JPS6228627A - Temperature compensating circuit for three-wire resistance type temperature sensor - Google Patents

Temperature compensating circuit for three-wire resistance type temperature sensor

Info

Publication number
JPS6228627A
JPS6228627A JP16748985A JP16748985A JPS6228627A JP S6228627 A JPS6228627 A JP S6228627A JP 16748985 A JP16748985 A JP 16748985A JP 16748985 A JP16748985 A JP 16748985A JP S6228627 A JPS6228627 A JP S6228627A
Authority
JP
Japan
Prior art keywords
resistance
temperature sensor
wire
output
operational amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16748985A
Other languages
Japanese (ja)
Other versions
JPH0625701B2 (en
Inventor
Michio Saeki
佐伯 道夫
Mamoru Maekawa
前川 守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP16748985A priority Critical patent/JPH0625701B2/en
Publication of JPS6228627A publication Critical patent/JPS6228627A/en
Publication of JPH0625701B2 publication Critical patent/JPH0625701B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PURPOSE:To make highly accurate temperature detection, by making the relation between the resistance value of a three-wire resistance type temperature sensor and the output of a temperature detecting signal detected with the sensor completely linear. CONSTITUTION:A resistance 2, 1st lead wire 4, three-wire resistance type temperature sensor 3, 2nd lead wire 5,and resistance 7 are serially connected in the described order between a constant-voltage circuit 1 and earth. A differential amplifier is constituted of a feedback resistance 11 connected between the output side and (+) input terminal of an operational amplifier 8 and the amplifier 8. The 3rd operational amplifier 15 amplifies and outputs the difference in the outputs of the 1st and 2nd operational amplifiers 8 and 12. The difference value DELTAV between the output V0 of the 1st amplifier 8 and output V1 of the 2nd amplifier 12 becomes completely proportional to the resistance value R of the three-wire resistance type temperature sensor 3. Moreover, the difference value DELTAV does not contain any element of the resistance r0 of the lead wires and no error is produced even when the fitting position of the sensor 3 is changed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、サーミスタセンサや白金(pt)センサの
ような温度によって抵抗値の変化する3線式抵抗壓温度
センサの温度補償回路に関し、特に、温度センサのリー
ド線の抵抗値の影響を全く受けることなく、しかも温度
センサの抵抗値に正確に比例する出力を得ることができ
る3線式の抵抗型温度センナの温度補償回路に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a temperature compensation circuit for a three-wire resistance temperature sensor whose resistance value changes depending on temperature, such as a thermistor sensor or a platinum (PT) sensor. The present invention relates to a temperature compensation circuit for a three-wire resistance type temperature sensor that is completely unaffected by the resistance value of the lead wire of the temperature sensor and can obtain an output that is accurately proportional to the resistance value of the temperature sensor.

〔従来の技術〕[Conventional technology]

抵抗型温度センナは、雰囲気の温度に応じて自らの抵抗
値が変化するものであり、最もよく用いられている。こ
の種の温度センサを用いる温度検出回路は、温度センサ
の抵抗値の変化を正確に検出する必要がある。
Resistance-type temperature sensors are the most commonly used, and their resistance value changes depending on the temperature of the atmosphere. A temperature detection circuit using this type of temperature sensor needs to accurately detect changes in the resistance value of the temperature sensor.

従来この種の温度検出回路としては、ホイストンブリッ
ジ回路を構成し、これに定電圧源の電圧を印加して演算
増巾器にて演算増巾し、抵抗型温度センサの抵抗値の変
化に対応する電圧出力を得る方式がある。この従来方式
では、抵抗型温度センナの抵抗値変化をホイストンブリ
ッジの不平衡の電圧変化として検出するために、温度セ
ンサに流れる電流値が変化してしまい、抵抗型温度セン
サの抵抗値を正確に検出できない。しかし、実際には、
温度補償用回路として演算増巾器に正帰還を加えて、抵
抗型温度センサの抵抗値が増大したことによる印加電流
の減少を、この正帰還に伴う電流増加で補っている。こ
の従来方式は正帰還のための抵抗を追加するだけという
極めて単純な構成により、差動出力と温度センサの抵抗
値との間に高精度の直線性が得られる。
Conventionally, this type of temperature detection circuit consists of a Whiston bridge circuit, to which a voltage from a constant voltage source is applied and the calculation is amplified by an operational amplifier, and the change in resistance value of the resistance type temperature sensor is detected. There are methods to obtain the corresponding voltage output. In this conventional method, changes in the resistance value of the resistance-type temperature sensor are detected as unbalanced voltage changes in the Whiston bridge, so the current value flowing through the temperature sensor changes, which makes it difficult to accurately measure the resistance value of the resistance-type temperature sensor. cannot be detected. However, in reality,
Positive feedback is added to the operational amplifier as a temperature compensation circuit, and the decrease in applied current due to an increase in the resistance value of the resistance type temperature sensor is compensated for by the increase in current due to this positive feedback. This conventional method has an extremely simple configuration that only requires the addition of a resistor for positive feedback, and achieves highly accurate linearity between the differential output and the resistance value of the temperature sensor.

〔発明が解決すべ糎問題点〕[Problems to be solved by invention]

従来の抵抗型温度センサの温度補償回路は以上のように
構成されているので、この直線性は直線性誤差が約0.
3%程度のある程度高精度でおるものの、実際的にも理
論的にもこの誤差を消滅させることができないという問
題点があり、しかも抵抗型温度センサの取付は位置の変
動に伴うリード線の抵抗値の変化に従ってこの直線性の
精度が悪い方へ変化してしまうなどの問題点があった。
Since the temperature compensation circuit of the conventional resistance type temperature sensor is configured as described above, the linearity error is approximately 0.
Although it has a certain degree of accuracy of about 3%, there is a problem in that it is impossible to eliminate this error both practically and theoretically.Moreover, when installing a resistance type temperature sensor, the resistance of the lead wire due to positional changes is high. There is a problem in that the accuracy of this linearity changes as the value changes.

また、この他にもホイストンブリッジを定電圧で駆動せ
ずに、ホイストンブリッジの各岐路e定電流源による定
を流で駆動させるという方式もある。この従来方式は、
抵抗型温度センナの抵抗値を電圧値にある程度正確に変
換できるという利点はらるものの、全く同じ特性を有す
る定電流源を2個必要とするため装置価格が高くなり、
実用的でないなどの問題点があった。
In addition, there is also a method in which the Whiston bridge is not driven with a constant voltage, but is driven with a constant current from a constant current source at each branch e of the Whiston bridge. This conventional method is
Although the resistance-type temperature sensor has the advantage of being able to convert the resistance value into a voltage value with some degree of accuracy, it requires two constant current sources with exactly the same characteristics, which increases the device price.
There were problems such as impracticality.

この発明は上述の問題点を解消すべくなされたもので、
3線式抵抗型温度センナの抵抗値と温度検出出力との間
の関係の直線性を高精度とししかもリード線の抵抗値の
変化に影響されない精度の高い温度検出が可能でしかも
廉価な3線式抵抗型温度センサの温度補償回路を得るこ
とを目的とする。
This invention was made to solve the above-mentioned problems.
The 3-wire resistance temperature sensor has a highly linear relationship between the resistance value and the temperature detection output, and is not affected by changes in the resistance value of the lead wire. The purpose of this study is to obtain a temperature compensation circuit for a resistive temperature sensor.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために、この発明は、所定の電圧を
3線式抵抗型温度センサの両側で高圧側および低圧側に
分圧する分圧回路と、夫々の非反転入力端子が前記高圧
側および低圧側に夫々接読された一対の第1および第2
の演算増幅器と、この第1の演算増幅器の出力側とその
非反転入力端子とに接続された帰還抵抗と、前記第1お
よび第2の演算増幅器の夫々の出力に比例した信号を前
記第12よび第2の演算増@器の夫々の反転入力端子側
に出力する反転入力信号発生回路と、前記第1および第
2の演算増幅器の両出力の差をとって増幅して出力する
出力回路とを備えたものである。
In order to achieve the above object, the present invention includes a voltage divider circuit that divides a predetermined voltage into a high voltage side and a low voltage side on both sides of a three-wire resistance type temperature sensor, and a voltage divider circuit that divides a predetermined voltage into a high voltage side and a low voltage side on both sides of a three-wire resistance type temperature sensor; a pair of first and second connected to the low pressure side, respectively;
an operational amplifier, a feedback resistor connected to the output side of the first operational amplifier and its non-inverting input terminal, and a feedback resistor connected to the output side of the first operational amplifier and its non-inverting input terminal; and an inverting input signal generation circuit that outputs to the inverting input terminal side of each of the second operational amplifier and an output circuit that amplifies and outputs the difference between the outputs of the first and second operational amplifiers. It is equipped with the following.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例を示し1図において、1は
定電圧回路、2は分圧用抵抗、3は3本のリード線を有
して温度により抵抗が変化する3線式抵抗型温度センサ
、4,5.6は3線式抵抗型温度センサ3のリード線、
7は分圧用抵抗であり、定電圧回路1と接地との間に抵
抗2、第1のリード線4,3線式の抵抗型温度センサ3
、第2のリード線5、抵抗7がこの順で直列接続されて
いる。8は第1の演算増幅器であり、出力側と接地との
間に抵抗9と同10とが直列接続され、両者の接続点a
がその(−)入力端子に接続され、その(+)入力端子
は抵抗2と第1のリード線4との接続点すに接続されて
いる。演算増幅器8の出力側とその(+)入力端子との
間に接続された帰還抵抗11と演算増幅器8とにより差
動増幅器が構成されている。12は第2の演算増幅器で
あり、その出力側と接地との間に分圧用抵抗13と同1
4とが直列接続され5両者の接続点Cがその(−)入力
端子に接続され、その(−ト)入力端子は第3のリード
&16を介して3線式抵抗型温度七ンサ3とその第2の
リード線5との接続点dに接続されている。15は出力
回路例えば第3の演算増幅器でめジ、第1の演算増幅器
8と第2の演算増幅器12との出力の差をとって増幅し
て出力する。
Fig. 1 shows an embodiment of the present invention. In Fig. 1, 1 is a constant voltage circuit, 2 is a voltage dividing resistor, and 3 is a three-wire resistor type having three lead wires and whose resistance changes depending on the temperature. Temperature sensor, 4, 5.6 are lead wires of 3-wire resistance type temperature sensor 3,
7 is a voltage dividing resistor, and a resistor 2, a first lead wire 4, and a 3-wire resistance type temperature sensor 3 are connected between the constant voltage circuit 1 and the ground.
, second lead wire 5, and resistor 7 are connected in series in this order. Reference numeral 8 designates a first operational amplifier, in which a resistor 9 and a resistor 10 are connected in series between the output side and the ground, and a connection point a between the two is connected.
is connected to its (-) input terminal, and its (+) input terminal is connected to the connection point between the resistor 2 and the first lead wire 4. A differential amplifier is configured by the operational amplifier 8 and the feedback resistor 11 connected between the output side of the operational amplifier 8 and its (+) input terminal. 12 is a second operational amplifier, and the same voltage dividing resistor 13 is connected between its output side and the ground.
4 are connected in series, and the connection point C of both 5 is connected to its (-) input terminal, and that (-T) input terminal is connected to the 3-wire resistance type temperature sensor 3 and its It is connected to the connection point d with the second lead wire 5. Reference numeral 15 denotes an output circuit, for example, a third operational amplifier, which takes the difference between the outputs of the first operational amplifier 8 and the second operational amplifier 12, amplifies it, and outputs the result.

ここで、抵抗14.同13.同10.同9.同2、同1
1および同7の抵抗値は夫々「、+ ’2 + ’!l
+’4 + ’5 + ’6およびryとする。また、
第1〜第3のリードm4〜6の各抵抗値は全てr。とじ
、3線式抵抗型温度センサ3の抵抗値はRとする。また
、定電圧回路1の出力電圧をv2とし、帰還抵抗11に
流れる電流を16とし、b点から抵抗型温度センサ3お
よび抵抗7を通って接地に到る電流をioとし、・分圧
用抵抗2を流れる電流を(io−i6)とし、第1の演
算増幅器8の出力をV(1とし、第2の演算増幅器12
の出力をvlとする。差動増幅器の第1の演算項@器8
の(+) 、 (−)入力端子はイマジナリショート状
態にあるので、出力電圧v。
Here, resistance 14. Same 13. Same 10. Same 9. Same 2, same 1
The resistance values of 1 and 7 are respectively ``, + '2 + '!l
+'4 +'5 +'6 and ry. Also,
The resistance values of the first to third leads m4 to m6 are all r. The resistance value of the three-wire resistance type temperature sensor 3 is assumed to be R. In addition, the output voltage of the constant voltage circuit 1 is v2, the current flowing through the feedback resistor 11 is 16, the current flowing from point b through the resistance type temperature sensor 3 and resistor 7 to the ground is io, and the voltage dividing resistor The current flowing through the second operational amplifier 12 is (io-i6), the output of the first operational amplifier 8 is V(1, and the second operational amplifier 12 is
Let the output be vl. First operational term of differential amplifier @ unit 8
Since the (+) and (-) input terminals of are in an imaginary short state, the output voltage v.

は抵抗10と抵抗11とにかかる電圧の和に等しいこと
から次式が成立する。
Since is equal to the sum of the voltages applied to resistor 10 and resistor 11, the following equation holds true.

To + 1616 ” Vo    ・・・・・・・
・・・・・・・・(1)r3+r4 また、b点の電圧は3点の電圧に等しいことから、 −VO= (2ro + ry +R) io  −−
−(2)’ s + r 4 (2)式の右辺は電流i。が第1のリード線4→3線式
抵抗型温度センサ3→第2のリード線5→抵抗7を流れ
ることによるb点の電圧である。また、b点の電圧は定
電圧回路1の電圧v2から抵抗2に流れる電流(io−
;6)による電圧降下分を差引いた値に等しく、イマジ
ナリショート状態から5点電圧は1点電圧に等しいこと
から (3)式より 第2の演算増幅器12もイマジナリショート状叢にあり
、しかも第3のリード線6に流れる電流は小さく、まk
、抵抗値rl)も小さいことから第3のリード線6に印
加する電圧を略Oと見なして、a点1!位はd点電位に
等しいことから。
To + 1616” Vo ・・・・・・・・・
・・・・・・・・・(1) r3+r4 Also, since the voltage at point b is equal to the voltage at three points, −VO= (2ro + ry +R) io −−
-(2)' s + r 4 The right side of equation (2) is the current i. is the voltage at point b caused by flowing through the first lead wire 4 → three-wire resistance type temperature sensor 3 → second lead wire 5 → resistor 7. Furthermore, the voltage at point b is the current (io-
; 6) is equal to the value obtained by subtracting the voltage drop due to The current flowing through lead wire 6 of No. 3 is small, and
, resistance value rl) is also small, the voltage applied to the third lead wire 6 is assumed to be approximately O, and the point a is 1! This is because the potential at point d is equal to the potential at point d.

が成立する。holds true.

(2)式と(5)式から1゜を消去して、また、(4)
式と(5)式とから10を消去して、但し、K=−であ
る。
By eliminating 1° from equations (2) and (5), we also obtain (4)
10 is deleted from the equation and equation (5), provided that K=-.

(6)式と(7)式からV O−V + ”:ΔVを求
めると。
From equations (6) and (7), find V O−V + ”:ΔV.

抗値’+ + ’2 + ’S ! ’41 ’51 
’6が選定さnると(8)式となる。これにA=2B+
1を代入して整理すると、Δv=B(1+B)−!−(
R−ry)   ・・・・・・・・・・・・・・・ α
0)でΔVは3線式抵抗型温度センサ3の抵抗値Rに完
全に比例する。
Resistance value '+ + '2 + 'S! '41 '51
When '6 is selected, the formula (8) is obtained. To this, A=2B+
Substituting 1 and rearranging, Δv=B(1+B)-! −(
R-ry) ・・・・・・・・・・・・ α
0), ΔV is completely proportional to the resistance value R of the three-wire resistance type temperature sensor 3.

すなわち、第1の演算増巾器8の出力V。と、第2の演
算増巾器12の出力V、との差分値ΔVは、3線式抵抗
型温度センサ3の抵抗値Rに理論的にも実際的にも完全
に比例することになる。即ち、第3の演算増幅器15の
増幅率、例えばμ=1を00式の両辺にかけると00式
はそのま゛ま成立し、左辺の式は第3の演算増幅器15
の出力信号であり、それは抵抗値Rと完全に比例関係に
ある。しかも、このΔVにはリード線の抵抗r(1の要
素が全く入ってこないことから、3線式抵抗型温度セン
サ3の取付は位置を変更するようなことがあっても、何
ら誤差が生ずることはない。
That is, the output V of the first operational amplifier 8. The difference value ΔV between the output V of the second operational amplifier 12 and the output V of the second operational amplifier 12 is completely proportional to the resistance value R of the three-wire resistance type temperature sensor 3 both theoretically and practically. That is, when the amplification factor of the third operational amplifier 15, e.g.
The output signal is completely proportional to the resistance value R. Moreover, since the resistance r (1) of the lead wire is not included at all in this ΔV, even if the mounting position of the 3-wire resistance type temperature sensor 3 is changed, no error will occur. Never.

次に、3線式抵抗型温度センサ3が断線した場合につい
て述べる。3線式抵抗型温度センサ3がバーンアウト即
ち断線すると第1の演算増幅器8の出力電圧V。は非常
に大きくなり、第2の演算増幅器12の出力電圧V、は
非常に小さくなる。このため、Δv=vo−v、は非常
に増大する。また、 01式から Δyoc(R−r7) であり、ΔVが非常に大きくなることは抵抗値Rが非常
に大きくなったと判断される(この場合には測定器の針
が振りきれる)。従って、温度の上昇に伴って抵抗値の
大きくなるような特性の3線式抵抗型温度センナに対し
てはバーンアウトに対して安全サイドが確保される。
Next, a case where the three-wire resistance type temperature sensor 3 is disconnected will be described. When the three-wire resistance temperature sensor 3 burns out, that is, the wire is disconnected, the output voltage V of the first operational amplifier 8. becomes very large, and the output voltage V of the second operational amplifier 12 becomes very small. Therefore, Δv=vo−v increases significantly. Also, from equation 01, Δyoc(R-r7) is obtained, and if ΔV becomes very large, it is determined that the resistance value R has become very large (in this case, the needle of the measuring instrument can swing completely). Therefore, for a three-wire resistance temperature sensor whose resistance value increases as the temperature rises, a safe side against burnout is ensured.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明は、3線式抵抗型温度セ
ンサの抵抗値とこの抵抗値の変化を利用して検出した温
度検出信号の出力との関係が完全な直線性を有し、しか
も温度検出信号の出力はリード線の抵抗値と全く無関係
となるので高精度の温度検出が可能であり、しかも3線
式抵抗型温度センサのバーンアウトに対しても安全であ
る効果がある。
As explained above, the present invention has a completely linear relationship between the resistance value of the 3-wire resistance temperature sensor and the output of the temperature detection signal detected using the change in this resistance value. Since the output of the temperature detection signal is completely unrelated to the resistance value of the lead wire, highly accurate temperature detection is possible, and there is also the effect of being safe against burnout of the three-wire resistance type temperature sensor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の回路図である。 図において、1は定電圧回路、2は分圧用抵抗(第1の
抵抗)、3は3線式抵抗型温度センサ、4.5.6はリ
ード線(第1〜第3のリード線)、7は分圧用抵抗、8
は第1の演算増幅器、9は抵抗(第3の抵抗)、10は
抵抗(第4の抵抗)、11は帰還抵抗、12は第2の演
算増幅器、13は抵抗(第5の抵抗)、14は抵抗(第
6の抵抗)、15は出力回路。 特許出願人  山武ハネウェル株式会社(乃2名) 手続補正書(自発)
FIG. 1 is a circuit diagram of an embodiment of the present invention. In the figure, 1 is a constant voltage circuit, 2 is a voltage dividing resistor (first resistor), 3 is a 3-wire resistance temperature sensor, 4.5.6 is a lead wire (first to third lead wire), 7 is a voltage dividing resistor, 8
is the first operational amplifier, 9 is a resistor (third resistor), 10 is a resistor (fourth resistor), 11 is a feedback resistor, 12 is a second operational amplifier, 13 is a resistor (fifth resistor), 14 is a resistor (sixth resistor), and 15 is an output circuit. Patent applicant Yamatake Honeywell Co., Ltd. (no 2 people) Procedural amendment (voluntary)

Claims (3)

【特許請求の範囲】[Claims] (1)所定の電圧を3線式抵抗型温度センサの両側で高
圧側および低圧側に分圧する分圧回路と、夫々の非反転
入力端子が前記高圧側および低圧側に夫々接続された一
対の第1および第2の演算増幅器と、この第1の演算増
幅器の出力側とその非反転入力端子とに接続された帰還
抵抗と、前記第1および第2の演算増幅器の夫々の出力
に比例した信号を前記第1および第2の演算増幅器の夫
々の反転入力端子側に出力する反転入力信号発生回路と
、前記第1および第2の演算増幅器の両出力の差をとつ
て出力する出力回路とを備えた3線式抵抗型温度センサ
の温度補償回路。
(1) A voltage dividing circuit that divides a predetermined voltage into a high voltage side and a low voltage side on both sides of a three-wire resistance temperature sensor, and a pair of voltage dividing circuits whose respective non-inverting input terminals are connected to the high voltage side and the low voltage side, respectively. a first and a second operational amplifier; a feedback resistor connected to the output side of the first operational amplifier and its non-inverting input terminal; an inverting input signal generation circuit that outputs a signal to the inverting input terminal side of each of the first and second operational amplifiers; and an output circuit that calculates and outputs the difference between the outputs of the first and second operational amplifiers. Temperature compensation circuit for 3-wire resistance type temperature sensor.
(2)前記高圧側は定電圧源に接続された第1の抵抗と
前記3線式抵抗型温度センサとの接続点であり、前記反
転入力信号発生回路は前記第1の演算増幅器の出力側と
接地との間に直列接続された第3および第4の抵抗であ
ると共に前記第2の演算増幅器の出力側と接地との間に
直列接続された第5および第6の抵抗であることを特徴
とする特許請求の範囲第1項記載の3線式抵抗型温度セ
ンサの温度補償回路。
(2) The high voltage side is a connection point between a first resistor connected to a constant voltage source and the three-wire resistance temperature sensor, and the inverting input signal generation circuit is on the output side of the first operational amplifier. third and fourth resistors connected in series between and ground, and fifth and sixth resistors connected in series between the output side of the second operational amplifier and ground. A temperature compensation circuit for a three-wire resistance type temperature sensor according to claim 1.
(3)前記第5および第6の抵抗の夫々の抵抗値をr_
2、r_1とし、前記第3および第4の抵抗の夫々の抵
抗値をr_4、r_3とし、前記第1の抵抗の抵抗値を
r_5とし、前記帰還抵抗の抵抗値をr_6とすると、 r_6/r_5=r_4/r_3、(2r_4)/r_
3−r_2/r_1+1=0の関係が成立することを特
徴とする特許請求の範囲第2項記載の3線式抵抗型温度
センサの温度補償回路。
(3) The resistance value of each of the fifth and sixth resistors is r_
2, r_1, the resistance values of the third and fourth resistors are r_4 and r_3, the resistance value of the first resistor is r_5, and the resistance value of the feedback resistor is r_6, then r_6/r_5. =r_4/r_3, (2r_4)/r_
3. The temperature compensation circuit for a three-wire resistance temperature sensor according to claim 2, wherein a relationship of 3-r_2/r_1+1=0 holds true.
JP16748985A 1985-07-31 1985-07-31 Temperature detection circuit of 3-wire resistance temperature sensor Expired - Lifetime JPH0625701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16748985A JPH0625701B2 (en) 1985-07-31 1985-07-31 Temperature detection circuit of 3-wire resistance temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16748985A JPH0625701B2 (en) 1985-07-31 1985-07-31 Temperature detection circuit of 3-wire resistance temperature sensor

Publications (2)

Publication Number Publication Date
JPS6228627A true JPS6228627A (en) 1987-02-06
JPH0625701B2 JPH0625701B2 (en) 1994-04-06

Family

ID=15850626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16748985A Expired - Lifetime JPH0625701B2 (en) 1985-07-31 1985-07-31 Temperature detection circuit of 3-wire resistance temperature sensor

Country Status (1)

Country Link
JP (1) JPH0625701B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110108380A (en) * 2019-05-30 2019-08-09 无锡市百川科技股份有限公司 A kind of precise temperature measurement system applied to biphenyl heater box in weaving elasticizer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110108380A (en) * 2019-05-30 2019-08-09 无锡市百川科技股份有限公司 A kind of precise temperature measurement system applied to biphenyl heater box in weaving elasticizer

Also Published As

Publication number Publication date
JPH0625701B2 (en) 1994-04-06

Similar Documents

Publication Publication Date Title
JPS645360B2 (en)
US4060715A (en) Linearized bridge circuitry
Pradhan et al. An improved lead compensation technique for three-wire resistance temperature detectors
JPS63142216A (en) Circuit device for sensor
US3805616A (en) Temperature measuring apparatus
JPS61210965A (en) Measuring equipment for low resistance
JPH09105681A (en) Temperature measuring circuit
JPS6228627A (en) Temperature compensating circuit for three-wire resistance type temperature sensor
US5096303A (en) Electronic circuit arrangement for temperature measurement based on a platinum resistor as a temperature sensing resistor
JPS6336447B2 (en)
US5021729A (en) Differential current source
US3341757A (en) Bridge circuit for determining the inverse of resistance
JPS5868615A (en) Output circuit of magnetic type rotary encoder
JPS6221958Y2 (en)
JPS626171B2 (en)
JPS6361961A (en) Current detector
JPS5937711Y2 (en) temperature measurement circuit
JPS5858428A (en) Three-wire temperature sensor
JP2512934B2 (en) Temperature measurement circuit
JPS5816073Y2 (en) Resistance/electrical signal converter
JPS6324268B2 (en)
SU779824A1 (en) Temperature difference measuring device
JP2544130B2 (en) Temperature measurement circuit
JPH032533A (en) Resistance bulb circuit
SU1064156A1 (en) Semiconducor temperature pickup