JPS6361961A - Current detector - Google Patents

Current detector

Info

Publication number
JPS6361961A
JPS6361961A JP61206171A JP20617186A JPS6361961A JP S6361961 A JPS6361961 A JP S6361961A JP 61206171 A JP61206171 A JP 61206171A JP 20617186 A JP20617186 A JP 20617186A JP S6361961 A JPS6361961 A JP S6361961A
Authority
JP
Japan
Prior art keywords
temperature
circuit
hall element
output voltage
amplifier circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61206171A
Other languages
Japanese (ja)
Inventor
Kentaro Horiuchi
憲太郎 堀内
Naoki Wakao
直樹 若生
Hiroshi Numakura
弘 沼倉
Taido Sakamoto
坂本 泰堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Tokin Corp
Original Assignee
Mitsubishi Electric Corp
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Tohoku Metal Industries Ltd filed Critical Mitsubishi Electric Corp
Priority to JP61206171A priority Critical patent/JPS6361961A/en
Publication of JPS6361961A publication Critical patent/JPS6361961A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

PURPOSE:To perform current detection with high accuracy without any error due to temperature variation by adding a temperature compensating circuit to an amplifying circuit which amplifies the output signal of a Hall element. CONSTITUTION:This detector is equipped with a ferromagnetic core 2 which has a magnetic gap G at part of a magnetic path in a circumferential shape, the Hall element 3 arranged in the gap G, and a circuit board 9 where the element 3, amplifying circuit 7 for amplifying the output signal of the element 3, etc., are mounted, and the temperature compensating circuit is added to the circuit 7 for the output of the element 3. Then this temperature compensating circuit supplies a temperature coefficient which is opposite in polarity from the temperature coefficient of the output voltage V of the circuit 7 based upon the sum of the temperature coefficients of the core 2 and element 3 to the amplification degree of the circuit to compensate temperature characteristics of the output voltage V of the circuit based upon the sum of the temperature coefficients of the core 2 and element 3. Thus, errors due to temperature variation are eliminated and the current detection is performed with high accuracy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、ホール素子を用いた電流検出器に係り、特
に高蹟度化を図った電流検出器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a current detector using a Hall element, and particularly to a current detector that is designed to be highly sensitive.

〔従来の技術〕[Conventional technology]

′dS6図はこの種の従来の電流検出器を示す斜視図で
ある(センサ技術、1982年11月号参照)。図にお
いて、■は被検出電流工か流れる電線、2は電線1の一
部を取り囲む同周形状の強磁性体コアで、被検出電流工
によって発生する磁界Bの導磁路となっている。3は強
磁性体コア2の端面2aと2bの間の磁気ギャップ(エ
アギャップ)G内に配設されたホール素子、4はホール
素子3の制御′rM、流iの人力リート、5はホール素
子3の駆動回路で、人力リード4を介してホール素子3
に制御電流iを供給する。6はホール素子3の出力電圧
を取り出すための出力リート、7はホール素子3の出力
信号を増幅する増幅回路である。
Figure 'dS6 is a perspective view showing this type of conventional current detector (see Sensor Technology, November 1982 issue). In the figure, ■ is an electric wire flowing through the electric wire to be detected, and 2 is a ferromagnetic core having the same circumferential shape surrounding a part of the electric wire 1, and serves as a magnetic conduction path for the magnetic field B generated by the electric wire to be detected. 3 is a Hall element disposed in the magnetic gap (air gap) G between the end surfaces 2a and 2b of the ferromagnetic core 2; 4 is the control 'rM of the Hall element 3; 5 is the manual control of the flow i; 5 is the Hall element; The drive circuit for the element 3 connects the Hall element 3 via the human lead 4.
A control current i is supplied to. 6 is an output lead for taking out the output voltage of the Hall element 3, and 7 is an amplifier circuit for amplifying the output signal of the Hall element 3.

第7図は上記駆動回路5の詳細を示す図であり、図中、
R0〜R4は抵抗、8はオペアンプ(演算増幅器)であ
る。
FIG. 7 is a diagram showing details of the drive circuit 5, and in the figure,
R0 to R4 are resistors, and 8 is an operational amplifier.

従来の電流検出器は上記のように構成されておリ、駆動
回路5によってホール素子3にあらかじめ制御電流iが
供給されている。そして、電線1に被検出電流工が流れ
ると、その被検出電流工に比例した磁界Bが強磁性体コ
ア2を通して発生するようになっている。従って、強磁
性体コア2の両端面2a、2b間に配置されたホール素
子3には、発生した磁界Bと制御電流iの積に比例した
電圧信号、即ち、被検出電流工と制御電流iの積に比例
した出力信号が発生し、これを出カリードロから取り出
して、増幅回路7により増幅し、第7図のオペアンプ8
の出力電圧Vとして取り出せるようになっている。
The conventional current detector is configured as described above, and the control current i is supplied to the Hall element 3 by the drive circuit 5 in advance. When a current to be detected flows through the electric wire 1, a magnetic field B proportional to the current to be detected is generated through the ferromagnetic core 2. Therefore, the Hall element 3 disposed between both end surfaces 2a and 2b of the ferromagnetic core 2 receives a voltage signal proportional to the product of the generated magnetic field B and the control current i. An output signal proportional to the product of
It can be extracted as the output voltage V.

第8図は、上記増幅回路7の増幅度G(倍)と出力電圧
V (V)の理想の温度特性図であり、温度変化に対し
て増幅度G及び出力電圧Vは変化がなく、それぞれG、
、V、で常に一定となっている。
FIG. 8 is an ideal temperature characteristic diagram of the amplification degree G (double) and the output voltage V (V) of the amplifier circuit 7, and the amplification degree G and output voltage V do not change with respect to temperature changes. G.
, V, is always constant.

しかし、例えば強磁性体コア2の材質がフェライトでG
aAs系のホール素子3の組合せの場合には、温度係数
が−800〜−1000ppm7℃の温度特性をもって
いる。従って、高精度の電流検出を行うことが非常に困
難である。
However, for example, the material of the ferromagnetic core 2 is ferrite and G
In the case of a combination of aAs-based Hall elements 3, the temperature coefficient has a temperature characteristic of -800 to -1000 ppm and 7°C. Therefore, it is very difficult to perform highly accurate current detection.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の電流検出器は上記のように構成され、強磁性体コ
ア2とホール素子3の温度特性があるため、温度変化に
よってホール素子3の出力電圧■が変化し、従って検出
に誤差が生じ、高精度に電流検出を行うことができない
という問題点があった。
The conventional current detector is configured as described above, and since the ferromagnetic core 2 and the Hall element 3 have temperature characteristics, the output voltage of the Hall element 3 changes due to temperature changes, and therefore errors occur in detection. There was a problem in that current detection could not be performed with high precision.

この発明は、このような問題点を解決するためになされ
たもので、温度変化に対して誤差がなく、高精度に電流
検出を行うことが可能な電流検出器を提供することを目
的としている。
This invention was made to solve these problems, and aims to provide a current detector that is free from errors due to temperature changes and is capable of highly accurate current detection. .

〔問題点を解決するための手段〕[Means for solving problems]

この発明の電流検出器は、回収形状を有する電路の一部
に磁気ギャップが設けられた強磁性体コアと、その磁気
ギャップ内に配設されたホール素子と、このホール素子
及び該ホール素子の出力信号を増幅する増幅回路等が実
装された回路基板とを備えた電流検出器において、前記
ホール素子の出力信号の増幅回路に温度補償回路を付加
したものである。
The current detector of the present invention includes a ferromagnetic core in which a magnetic gap is provided in a part of an electric path having a collection shape, a Hall element disposed within the magnetic gap, and a Hall element and the Hall element. This current detector includes a circuit board on which an amplifier circuit or the like for amplifying an output signal is mounted, and a temperature compensation circuit is added to the amplifier circuit for the output signal of the Hall element.

〔作用) 温度補償回路は、温度変化によるホール素子の出力電圧
(電圧信号)の誤差を解消し、従って高精度に電流検出
が行われる。
[Function] The temperature compensation circuit eliminates errors in the output voltage (voltage signal) of the Hall element due to temperature changes, and therefore current detection is performed with high precision.

〔実施例〕〔Example〕

以下、この発明の一実施例を図面について説明する。な
お、従来と同一または相111する部分については、同
一符号を付して詳細は省略する。
An embodiment of the present invention will be described below with reference to the drawings. Note that the same reference numerals are given to parts that are the same as or in phase with the conventional parts, and details are omitted.

第1図はこの発明に係る電流検出器の概略の構成図あり
、図中、9はホール素子3、駆動回路5が実装された回
路基板、10は外部端子である。
FIG. 1 is a schematic configuration diagram of a current detector according to the present invention. In the figure, 9 is a circuit board on which a Hall element 3 and a drive circuit 5 are mounted, and 10 is an external terminal.

第2図は上記増幅回路7の詳細を示す図である。この増
幅回路7は、PTC(正特性)サーミスタTHと抵抗R
5の並列回路から成る温度補償回路7aが付加されてお
り、増幅度Gに正の温度特性をもたせている。
FIG. 2 is a diagram showing details of the amplifying circuit 7. As shown in FIG. This amplifier circuit 7 includes a PTC (positive characteristic) thermistor TH and a resistor R.
A temperature compensation circuit 7a consisting of five parallel circuits is added, giving the amplification degree G a positive temperature characteristic.

次に、第3図ないし第5図の特性図を参照しながら動作
について説明する。
Next, the operation will be explained with reference to the characteristic diagrams shown in FIGS. 3 to 5.

第3図はホール素子3の出力信号を一定とし、増幅回路
7の増幅度Gに+800 ppm7℃の温度係数をもた
せた場合の増幅回路7の出力電圧■の温度特性図である
。この場合、増幅度Gの変化に比例して+800 pp
m/”Cの温度係数をもつため、強磁性体コア2とホー
ル素子3の温度特性による出力電圧Vの低下分だけ増幅
度Gを増加させれば、出力電圧Vを補償することができ
、従って高精度に電流検出を行うことができる。
FIG. 3 is a temperature characteristic diagram of the output voltage (2) of the amplifier circuit 7 when the output signal of the Hall element 3 is constant and the amplification degree G of the amplifier circuit 7 has a temperature coefficient of +800 ppm 7°C. In this case, +800 pp in proportion to the change in amplification degree G
Since it has a temperature coefficient of m/''C, the output voltage V can be compensated by increasing the amplification G by the amount of decrease in the output voltage V due to the temperature characteristics of the ferromagnetic core 2 and the Hall element 3. Therefore, current detection can be performed with high accuracy.

次に、増幅度Gに温度特性を持たせる方法について説明
すると、第8図に示した従来の増幅回路7における増幅
度Gは抵抗R,とR3及び抵抗R2とR4の各々の抵抗
値が等しい条件では、G=R2の抵抗値/ R+の抵抗
値であり、従って、増幅度Gに温度特性をもたせるには
抵抗R,,R2に温度特性をもたせればよい。本実施例
では抵抗R2と直列にPCTサーミスタTHと抵抗R5
の並列回路を接続してあり、これにより増幅度Gに温度
特性をもたせている。第4図は木実施例における増幅回
路7の増幅度Gと出力電圧Vとの関係を示す図であり、
増幅度Gに+ 800 ppm7℃の温度係数をもたせ
ることにより、出力電圧■は温度補償され、これによっ
て強磁性体コア2とホール素子3の温度特性をキャンセ
ル(解消)させることができる。また、第5図は増幅度
Gの温度係数を+800〜2000ppm/℃にした場
合の増幅度Gと出力電圧Vの温度特性を示したものであ
り、出力電圧Vにプラス(正)方向の温度特性をもたせ
ることも可能である。
Next, to explain how to give temperature characteristics to the amplification degree G, the amplification degree G in the conventional amplifier circuit 7 shown in FIG. The condition is that G=resistance value of R2/resistance value of R+. Therefore, in order to make the amplification degree G have a temperature characteristic, it is sufficient to make the resistors R, , R2 have a temperature characteristic. In this embodiment, a PCT thermistor TH and a resistor R5 are connected in series with the resistor R2.
A parallel circuit is connected, thereby giving the amplification degree G a temperature characteristic. FIG. 4 is a diagram showing the relationship between the amplification degree G and the output voltage V of the amplifier circuit 7 in the tree embodiment,
By giving the amplification degree G a temperature coefficient of +800 ppm 7° C., the output voltage ■ is temperature-compensated, and thereby the temperature characteristics of the ferromagnetic core 2 and the Hall element 3 can be canceled. In addition, Figure 5 shows the temperature characteristics of the amplification degree G and the output voltage V when the temperature coefficient of the amplification degree G is +800 to 2000 ppm/℃. It is also possible to give characteristics.

このように、温度補償回路7aが強磁性体コア2とホー
ル素子3の温度係数の和による増幅回路7の出力電圧V
の温度係数とは符号が反対の温度係数を増幅回路7の増
幅度Gに与え、強磁性体コア2とホール素子3の温度係
数の和による増幅回路7の出力電圧■の温度特性を補償
しており、温度変化による誤差をなくして電流検出を高
精度に行うことが可能となる。
In this way, the temperature compensation circuit 7a adjusts the output voltage V of the amplifier circuit 7 based on the sum of the temperature coefficients of the ferromagnetic core 2 and the Hall element 3.
A temperature coefficient opposite in sign to the temperature coefficient of This makes it possible to eliminate errors caused by temperature changes and perform current detection with high accuracy.

なお、上記実施例では電流検出を目的としており、電流
測定用の電線を含まない状態のもの、たとえば磁界セン
サ、物体検出器等も対象としている。
Note that the above embodiments are intended for current detection, and are also intended for devices that do not include electric wires for current measurement, such as magnetic field sensors and object detectors.

(発明の効果〕 以上説明したように、この発明によれば、ホール素子の
出力信号を増幅する増幅回路に温度補償回路を付加した
ため、温度変化による誤差をなくすことができ、高精度
に電流検出を行うことができるという効果がある。
(Effects of the Invention) As explained above, according to the present invention, since a temperature compensation circuit is added to the amplifier circuit that amplifies the output signal of the Hall element, errors caused by temperature changes can be eliminated, and current can be detected with high precision. It has the effect of being able to do the following.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す概略構成図、第2図
は第1図の増幅回路の詳細図、第3図はホール素子の出
力信号が一定の場合の増幅回路の増幅度と出力電圧の温
度特性図、第4図は一実施例における増幅回路の増幅度
と出力電圧の温度特性図、第5図は温度係数を大きくし
た時の増幅度と出力電圧の温度特性図、第6図は従来の
電流検出器を示す斜視図、第7図は第6図の増幅回路の
詳細図、第8図は従来における増幅回路の増幅度と出力
電圧の理想の温度特性図、第9図は従来における増幅回
路の増幅度と出力電圧の実際の温度特性図である。 2・・・・・・強磁性体コア 3−・・・・・ホール素子 7・・・・・・増幅回路 7a・・・温度補償回路 9・・・・・・回路基板 G・・・・・・磁気ギャップ なお、図中同一符号は同一または相当部分を示す。
Fig. 1 is a schematic configuration diagram showing an embodiment of the present invention, Fig. 2 is a detailed diagram of the amplifier circuit shown in Fig. 1, and Fig. 3 shows the amplification degree of the amplifier circuit when the output signal of the Hall element is constant. FIG. 4 is a temperature characteristic diagram of the amplification degree and output voltage of the amplifier circuit in one embodiment. FIG. 5 is a temperature characteristic diagram of the amplification degree and output voltage when the temperature coefficient is increased. Figure 6 is a perspective view showing a conventional current detector, Figure 7 is a detailed diagram of the amplifier circuit in Figure 6, Figure 8 is a diagram of the ideal temperature characteristics of the amplification degree and output voltage of the conventional amplifier circuit, and Figure 9 is a diagram showing the ideal temperature characteristics of the amplification degree and output voltage of the conventional amplifier circuit. The figure is an actual temperature characteristic diagram of the amplification degree and output voltage of a conventional amplifier circuit. 2...Ferromagnetic core 3-...Hall element 7...Amplification circuit 7a...Temperature compensation circuit 9...Circuit board G... ...Magnetic gap Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (2)

【特許請求の範囲】[Claims] (1)回収形状を有する磁路の一部に磁気ギャップが設
けられた強磁性体コアと、その磁気ギャップ内に配設さ
れたホール素子と、このホール素子及び該ホール素子の
出力信号を増幅する増幅回路等が実装された回路基板と
を備えた電流検出器において、前記ホール素子の出力信
号の増幅回路に温度補償回路を付加したことを特徴とす
る電流検出器。
(1) A ferromagnetic core in which a magnetic gap is provided in a part of a magnetic path having a recovery shape, a Hall element disposed within the magnetic gap, and amplification of the Hall element and the output signal of the Hall element. What is claimed is: 1. A current detector comprising: a circuit board on which an amplifier circuit or the like is mounted; characterized in that a temperature compensation circuit is added to the amplifier circuit for the output signal of the Hall element.
(2)温度補償回路は、増幅回路の増幅度の温度係数が
+800〜+2000ppm/℃に設定されていること
を特徴とする特許請求の範囲第1項記載の電流検出器。
(2) The current detector according to claim 1, wherein the temperature compensation circuit has a temperature coefficient of amplification degree of the amplifier circuit set to +800 to +2000 ppm/°C.
JP61206171A 1986-09-02 1986-09-02 Current detector Pending JPS6361961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61206171A JPS6361961A (en) 1986-09-02 1986-09-02 Current detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61206171A JPS6361961A (en) 1986-09-02 1986-09-02 Current detector

Publications (1)

Publication Number Publication Date
JPS6361961A true JPS6361961A (en) 1988-03-18

Family

ID=16518980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61206171A Pending JPS6361961A (en) 1986-09-02 1986-09-02 Current detector

Country Status (1)

Country Link
JP (1) JPS6361961A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02259471A (en) * 1989-03-30 1990-10-22 Tokin Corp Current detector
JP2003035730A (en) * 2001-07-24 2003-02-07 Setto Engineering:Kk Current detector
JP2006017470A (en) * 2004-06-30 2006-01-19 Tdk Corp Electric current detecting circuit
EP3644328A1 (en) 2018-10-26 2020-04-29 Sumida Corporation Coil wire, current sensor component, and current sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02259471A (en) * 1989-03-30 1990-10-22 Tokin Corp Current detector
JP2003035730A (en) * 2001-07-24 2003-02-07 Setto Engineering:Kk Current detector
JP2006017470A (en) * 2004-06-30 2006-01-19 Tdk Corp Electric current detecting circuit
JP4501555B2 (en) * 2004-06-30 2010-07-14 Tdk株式会社 Current detection circuit
EP3644328A1 (en) 2018-10-26 2020-04-29 Sumida Corporation Coil wire, current sensor component, and current sensor
US11506690B2 (en) 2018-10-26 2022-11-22 Sumida Corporation Coil wire, current sensor component, and current sensor

Similar Documents

Publication Publication Date Title
US4646014A (en) Hall effect field sensor circuit with temperature compensation using OP amplifier
JPH06289111A (en) Driving circuit for hall element
JPH0621799B2 (en) Magnetoresistive differential sensor device
JPS645360B2 (en)
US4109196A (en) Resistance measuring circuit
JPS6361961A (en) Current detector
JP5126536B2 (en) Magnetic proportional current sensor gain adjustment method
JP3989131B2 (en) Drive circuit for physical quantity detection element and rotation angle sensor
JPS59148820A (en) Detector for flow rate of fluid
US5096303A (en) Electronic circuit arrangement for temperature measurement based on a platinum resistor as a temperature sensing resistor
JPS6255629B2 (en)
US3882731A (en) Torquer scale factor temperature correction means
JP2948958B2 (en) Transducer circuit
JPS6336447B2 (en)
JPH0625701B2 (en) Temperature detection circuit of 3-wire resistance temperature sensor
JPH0718972Y2 (en) Magnetic detection device
JPH09232647A (en) Hall element diving circuit
KR910006516B1 (en) Improved magnetic resister sensor for encoder
JPH0642223Y2 (en) Magnetic detection circuit
JPS63101763A (en) Current detector
JP2576235Y2 (en) Voltage or current measuring device
GB2199411A (en) Auto compensating alternating current meter
JPS625291B2 (en)
JPH0113067B2 (en)
SU783730A1 (en) Device for temperature compensation of hall sensors