when O 2 is used as an oxidizing agent,
In a low concentration range where the O 2 partial pressure is 10 −3 to 1 mmHg, Cu 2 O is likely to be generated regardless of the temperature. Conversely, if the oxidizing agent concentration is high, CuO is likely to be generated. Further, the higher the temperature, the easier it is to generate Cu 2 O.
However, when heated above 300℃, a compound of copper and aluminum grows at the joint between the bonded copper wire and the Al electrode pad, reducing the joint strength and causing diffusion and migration of constituent elements in the logic circuit. This is not desirable. on the other hand,
Since the growth rate of Cu 2 O is slow below 100℃,
This is not preferable as it takes a long time to process. Therefore, the processing conditions for forming Cu 2 O on the copper lead wire include a low oxidizing agent concentration and a temperature of 100°C to 100°C.
Conditions in the range of 300°C are preferred. Types of gaseous oxidizing agents include O 2 , O 3 , H 2 O
etc., and all of them oxidize copper to form Cu 2 O. If O 3 is used, a generator is required. On the other hand, in the case of H 2 O, it is necessary to inject water in the form of dry steam or superheated steam in order to prevent moisture from condensing on the surfaces of the processing target or processing equipment and to maintain a uniform atmosphere. Therefore,
As the oxidizing agent, O 2 is most preferred from the viewpoint of process and handling. The O 2 concentration condition is preferably such that the partial pressure is in the range of 10 -3 to 1 mmHg, where Cu 2 O is easily generated independent of temperature as described above. The thickness of the oxide film on the lead wire depends on the temperature of the oxidation treatment, the type and concentration of the oxidizing agent, and the treatment time, but in order to maintain the protective properties of the oxide film, Cu 2 on the copper Since the minimum thickness of the passive film made of O is 10 Å, the thickness must be at least 10 Å or more. On the other hand, if an oxide film exceeding 10% of the wire diameter exists on the lead wire, the oxide film may peel off from the underlying copper wire due to mechanical strain. Therefore, the thickness of the oxide film is preferably in the range of 0.01 to 1 μm and 10% or less of the wire diameter. [Examples] Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples. Example 1 An example will be described using a copper wire bonding semiconductor device whose cross-sectional view is shown in FIG. That is, FIG. 1 is a sectional view of one embodiment of the semiconductor device of the present invention. In FIG. 1, reference numeral 1 is a lead frame, 2 is a primary electrode, 3 is a tab, 4 is a silicon pellet, 5 is an aluminum secondary electrode, 6 is a copper lead wire, 7 is an oxide film, and 8 is a seal. It means a stopper resin. A copper lead wire 6 is bonded to the gold-plated primary electrode 2 on the lead frame 1 and the aluminum secondary electrode 5 on the silicon pellet 4 mounted on the tab 3. Thereafter, this semiconductor device was oxidized at various temperatures in a gas atmosphere adjusted to the following conditions, and the copper lead wire 6 was oxidized.
An oxide film 7 made of Cu 2 O is formed thereon. Temperature: 100, 200, 300°C Gas composition: Ar containing O 2 with a partial pressure of 0.1 mmHg Processing time: 60 seconds After that, sealing is performed with sealing resin 8 made of epoxy resin. Then, the sealed semiconductor device is
A moisture resistance reliability test was conducted under high temperature and high humidity conditions of 120°C and 2 atm, and the time required for disconnection failure to occur was measured. The results are shown in Table-1.

【表】 表−1から明らかなように、比較例である酸化
処理していない半導体装置は650時間で腐食によ
る断線不良が発生するのに対し、本発明になる半
導体装置はいずれの温度で処理したものでも2000
時間経過後も不良は発生せず、酸化処理によつて
形成されたCu2O膜が水分の浸入を防ぎ、腐食が
抑制されている。 実施例 2 実施例1と同様に組立後、銅リードワイヤをボ
ンデイングした半導体装置を、次の条件に調整し
たガス雰囲気中で、種々の処理時間で酸化処理
し、銅リードワイヤ上にCu2Oからなる酸化物膜
を形成させた。 温 度:200℃ ガス組成:分圧0.1mmHgのO2を含むAr 処理時間:5,30,60,600秒 その後、実施例1と同様に、樹脂封止し、耐湿
信頼性を試験した。その結果を、表−2に示す。
[Table] As is clear from Table 1, the semiconductor device of the comparative example that was not subjected to oxidation treatment suffered disconnection due to corrosion after 650 hours, whereas the semiconductor device of the present invention was treated at any temperature. 2000 even if
No defects occurred even after the lapse of time, and the Cu 2 O film formed by the oxidation treatment prevented moisture from entering and corrosion was suppressed. Example 2 After assembly in the same manner as in Example 1, a semiconductor device with bonded copper lead wires was subjected to oxidation treatment for various treatment times in a gas atmosphere adjusted to the following conditions, and Cu 2 O was formed on the copper lead wires. An oxide film consisting of Temperature: 200° C. Gas composition: Ar containing O 2 with a partial pressure of 0.1 mmHg Treatment time: 5, 30, 60, and 600 seconds Then, in the same manner as in Example 1, it was sealed with resin and tested for moisture resistance reliability. The results are shown in Table-2.

【表】 表−2から明らかなように、比較例である酸化
処理していない半導体装置は650時間で断線不良
が発生するのに対し、本発明になる半導体装置
は、いずれの時間処理したものでも、不良が発生
しにくくなつている。処理時間が長くなるにつれ
て、Cu2O膜が厚く成長し、水分の浸入及び腐食
に対する抑制時間が向上している。 実施例 3 実施例1と同様に組立、ボンデイングした半導
体装置を、以下に示す種々のO2分圧に調整した
ガス雰囲気中で酸化処理した。 温 度:200℃ O2分圧:0.001,0.1,1,10mmHg キヤリヤガス:Ar 処理時間:60秒 その後、実施例1と同様に、樹脂封止し、耐湿
信頼性を試験した。その結果を、表−3に示す。
[Table] As is clear from Table 2, the semiconductor device of the comparative example that was not subjected to oxidation treatment developed a disconnection defect after 650 hours, whereas the semiconductor device of the present invention was treated for any period of time. However, defects are becoming less likely to occur. As the processing time increases, the Cu 2 O film grows thicker and the inhibition time against moisture infiltration and corrosion improves. Example 3 Semiconductor devices assembled and bonded in the same manner as in Example 1 were oxidized in gas atmospheres adjusted to various O 2 partial pressures shown below. Temperature: 200°C O 2 partial pressure: 0.001, 0.1, 1, 10 mmHg Carrier gas: Ar Processing time: 60 seconds Then, in the same manner as in Example 1, it was sealed with resin and tested for moisture resistance reliability. The results are shown in Table-3.

【表】 表−3から明らかなように、比較例である無処
理のものは650時間で断線不良が発生するのに対
し、本発明になる半導体装置は、いずれのO2
圧下で処理したものでも、不良が発生しにくくな
つている。O2分圧が低くなるにつれて、酸化物
中に含まれるCu2Oの割合が増加し、水分の浸入
及び腐食に対する抑制作用が向上している。 実施例 4 実施例1と同様に組立後、径が30μmの銅リー
ドワイヤをボンデイングした半導体装置を、酸化
処理し、種々の厚さの酸化物膜を形成させた。 酸化物膜厚:10-3,10-2,1,5μm その後、実施例1と同様に、樹脂封止し、耐湿
信頼性を試験した。その結果を、表−4に示す。
[Table] As is clear from Table 3, disconnection failure occurs in the untreated comparative example after 650 hours, whereas the semiconductor device of the present invention was treated under any O 2 partial pressure. Even with products, defects are becoming less likely to occur. As the O 2 partial pressure decreases, the proportion of Cu 2 O contained in the oxide increases, improving the inhibiting effect on moisture intrusion and corrosion. Example 4 After assembly in the same manner as in Example 1, semiconductor devices to which copper lead wires having a diameter of 30 μm were bonded were subjected to oxidation treatment to form oxide films of various thicknesses. Oxide film thickness: 10 -3 , 10 -2 , 1.5 μm Thereafter, resin sealing was performed in the same manner as in Example 1, and moisture resistance reliability was tested. The results are shown in Table-4.

【表】 表−4から明らかなように、比較例である無処
理のものは650時間で断線不良が発生するのに対
し、本発明になる半導体装置は、いずれの膜厚に
処理したものでも、不良が発生しにくくなつてい
る。厚さがワイヤ径30μmの10%以下の範囲では
酸化物の厚さが厚くなるにつれて、水分の浸入と
腐食に対する抑制作用が向上している。 〔発明の効果〕 以上説明したように、本発明によれば、リード
ワイヤと封止する樹脂との密着性を高め、外部か
ら半導体装置内部への水分の浸入を阻止できるの
で、耐湿信頼性の著しく優れた半導体装置を提供
することができる。
[Table] As is clear from Table 4, disconnection failure occurs in the untreated comparative example after 650 hours, whereas in the semiconductor device of the present invention, the semiconductor device treated with any film thickness , defects are less likely to occur. In a range where the thickness is 10% or less of the wire diameter of 30 μm, as the oxide thickness increases, the inhibiting effect against moisture infiltration and corrosion improves. [Effects of the Invention] As explained above, according to the present invention, it is possible to improve the adhesion between the lead wire and the sealing resin and prevent moisture from entering the inside of the semiconductor device from the outside, thereby improving the moisture resistance reliability. A significantly superior semiconductor device can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体装置の一実施例の断面
図である。 1……リードフレーム、2……1次側電極、3
……タブ、4……シリコンペレツト、5……アル
ミニウム2次側電極、6……銅リードワイヤ、7
……酸化物膜、8……封止樹脂。
FIG. 1 is a sectional view of one embodiment of the semiconductor device of the present invention. 1...Lead frame, 2...Primary side electrode, 3
...Tab, 4...Silicon pellet, 5...Aluminum secondary electrode, 6...Copper lead wire, 7
...Oxide film, 8...Sealing resin.

Claims (1)

【特許請求の範囲】[Claims] 1 銅線をリードワイヤとして用いる半導体装置
を製造する方法において、銅線をリードワイヤと
して電極パツドにボンデイングさせた後、O2
圧が10-3〜1mmHgの気相雰囲気中、温度100〜
300℃で酸化処理することにより、該銅リードワ
イヤの表面に、Cu2Oを主成分とする、膜厚が
0.01〜1μmの酸化物膜を形成させる工程を包含す
ることを特徴とする半導体装置の製造方法。
1. In a method for manufacturing a semiconductor device using a copper wire as a lead wire, the copper wire is bonded to an electrode pad as a lead wire, and then heated at a temperature of 100 to 100 ℃ in a gas phase atmosphere with an O 2 partial pressure of 10 -3 to 1 mmHg.
By oxidizing at 300℃, a thick film containing Cu 2 O as the main component is formed on the surface of the copper lead wire.
A method for manufacturing a semiconductor device, comprising the step of forming an oxide film of 0.01 to 1 μm.
JP61133860A 1986-06-11 1986-06-11 Semiconductor device and manufacture thereof Granted JPS62291123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61133860A JPS62291123A (en) 1986-06-11 1986-06-11 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61133860A JPS62291123A (en) 1986-06-11 1986-06-11 Semiconductor device and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS62291123A JPS62291123A (en) 1987-12-17
JPH0478173B2 true JPH0478173B2 (en) 1992-12-10

Family

ID=15114737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61133860A Granted JPS62291123A (en) 1986-06-11 1986-06-11 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS62291123A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4740773B2 (en) * 2003-04-16 2011-08-03 新光電気工業株式会社 Lead frame, semiconductor device, and lead frame manufacturing method
JP4705078B2 (en) * 2006-08-31 2011-06-22 新日鉄マテリアルズ株式会社 Copper alloy bonding wire for semiconductor devices
DE102018107563B4 (en) 2018-03-29 2022-03-03 Infineon Technologies Austria Ag SEMICONDUCTOR DEVICE WITH COPPER STRUCTURE AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224255A (en) * 1984-04-20 1985-11-08 Hitachi Cable Ltd Bonding wire and manufacture thereof
JPS6175554A (en) * 1984-09-21 1986-04-17 Hitachi Ltd Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224255A (en) * 1984-04-20 1985-11-08 Hitachi Cable Ltd Bonding wire and manufacture thereof
JPS6175554A (en) * 1984-09-21 1986-04-17 Hitachi Ltd Semiconductor device

Also Published As

Publication number Publication date
JPS62291123A (en) 1987-12-17

Similar Documents

Publication Publication Date Title
KR900007303B1 (en) Resin packed semiconductor device
US6566253B2 (en) Method of making electrical interconnection for attachment to a substrate
US4472730A (en) Semiconductor device having an improved moisture resistance
US6933614B2 (en) Integrated circuit die having a copper contact and method therefor
US5825078A (en) Hermetic protection for integrated circuits
US6452271B2 (en) Interconnect component for a semiconductor die including a ruthenium layer and a method for its fabrication
JPS62145758A (en) Method for protecting copper bonding pad from oxidation using palladium
JP3345397B2 (en) Aluminum alloy metallization corrosion protection layer and method of making
IE53902B1 (en) Process for fabricating a semiconductor device having a phosphosilicate glass layer
JPH0478173B2 (en)
US6479402B1 (en) Method to improve adhesion of molding compound by providing an oxygen rich film over the top surface of a passivation layer
JP3274381B2 (en) Method for forming bump electrode of semiconductor device
Chyan et al. Mechanistic Investigation and Prevention of Al Bond Pad Corrosion in Cu Wire-bonded Device Assembly
US3714521A (en) Semiconductor device or monolithic integrated circuit with tungsten interconnections
TWI695473B (en) Semiconductor device and manufacturing method
GB2134709A (en) Semiconductor device and fabrication method thereof
JP3590603B2 (en) Semiconductor device and manufacturing method thereof
JPH0546978B2 (en)
JP3326466B2 (en) Method for forming electrodes of semiconductor device
JP2892055B2 (en) Resin-sealed semiconductor device
JPS6310547A (en) Semiconductor device
JPS63266844A (en) Manufacture of semiconductor device
JPS5949687B2 (en) semiconductor equipment
JPS63272042A (en) Semiconductor device
JPS6281034A (en) Manufacture of semiconductor device