JPH0718972Y2 - Magnetic detection device - Google Patents

Magnetic detection device

Info

Publication number
JPH0718972Y2
JPH0718972Y2 JP1988050049U JP5004988U JPH0718972Y2 JP H0718972 Y2 JPH0718972 Y2 JP H0718972Y2 JP 1988050049 U JP1988050049 U JP 1988050049U JP 5004988 U JP5004988 U JP 5004988U JP H0718972 Y2 JPH0718972 Y2 JP H0718972Y2
Authority
JP
Japan
Prior art keywords
magnetoresistive
current
magnetic
resistor
stripe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1988050049U
Other languages
Japanese (ja)
Other versions
JPH01152208U (en
Inventor
崇 片桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Sankyo Corp
Original Assignee
Nidec Sankyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Sankyo Corp filed Critical Nidec Sankyo Corp
Priority to JP1988050049U priority Critical patent/JPH0718972Y2/en
Publication of JPH01152208U publication Critical patent/JPH01152208U/ja
Application granted granted Critical
Publication of JPH0718972Y2 publication Critical patent/JPH0718972Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は磁気記録媒体に記録された磁気信号を磁気抵抗
素子を用いて検出し電気信号として出力する磁気検出装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to a magnetic detection device for detecting a magnetic signal recorded on a magnetic recording medium by using a magnetoresistive element and outputting it as an electric signal.

(従来の技術) 強磁性金属や半導体の電気抵抗が磁界の作用によって変
化する磁気抵抗効果を利用した磁気抵抗素子を検出用セ
ンサとして用い、磁気記録媒体に記録された磁気信号を
検出する磁気検出装置が知られており、磁気信号検出用
のセンサ、磁界の測定、変位センサ、回転数センサ、回
転角センサ等、広く利用されている。
(Prior Art) Magnetic detection for detecting a magnetic signal recorded on a magnetic recording medium by using a magnetoresistive element utilizing a magnetoresistive effect in which electric resistance of a ferromagnetic metal or a semiconductor is changed by the action of a magnetic field as a detection sensor. 2. Description of the Related Art Devices are known and widely used as sensors for magnetic signal detection, magnetic field measurement, displacement sensors, rotation speed sensors, rotation angle sensors, and the like.

第5図に上記磁気抵抗素子を用いた磁気検出装置の一般
的な構成例を示す。
FIG. 5 shows an example of a general configuration of a magnetic detection device using the magnetoresistive element.

ここで、図中MRは磁気抵抗素子を示し、この磁気抵抗素
子MRは抵抗値が夫々R11,R12で示される2つの磁気抵抗
ストライプMR1,MR2によって構成されている。各磁気抵
抗ストライプMR1,MR2は磁気記録媒体4に対向して配置
されており、磁気記録媒体4の磁気信号、例えば、図示
の様にN,S極が交互に一定の周期で配列された磁気信
号、の記録波長がλの場合には、2つの磁気抵抗ストラ
イプMR1,MR2間の距離は通常λ/4に設定される。
Here, MR in the drawing indicates a magnetoresistive element, and this magnetoresistive element MR is composed of two magnetoresistive stripes MR 1 and MR 2 whose resistance values are indicated by R 11 and R 12 , respectively. The magnetoresistive stripes MR 1 and MR 2 are arranged so as to face the magnetic recording medium 4, and magnetic signals of the magnetic recording medium 4, for example, N and S poles are alternately arranged at a constant cycle as shown in the figure. If the recording wavelength of the magnetic signal is λ, the distance between the two magnetoresistive stripes MR 1 and MR 2 is usually set to λ / 4.

また、各磁気ストライプMR1,MR2の一端側は共通の電源
電圧Vcと接続され、他端側は夫々定電流源5,6に接続さ
れる。
Also, one end side of each magnetic stripe MR 1 , MR 2 is connected to a common power supply voltage Vc, and the other end side is connected to a constant current source 5, 6, respectively.

ここで、磁気抵抗素子MRによって検出される磁気信号
は、2つの磁気抵抗ストライプMR1,MR2の電圧V11,V12
の差V11−V12、即ち差動出力として検出される。
Here, the magnetic signals detected by the magnetoresistive element MR are the voltages V 11 and V 12 of the two magnetoresistive stripes MR 1 and MR 2.
The difference V 11 −V 12 is detected as a differential output.

(考案が解決しようとする課題) ところで、第5図に示す磁気検出装置において、磁気抵
抗素子MRと磁気記録媒体4とを図中Fで示す相対移動方
向へ一定速度で移動させると、検出される上記差動出力
V11−V12は第6図に示す如く近似正弦波となる。
(Problems to be Solved by the Invention) By the way, in the magnetic detection device shown in FIG. 5, when the magnetoresistive element MR and the magnetic recording medium 4 are moved at a constant speed in the relative movement direction shown by F in the figure, it is detected. Above differential output
V 11 −V 12 becomes an approximate sine wave as shown in FIG.

ところが、磁気抵抗素子MRの各磁気抵抗ストライプM
R1,MR2の抵抗値や磁気記録媒体4に記録された磁気信
号の強さ等は温度に対して影響を受けるため、検出され
た上記差動出力V11−V12の振幅A1は、第7図に示すよう
に、−1800ppm/℃程度の温度係数を有する。
However, each magnetoresistive stripe M of the magnetoresistive element MR
Since the resistance values of R 1 and MR 2 and the strength of the magnetic signal recorded on the magnetic recording medium 4 are affected by temperature, the detected amplitude A 1 of the differential output V 11 −V 12 is As shown in FIG. 7, it has a temperature coefficient of about −1800 ppm / ° C.

ここで、差動出力の振幅が何故−1800ppm/℃程度の温度
係数を有するかについて説明する。
Here, the reason why the amplitude of the differential output has a temperature coefficient of about −1800 ppm / ° C. will be described.

第5図において、磁気抵抗素子MRと磁気記録媒体4の相
対移動距離をxとすれば、各磁気抵抗ストライプMR1,M
R2の抵抗変化は一方の磁気抵抗ストライプMR1の抵抗R11
(x)を基準とすると、 R12(x)=R11(x+λ/4) ‥‥() となる。
In FIG. 5, when the relative moving distance between the magnetoresistive element MR and the magnetic recording medium 4 is x, the magnetoresistive stripes MR 1 , M
The resistance change of R 2 is due to the resistance of one magnetoresistive stripe MR 1 R 11
Based on (x), R 12 (x) = R 11 (x + λ / 4) ().

今、磁気抵抗ストライプMR1,MR2に記録信号の磁束密
度、 B(x)=Ba sin{(2π/λ)x} ‥‥() の磁界が加わるとする。また、磁気抵抗ストライプの印
加磁束密度に対する抵抗変化率を第8図(a)に示す如
く2次曲線に近似して ρ(B(x))=A{B(x)}2 ‥‥() と仮定する。
Now, it is assumed that a magnetic flux density of a recording signal, B (x) = Ba sin {(2π / λ) x} ... (), is applied to the magnetoresistive stripes MR 1 and MR 2 . Further, the resistance change rate with respect to the applied magnetic flux density of the magnetoresistive stripe is approximated to a quadratic curve as shown in FIG. 8 (a), and ρ (B (x)) = A {B (x)} 2 (...) Suppose

ここで、第8図(b)に示すような磁束密度が磁気抵抗
ストライプに印加されると、第8図(c)に示すように
抵抗変化率ρ(B(x))が変化する。即ち、基準側の
磁気抵抗ストライプMR1の抵抗値R11の、磁束密度がB
(x)=O(gauss)での抵抗値をR0とすると、R11は次
式で表される。
Here, when a magnetic flux density as shown in FIG. 8 (b) is applied to the magnetoresistive stripe, the resistance change rate ρ (B (x)) changes as shown in FIG. 8 (c). That is, the magnetic flux density of the resistance value R 11 of the magnetoresistive stripe MR 1 on the reference side is B
When the resistance value at (x) = O (gauss) is R 0 , R 11 is expressed by the following equation.

R11(x)=R0{1−ρ(B(x))} ‥‥() 即ち、B(x)が印加されると、R11(x)はR0からR0
ρ(B(x))だけ抵抗値が減少する。
R 11 (x) = R 0 {1-ρ (B (x))} ‥‥ () That is, when B (x) is applied, R 11 (x) is R 0 from R 0
The resistance value decreases by ρ (B (x)).

ここで、上記()式を(),()式を用いて書き
下すと となり、また、()式よりR12(x)は次式で表され
る。
Here, if the above equation () is written down using equations () and (), From the expression (), R 12 (x) is expressed by the following expression.

ここで、第5図より、磁気抵抗ストライプMR1,MR2の差
動出力V11(x)−V12(x)は、 V11−V12=Vc−R11(x)I−{Vc−R12(x)I} ={R12(x)−R11(x)I ‥‥() であるから、(),()式を用いて、 V11−V12=−ABa2R0Icos{4π/λ)x} となる。
Here, from FIG. 5, the differential output V 11 (x) −V 12 (x) of the magnetoresistive stripes MR 1 and MR 2 is V 11 −V 12 = Vc−R 11 (x) I− {Vc −R 12 (x) I} = {R 12 (x) −R 11 (x) I ... () Therefore, using the formulas () and (), V 11 −V 12 = −ABa 2 R 0 Icos {4π / λ) x}.

即ち、差動出力V11(x)−V12(x)の振幅A1は、第9
図に示すように、 A1=ABa2R0I となることが判る。
That is, the amplitude A 1 of the differential output V 11 (x) −V 12 (x) is
As shown in the figure, it can be seen that A 1 = ABa 2 R 0 I.

したがって、振幅A1=ABa2R0Iより、振幅A1の温度係数
は4つの因子、A,Ba2,R0,I即ち、 の各温度係数の影響を受けることがわかる。
Therefore, from the amplitude A 1 = ABa 2 R 0 I, the temperature coefficient of the amplitude A 1 is four factors, A, Ba 2 , R 0 , I, that is, It can be seen that each temperature coefficient is affected.

ここで、第5図に示す磁気検出装置では、通常、ドライ
ブ電流の温度係数は0ppm/℃であるため、A,Ba,R0の3つ
の因子の相互の影響(A×Ba2×R0)による温度係数−1
800ppm/℃が振幅の温度係数−1800ppm/℃として表われ
るわけである。
Here, in the magnetic detection device shown in FIG. 5, since the temperature coefficient of the drive current is usually 0 ppm / ° C., the mutual influence of the three factors A, Ba, and R 0 (A × Ba 2 × R 0 ) Temperature coefficient −1
800 ppm / ° C appears as the temperature coefficient of amplitude −1800 ppm / ° C.

ところが、上記A,Ba,R0の3つの因子の温度係数は物性
的に一義的に決まる値であるため、各因子の温度係数を
0にすることは不可能であり、このため、振幅の温度係
数を0にすることは困難である。
However, since the temperature coefficients of the above three factors A, Ba, and R 0 are values that are uniquely determined in terms of physical properties, it is impossible to make the temperature coefficients of each factor zero, so that the amplitude It is difficult to reduce the temperature coefficient to zero.

したがって、第5図に示す構成の磁気検出装置では、出
力信号V11−V12の振幅A1が負の温度特性を持っているた
め、出力信号の温度による影響を除くためには、後段に
接続される信号処理回路で温度補償をしなければならな
かった。
Therefore, in the magnetic detection device having the configuration shown in FIG. 5, since the amplitude A 1 of the output signal V 11 -V 12 has a negative temperature characteristic, in order to eliminate the influence of the temperature of the output signal, The signal processing circuit connected had to be temperature compensated.

尚、磁気抵抗素子を用いた磁気検出装置で、磁気抵抗素
子の抵抗の温度変化を考慮した磁気検出装置、イ)特開
昭61−91577号、ロ)特開昭61−86614号が提案されてい
る。
A magnetic detection device using a magnetoresistive element, which takes into consideration the temperature change of the resistance of the magnetoresistive element, is proposed as follows: (a) JP-A-61-91577 and (B) JP-A-61-86614. ing.

ここで、上記イ)記載の磁気検出装置は、磁気抵抗素子
と、この磁気抵抗素子と同じ抵抗温度係数を有する抵抗
体の各一端を共通電位に接続し、各他端を夫々独立した
定電流源に接続するとともに、前記磁気抵抗素子と抵抗
体の前記他端の電圧差を検出することを特徴としてい
る。
Here, in the magnetic detection device described in the above (a), the magnetoresistive element and one end of a resistor having the same temperature coefficient of resistance as the magnetoresistive element are connected to a common potential, and the other ends thereof are independent constant currents. It is characterized in that the voltage difference between the magnetoresistive element and the other end of the resistor is detected while being connected to the source.

また、ロ)記載の磁気検出装置(差動センサ)は、2つ
の磁気抵抗素子が、それらの隣接端子で相互に接続され
ており、かつ前記2つの磁気抵抗素子を経て電流が流れ
るようにした作動センサにおいて、2つの磁気抵抗素子
の接続点がアース接続されており、前記磁気抵抗素子の
自由端子間の電圧がセンサ出力電圧として取り出される
ようにしたことを特徴とする差動センサであり、上記電
流が、磁気抵抗素子の抵抗値の変化を補償するように、
温度に対して逆依存性を有していることを特徴としてい
る。
In the magnetic detection device (differential sensor) described in B), two magnetoresistive elements are connected to each other at their adjacent terminals, and a current flows through the two magnetoresistive elements. In the operation sensor, a connection point of two magnetoresistive elements is grounded, and a voltage between free terminals of the magnetoresistive elements is taken out as a sensor output voltage. In order for the current to compensate for the change in the resistance value of the magnetoresistive element,
It is characterized by having an inverse dependence on temperature.

しかしながら、上記イ)、ロ)の何れも、磁気抵抗素子
の抵抗値の温度変化に対する配慮はなされているが、そ
の他の因子による影響に対しては考慮されておらず、し
かも、前述した磁気検出装置の出力信号の振幅の温度係
数の問題に関する記載はなく、この問題を解決し得る手
段も開示されていない。
However, in each of the above a) and b), consideration is given to the temperature change of the resistance value of the magnetoresistive element, but no consideration is given to the influence of other factors, and moreover, the magnetic detection described above is not taken into consideration. There is no mention of the problem of the temperature coefficient of the amplitude of the output signal of the device, and no means for solving this problem is disclosed.

したがって、上記イ)、ロ)に記載された磁気検出装置
においても、前述した、出力信号の振幅の温度係数の問
題を解決することはできない。
Therefore, even in the magnetic detection device described in the above a) and b), the above-mentioned problem of the temperature coefficient of the amplitude of the output signal cannot be solved.

本考案は上記事情に鑑みてなされたものであって、磁気
信号検出段で温度補償を行ない、出力信号の温度依存性
の問題を解消した磁気検出装置を提供することを目的と
する。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a magnetic detection device in which temperature compensation is performed at the magnetic signal detection stage and the problem of temperature dependence of the output signal is solved.

(課題を解決するための手段) 上記目的を達成するため、本考案は、磁気信号を記録し
た磁気記録媒体に対向配置され上記磁気信号を検出する
磁気抵抗素子と、上記磁気抵抗素子に電圧を印加する電
源と、上記磁気抵抗素子と直列に接続される定電流源と
を備え、上記磁気抵抗素子は1つあるいは所定の間隔を
おいて配置された2つの磁気抵抗ストライプからなり、
磁気抵抗素子が1つの磁気抵抗ストライプからなる場合
はその一端を上記電源に接続し他端側を上記定電流源に
接続して磁気抵抗ストライプに定電流を流すことにより
磁気抵抗ストライプの出力電圧から磁気信号に応じた正
弦波状の出力信号を検出し、磁気抵抗素子が2つの磁気
抵抗ストライプからなる場合は該2つの磁気抵抗ストラ
イプの一端側を共通の電源に接続し他端側をそれぞれ定
電流源に接続して上記2つの磁気抵抗ストライプにそれ
ぞれ同じ値の定電流を流すことにより両磁気抵抗ストラ
イプの出力電圧差(差動出力)から磁気信号に応じて正
弦波状の出力信号を検出する磁気検出装置において、 上記定電流源は、磁気抵抗素子の磁気抵抗ストライプと
接続される電流制御用の増幅器と、該増幅器と接地側と
の間に接続され磁気抵抗ストライプに流れる電流値を検
出するための電流検出用抵抗と、電源と接地側との間に
直列接続した少なくとも2つの抵抗からなり電源側抵抗
と接地側抵抗の中間部が上記増幅器に接続され基準電圧
を増幅器に対して発生する基準電圧回路とを備え、 上記増幅器は、磁気抵抗ストライプと電流検出用抵抗と
の間に接続される電流制御素子(トランジスタ等)と、
電流制御素子と電流検出用抵抗との接続部の電圧が入力
される負の入力端子と上記基準電圧が入力される正の入
力端子及び上記電流制御素子の制御用端子に電圧を出力
する出力端子を有し上記正・負の入力端子に入力される
電圧が等しくなるように出力電圧を電流制御素子の制御
用端子に帰還して磁気抵抗ストライプに流れる電流を制
御するためのオペアンプとから構成され、 上記基準電圧回路内の上記接地側の抵抗は、上記電源側
の抵抗よりも大きな正の温度係数を有することを特徴と
する。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a magnetoresistive element that is arranged to face a magnetic recording medium on which a magnetic signal is recorded and that detects the magnetic signal, and a voltage is applied to the magnetoresistive element. The magnetoresistive element includes a power supply for applying a voltage and a constant current source connected in series with the magnetoresistive element, and the magnetoresistive element is composed of one magnetoresistive stripe arranged at a predetermined interval.
When the magnetoresistive element is composed of one magnetoresistive stripe, one end of the magnetoresistive stripe is connected to the power source and the other end is connected to the constant current source to apply a constant current to the magnetoresistive stripe, thereby changing the output voltage of the magnetoresistive stripe. A sinusoidal output signal corresponding to the magnetic signal is detected, and when the magnetoresistive element is composed of two magnetoresistive stripes, one end side of the two magnetoresistive stripes is connected to a common power source and the other end side is a constant current. A magnetic source for detecting a sinusoidal output signal according to a magnetic signal from the output voltage difference (differential output) of both magnetoresistive stripes by connecting a constant current source to the two magnetoresistive stripes. In the detection device, the constant current source is a current control amplifier connected to the magnetoresistive stripe of the magnetoresistive element, and a magnetic field connected between the amplifier and the ground side. The current detection resistor for detecting the value of the current flowing through the resistor stripe, and at least two resistors connected in series between the power source and the ground side are formed, and an intermediate portion between the power source side resistor and the ground side resistor is connected to the amplifier. A reference voltage circuit for generating a reference voltage to the amplifier, wherein the amplifier is a current control element (transistor or the like) connected between the magnetoresistive stripe and the current detection resistor;
A negative input terminal to which the voltage at the connection between the current control element and the current detection resistor is input, a positive input terminal to which the reference voltage is input, and an output terminal that outputs a voltage to the control terminal of the current control element. And an operational amplifier for controlling the current flowing through the magnetoresistive stripe by feeding back the output voltage to the control terminal of the current control element so that the voltages input to the positive and negative input terminals become equal. The resistance on the ground side in the reference voltage circuit has a larger positive temperature coefficient than the resistance on the power supply side.

(作用) 本考案では、磁気検出装置の定電流源を増幅器と基準電
圧回路と電流検出用抵抗で構成し、増幅器を電流制御素
子(トランジスタ(パワートランジスタ,FET)等)とオ
ペアンプとからなる負帰還型の増幅器とし、磁気抵抗素
子の磁気抵抗ストライプに流れる電流値を上記電流検出
用抵抗にかかる電圧として検出して増幅器のオペアンプ
の負の入力端子に帰還し、該帰還電圧がオペアンプの正
の入力端子に入力される基準電圧と等しくなるように電
流制御素子を制御しているため、磁気抵抗ストライプに
流れる電流を定電流にすることができる。そして本考案
では、定電流を得るための基準となる電圧を増幅器に対
して発生する基準電圧回路内の接地側の抵抗が電源側の
抵抗よりも大きな正の温度係数を有する構成としたこと
により、基準電圧に正の温度係数を持たせることがで
き、従って、電流検出用抵抗を流れる電流、すなわち磁
気抵抗ストライプに流れる電流に正の温度係数を持たせ
ることができるため、磁気抵抗素子の出力の負の温度係
数が相殺され、磁気抵抗素子の出力信号の振幅の温度依
存性(温度変化)を除去することができる。
(Operation) In the present invention, the constant current source of the magnetic detection device is composed of an amplifier, a reference voltage circuit and a current detection resistor, and the amplifier is composed of a current control element (transistor (power transistor, FET) etc.) and an operational amplifier. A feedback type amplifier, in which the current value flowing in the magnetoresistive stripe of the magnetoresistive element is detected as a voltage applied to the current detecting resistor and is fed back to the negative input terminal of the operational amplifier of the amplifier, and the feedback voltage is positive. Since the current control element is controlled so as to be equal to the reference voltage input to the input terminal, the current flowing through the magnetoresistive stripe can be a constant current. In the present invention, the resistance on the ground side in the reference voltage circuit that generates a reference voltage for obtaining a constant current has a larger positive temperature coefficient than the resistance on the power supply side. Since the reference voltage can have a positive temperature coefficient, and thus the current flowing through the current detection resistor, that is, the current flowing through the magnetoresistive stripe, can have a positive temperature coefficient, the output of the magnetoresistive element The negative temperature coefficient of is canceled out, and the temperature dependence (temperature change) of the amplitude of the output signal of the magnetoresistive element can be removed.

(実施例) 以下、本考案を図示の実施例に基づいて詳細に説明す
る。
(Embodiment) Hereinafter, the present invention will be described in detail based on an illustrated embodiment.

第1図は本考案による磁気検出装置の概略回路構成例を
示し、図中符号MRは2つの磁気抵抗ストライプMR1,MR2
からなる磁気抵抗素子であって、各磁気抵抗ストライプ
MR1,MR2は磁気信号(図示の例では、N,S極を交互に一
定周期で記録した磁気信号の例を示す)を記録した磁気
記録媒体4に対向して配置される。また、図中符号1は
上記磁気抵抗素子と直列に接続される定電流源を示して
いる。
FIG. 1 shows an example of a schematic circuit configuration of a magnetic detection device according to the present invention. In the figure, reference symbol MR is two magnetoresistive stripes MR 1 and MR 2
A magnetoresistive element comprising:
MR 1 and MR 2 are arranged so as to face a magnetic recording medium 4 on which a magnetic signal (in the illustrated example, an example of a magnetic signal in which N and S poles are alternately recorded at a constant cycle is shown) is recorded. Reference numeral 1 in the figure indicates a constant current source connected in series with the magnetoresistive element.

ここで、第1図に示す磁気検出装置の全体構成は第5図
に示すものとほぼ同様のものであるが、本考案において
は、上記定電流源1を、磁気抵抗素子MRの磁気抵抗スト
ライプMR1,MR2と接続される電流制御用の増幅器2と、
この増幅器2と接地側との間に接続され磁気抵抗ストラ
イプMR1,MR2に流れる電流値を検出するための電流検出
用抵抗R1,R2と、電源Vcと接地側との間に直列接続した
少なくとも2つの抵抗R4,R5からなり電源側抵抗R4と接
地側抵抗R5の中間部が上記増幅器2に接続され基準電圧
VCNTLを増幅器2に対して発生する基準電圧回路3とを
備えた構成としている。また、上記増幅器2は、磁気抵
抗ストライプMR1,MR2と電流検出用抵抗R1,R2との間に
接続される電流制御素子(トランジスタ(パワートラン
ジスタ、FET)等)TR1,TR2と、電流制御素子TR1,TR2
と電流検出用抵抗R1,R2との接続部(何れか1方側で良
く、図示の例ではR2側)の電圧V2が入力される負の入力
端子と上記基準電圧VCNTLが入力される正の入力端子及
び上記電流制御素子TR1,TR2の制御用端子に電圧を出力
する出力端子を有し上記正・負の入力端子に入力される
電圧(VCNTL,V2)が等しくなるように出力電圧Vout
電流制御素子TR1,TR2の制御用端子に帰還して磁気抵抗
ストライプMR1,MR2に流れる電流を制御するためのオペ
アンプOP1とから構成されている。
Here, the overall structure of the magnetic detection device shown in FIG. 1 is almost the same as that shown in FIG. 5, but in the present invention, the constant current source 1 is used as the magnetoresistive stripe of the magnetoresistive element MR. An amplifier 2 for current control connected to MR 1 and MR 2 ,
The current detection resistors R 1 and R 2 connected between the amplifier 2 and the ground side for detecting the value of the current flowing in the magnetoresistive stripes MR 1 and MR 2 , and a series connection between the power supply Vc and the ground side. It consists of at least two resistors R 4 and R 5 connected, and the middle part of the power source side resistor R 4 and the ground side resistor R 5 is connected to the amplifier 2 and the reference voltage
The reference voltage circuit 3 for generating V CNTL for the amplifier 2 is provided. Further, the amplifier 2, the MR stripe MR 1, MR 2 and the current detection resistor R 1, a current control element connected between the R 2 (transistor (power transistor, FET), etc.) TR 1, TR 2 And the current control elements TR 1 and TR 2
And the reference voltage V CNTL and the negative input terminal to which the voltage V 2 at the connection between the current detection resistors R 1 and R 2 (either one side is enough, R 2 side in the example shown) is input. Voltage input to the positive and negative input terminals (V CNTL , V 2 ) that has a positive input terminal to be input and an output terminal that outputs a voltage to the control terminals of the current control elements TR 1 and TR 2 The output voltage V out is fed back to the control terminals of the current control elements TR 1 and TR 2 so that they become equal to each other, and it is composed of an operational amplifier OP 1 for controlling the current flowing in the magnetoresistive stripes MR 1 and MR 2. There is.

また、本考案では、上記基準電圧回路3内の上記接地側
の抵抗R5は、上記電源側の抵抗R4よりも大きな正の温度
係数を有することを特徴としている。
Further, the present invention is characterized in that the resistance R 5 on the ground side in the reference voltage circuit 3 has a larger positive temperature coefficient than the resistance R 4 on the power supply side.

以下、より具体的な実施例として、増幅器2の電流制御
素子にnpn形のパワートランジスタを用いた例で説明す
る。
Hereinafter, as a more specific embodiment, an example in which an npn type power transistor is used as the current control element of the amplifier 2 will be described.

ここで、図示の例では、増幅器2は、磁気抵抗素子MRの
各磁気抵抗ストライプMR1,MR2に夫々コレクタ端子側が
接続されエミッタ端子側を夫々上記電流検出用抵抗R1
R2と接続されて2つのトランジスタTR1,TR2と、その2
つのトランジスタTR1,TR2のベース端子に抵抗を介して
出力端子側が接続され、正の入力端子が上記基準電圧回
路3へ、負の入力端子が上記電流検出用抵抗R1,R2のR2
側に接続されるオペアンプOP1とによって構成される。
In the illustrated example, in the amplifier 2, the collector terminals are connected to the magnetoresistive stripes MR 1 and MR 2 of the magnetoresistive element MR, and the emitter terminals are connected to the current detection resistors R 1 and MR 2 , respectively.
Two transistors TR 1 and TR 2 connected to R 2 and its 2
The output terminals are connected to the base terminals of the two transistors TR 1 and TR 2 via resistors, the positive input terminal to the reference voltage circuit 3 and the negative input terminal to the current detection resistors R 1 and R 2 2
It is composed of an operational amplifier OP 1 connected to the side.

また、上記基準電圧回路3は2つの抵抗器R4,R5を直列
に接続した構成からなり、抵抗器R4の自由端子側が電源
電圧Vcと接続され、抵抗器R5の自由端子側が接地されて
いる。また、上記オペアンプOP1の上記正の入力端子
は、抵抗器R4,R5の中間部に接続されている。
The reference voltage circuit 3 has a configuration in which two resistors R 4 and R 5 are connected in series. The free terminal side of the resistor R 4 is connected to the power supply voltage Vc and the free terminal side of the resistor R 5 is grounded. Has been done. The positive input terminal of the operational amplifier OP 1 is connected to the intermediate portion of the resistors R 4 and R 5 .

ここで、上記オペアンプOP1は負の入力端子に入力され
る電圧V2と正の入力端子に入力される電圧VCNTLが等し
くなるように出力電圧Voutを出力する。また、オペアン
プOP1の正の入力端子に入力される基準電圧回路3の電
圧VCNTLは、次式で表される。
Here, the operational amplifier OP 1 outputs the output voltage Vout such that the voltage V 2 input to the negative input terminal and the voltage V CNTL input to the positive input terminal become equal. The voltage V CNTL of the reference voltage circuit 3 input to the positive input terminal of the operational amplifier OP 1 is expressed by the following equation.

尚、増幅器2内のオペアンプOP1の出力端子側に接続さ
れる抵抗器R3は発振防止用に設けられている。また、上
記2つのトランジスタTR1,TR2としては、通常ワンパッ
ケージに2つのトランジスタTR1,TR2が入っているデュ
アルトランジスタが用いられる。
Incidentally, a resistor R 3 connected to the output terminal of the operational amplifier OP 1 in the amplifier 2 is provided for preventing oscillation. As the two transistors TR 1 and TR 2 , a dual transistor having two transistors TR 1 and TR 2 in one package is usually used.

また、上記電流検出用抵抗R1,R2としては、同じ抵抗
値、同じ温度係数のものが使用される。
The current detecting resistors R 1 and R 2 having the same resistance value and the same temperature coefficient are used.

上記基準電圧回路3内の抵抗器R4は温度係数が0ppm/℃
に近いなるべく温度係数の小さい抵抗器、また、抵抗器
R5は正の温度係数の抵抗器であり、この抵抗器R5の温度
係数は、オペアンプOP1の正の入力端子に入力される電
圧VCNTLの温度係数が正になるように、抵抗器R4の温度
係数より大きくする。
The temperature coefficient of the resistor R 4 in the reference voltage circuit 3 is 0 ppm / ° C.
A resistor with a temperature coefficient as close as possible to the
R 5 is a positive temperature coefficient resistor, and the temperature coefficient of this resistor R 5 is such that the temperature coefficient of the voltage V CNTL input to the positive input terminal of the operational amplifier OP 1 is positive. Greater than the temperature coefficient of R 4 .

尚、抵抗器R3はオペアンプOP1のゲインが小さいとき、
あるいは、トランジスタTR2のhFEが小さいときには省く
ことができる。
Incidentally, when the gain of the operational amplifier OP 1 is small, the resistor R 3 is
Alternatively, it can be omitted when h FE of transistor TR 2 is small.

さて、以上の構成からなる定電流源1を備えた磁気検出
装置では、2つのトランジスタTR1,TR2のベースからエ
ミッタへ流れる電流はコレクタからエミッタへ流れる電
流I11,I12に比べてはるかに小さいので無視すると、一
方側の電流検出用抵抗R1にはI11が流れ、他方の電流検
出用抵抗R2にはI12が流れると近似することができる。
By the way, in the magnetic detection device provided with the constant current source 1 having the above configuration, the current flowing from the base to the emitter of the two transistors TR 1 and TR 2 is far greater than the currents I 11 and I 12 flowing from the collector to the emitter. Since it is small, it can be approximated that I 11 flows in the current detection resistor R 1 on one side and I 12 flows in the other current detection resistor R 2 .

したがって、オペアンプOP1は、負の入力端子の入力電
圧V2、 V2=R2I12 ‥‥(2) と正の入力端子に入力される基準電圧VCNTLとを等しく
するように出力電圧Vout、即ちベース電圧VBを出力す
る。即ち次式、 I12=VCNTL/R2 ‥‥(3) が成立ち、VCNTLと抵抗R2とによりI12が定まる。ここ
で、抵抗R2は電流検出器の役割を果たしている。
Therefore, the operational amplifier OP 1 outputs the output voltage so that the input voltages V 2 , V 2 = R 2 I 12 (2) of the negative input terminal and the reference voltage V CNTL input to the positive input terminal are equal. Vout, that is, the base voltage V B is output. That is, the following equation, I 12 = V CNTL / R 2 (3) is established, and I 12 is determined by V CNTL and the resistance R 2 . Here, the resistor R 2 serves as a current detector.

また、2つのトランジスタTR1,TR2のそれぞれのベー
ス、エミッタ間電圧が等しいとすると、 R1I11=R2I12 ‥‥(4) が成立ち、R1=R2のときには、 I11=I12 ‥‥(5) となる。
If the base-emitter voltages of the two transistors TR 1 and TR 2 are equal, then R 1 I 11 = R 2 I 12 (4) holds, and when R 1 = R 2 , I 11 = I 12 (5)

したがって、R1=R2とすれば、磁気抵抗ストライプM
R1,MR2を同じ電流値I11=I12でドライブすることにな
る。また、この電流値は、(3)式より、VCNTL、R2
より決定される。
Therefore, if R 1 = R 2 , then the magnetoresistive stripe M
It will drive the R 1, MR 2 with the same current value I 11 = I 12. Further, this current value is determined by V CNTL and R 2 from the equation (3).

さて、基準電圧回路3の抵抗器R5は前述したように正の
温度係数を持つので、基準電圧回路3の出力電圧VCNTL
も正の温度係数を持つことになる。したがって、(3)
式より明らかなように、電流検出用抵抗R2を流れる電流
I12は正の温度係数を持ち、また、電流検出用抵抗R1
流れる電流I11も、同様に(5)式より、正の温度係数
を持つ。
Since the resistor R 5 of the reference voltage circuit 3 has a positive temperature coefficient as described above, the output voltage V CNTL of the reference voltage circuit 3
Also has a positive temperature coefficient. Therefore, (3)
As is clear from the equation, the current flowing through the current detection resistor R 2
I 12 has a positive temperature coefficient, and the current I 11 flowing through the current detection resistor R 1 also has a positive temperature coefficient from the equation (5).

したがって、第1図に示す構成の本考案による磁気検出
装置では、電流I11,I12の温度係数が+1800ppm/℃にな
るように基準電圧回路3の抵抗器R4,R5の抵抗値及び温
度係数を選ぶことにより、出力信号(差動電圧)V11−V
12の振幅A1の温度依存性(温度変化)を除去することが
できる。
Therefore, in the magnetic detector according to the present invention having the configuration shown in FIG. 1, the resistance values of the resistors R 4 and R 5 of the reference voltage circuit 3 and the temperature coefficients of the currents I 11 and I 12 are +1800 ppm / ° C. By selecting the temperature coefficient, the output signal (differential voltage) V 11 −V
The temperature dependence (temperature change) of the amplitude A 1 of 12 can be eliminated.

第2図は本考案による磁気検出装置の出力信号の振幅と
A1と温度との関係を示したもので、振幅A1は温度によっ
て変化せず、したがって、振幅の温度依存性はない。
FIG. 2 shows the amplitude of the output signal of the magnetic detection device according to the present invention.
The relationship between A 1 and temperature is shown. The amplitude A 1 does not change with temperature, and therefore the amplitude has no temperature dependence.

第3図は本考案の別の実施例を示す磁気検出装置の概略
回路構成図を示し、この磁気検出装置では、第1図に示
した装置の基準電圧回路3の抵抗器R5を2つの抵抗器R
51とR6に分割し、この2つの抵抗器R51,R6を直列に接
続したものである。
FIG. 3 is a schematic circuit configuration diagram of a magnetic detection device showing another embodiment of the present invention. In this magnetic detection device, two resistors R 5 of the reference voltage circuit 3 of the device shown in FIG. Resistor R
It is divided into 51 and R 6 , and these two resistors R 51 and R 6 are connected in series.

ここで、一方の抵抗器R51は磁気抵抗素子MRの2つの磁
気抵抗ストライプMR1,MR2と同一のチップ上に形成され
たストライプ状の線状抵抗であり、信号磁界によりその
抵抗値が変化しないように磁気抵抗ストライプMR1,MR2
と直角に配置される。また、抵抗値を大きくしたい場合
にはパターンを往復させる。また、他方の抵抗器R6は、
基準電圧回路3の他の抵抗器R4と同様に、第1図に示し
た回路の抵抗器R5と比較して温度係数が小さく、0ppm/
℃前後のものが使用される。
Here, one resistor R 51 is a stripe-shaped linear resistor formed on the same chip as the two magnetoresistive stripes MR 1 and MR 2 of the magnetoresistive element MR, and its resistance value changes depending on the signal magnetic field. Magneto-resistive stripes MR 1 and MR 2 so as not to change
It is placed at a right angle. When the resistance value is desired to be increased, the pattern is reciprocated. Also, the other resistor R 6 is
Like the other resistor R 4 of the reference voltage circuit 3, the temperature coefficient is smaller than that of the resistor R 5 of the circuit shown in FIG.
Those around ℃ are used.

ところで、磁気検出装置において出力信号の温度補償を
するときには、温度補償をする対象即ち磁気抵抗素子及
び磁気記録媒体の近くに温度補償回路の温度センサ部が
あればあるほど、より精度の良い温度補償ができる。第
3図に示す構成の磁気検出装置ではこれを目的としてお
り、前述した、磁気抵抗ストライプMR1,MR2と同一のチ
ップ上に形成された抵抗器R51が温度補償回路の温度セ
ンサの役割を果たすものである。
By the way, when temperature compensation of the output signal is performed in the magnetic detection device, the more accurate the temperature compensation unit is, the closer the temperature sensor section of the temperature compensation circuit is to the temperature compensation target, that is, the magnetic resistance element and the magnetic recording medium. You can The magnetic detection device having the configuration shown in FIG. 3 is intended for this purpose, and the resistor R 51 formed on the same chip as the magnetoresistive stripes MR 1 and MR 2 serves as a temperature sensor of the temperature compensation circuit. To fulfill.

尚、上記抵抗器R51は磁気抵抗素子と同じ材料、若しく
は同様の温度係数を有する材料で形成され、磁気抵抗素
子と同じ温度係数を持つように設定される。例えば、強
磁性金属Ni−Feを材料とした磁気抵抗素子の場合、200
〜4000ppm/℃の温度係数を持つが、このとき抵抗器R51
も同じ温度係数を有するように形成される。
The resistor R 51 is made of the same material as the magnetoresistive element or a material having a similar temperature coefficient, and is set to have the same temperature coefficient as the magnetoresistive element. For example, in the case of a magnetoresistive element made of ferromagnetic metal Ni-Fe,
While having a temperature coefficient of ~4000ppm / ℃, this time resistor R 51
Are also formed to have the same temperature coefficient.

さて、第3図に示す構成の磁気検出装置では、第1図に
示した磁気検出装置と同様に、基準電圧回路3の基準電
圧VCNTLの温度係数が1800ppm/℃になるように基準電圧
回路3の各抵抗器R4,R51,R6の抵抗値を決定すること
により、差動出力信号V11−V12の振幅の温度依存性を除
去することができる。尚、場合によっては抵抗器R6は省
くことができる。
Now, in the magnetic detection device having the configuration shown in FIG. 3, similarly to the magnetic detection device shown in FIG. 1, the reference voltage circuit 3 has a reference voltage V CNTL so that the temperature coefficient of the reference voltage V CNTL becomes 1800 ppm / ° C. By determining the resistance value of each of the resistors R 4 , R 51 , and R 6 of 3, the temperature dependence of the amplitude of the differential output signal V 11 −V 12 can be removed. The resistor R 6 can be omitted in some cases.

ところで、先の第1図に示した磁気検出装置の説明で用
いた、前記(3)式へ(1)式を代入すると、 となる。この式より、I12の他の温度補償方法として
は、 A)電源電圧Vcの温度係数を+1800ppm/℃とする。
By the way, by substituting the equation (1) into the equation (3) used in the description of the magnetic detection device shown in FIG. Becomes From this equation, another temperature compensation method for I 12 is as follows: A) The temperature coefficient of the power supply voltage Vc is +1800 ppm / ° C.

B)電流検出抵抗R1,R2の抵抗温度係数を−1800ppm/℃
とする。
B) The temperature coefficient of resistance of the current detection resistors R 1 and R 2 is -1800ppm / ℃
And

の2案が考えられる。There are two options.

しかるに、上記A)の温度補償方法については、第1図
に示した構成の磁気検出装置の、基準電圧回路3の抵抗
器R4に印加される電源電圧Vcの温度係数を+1800ppm/℃
とすればよいのだが、電源電圧Vcを発生する電源回路の
他に基準電圧を発生する回路を設けねばならず、回路構
成が複雑となり、コストも増大し、余り得策ではない。
However, regarding the temperature compensation method of the above A), the temperature coefficient of the power supply voltage Vc applied to the resistor R 4 of the reference voltage circuit 3 of the magnetic detection device having the configuration shown in FIG. 1 is +1800 ppm / ° C.
However, a circuit for generating the reference voltage must be provided in addition to the power supply circuit for generating the power supply voltage Vc, which complicates the circuit configuration and increases the cost, which is not a good idea.

また、上記B)の温度補償方法では、前記(5)式に示
す条件を満たすためには、電流検出抵抗R1,R2の抵抗温
度係数を同時に−1800ppm/℃としなければならない。即
ち、−1800ppm/℃という特殊な温度係数の、しかも、ペ
アマッチング性の良い抵抗器を2つ使用しなくてはなら
ず、抵抗器の選定に手間がかかる。
Further, in the temperature compensation method of the above B), the temperature coefficient of resistance of the current detection resistors R 1 and R 2 must be set to −1800 ppm / ° C. at the same time in order to satisfy the condition shown in the equation (5). That is, it is necessary to use two resistors having a special temperature coefficient of −1800 ppm / ° C. and good pair matching, and it takes time to select the resistors.

したがって、磁気検出装置の温度補償としては、第1図
及び第3図に示した実施例の回路構成の方が簡単で、且
つ安価に実現することができる。
Therefore, as the temperature compensation of the magnetic detection device, the circuit configuration of the embodiment shown in FIGS. 1 and 3 can be realized more simply and cheaply.

尚、第1図においては、いわゆるポジションエンコーダ
のインクリメンタル相で説明したが、原点(絶対)相の
場合も同様に扱うことができる。
In FIG. 1, the so-called incremental phase of the position encoder has been described, but the case of the origin (absolute) phase can be handled in the same manner.

また、第1図及び第3図に示す実施例の磁気検出装置は
差動出力の場合について示してあるが、第4図に示す磁
気検出装置のように、磁気抵抗ストライプMR2が片側だ
けの片出力の場合にも同様に出力信号の温度補償を行な
うことができる。
Further, although the magnetic detecting device of the embodiment shown in FIGS. 1 and 3 is shown for the case of differential output, like the magnetic detecting device shown in FIG. 4, the magnetoresistive stripe MR 2 has only one side. Even in the case of single output, temperature compensation of the output signal can be similarly performed.

尚、第4図において、第1図と同じ符号を付したものは
同機能を有するものであり、説明を省略する。
Incidentally, in FIG. 4, the components denoted by the same reference numerals as those in FIG. 1 have the same functions, and the description thereof will be omitted.

(考案の効果) 以上、図示の実施例に基づいて説明したように、本考案
によれば、磁気検出装置の出力信号の振幅の温度係数を
0とすることができる。
(Effect of the Invention) As described above with reference to the illustrated embodiment, according to the present invention, the temperature coefficient of the amplitude of the output signal of the magnetic detection device can be set to zero.

また、簡単な回路構成で磁気信号検出段の精度の良い温
度補償が実現できたので、後段の信号処理が容易にな
る。
Further, since the temperature compensation with high accuracy of the magnetic signal detection stage can be realized with a simple circuit configuration, the signal processing of the subsequent stage becomes easy.

したがって、本考案によれば、後段の信号処理回路をも
含めて安く回路を構成することができ、しかも、出力信
号の温度依存性が解消された性能の良い磁気検出装置を
提供することができる。
Therefore, according to the present invention, it is possible to provide a low-cost circuit including the signal processing circuit in the subsequent stage, and to provide a high-performance magnetic detection device in which the temperature dependence of the output signal is eliminated. .

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の一実施例を示す磁気検出装置の概略回
路構成図、第2図は第1図に示す本考案による磁気検出
装置の出力信号の振幅と温度との関係を示すグラフ、第
3図は本考案の別の実施例を示す磁気検出装置の概略回
路構成図、第4図は本考案のさらに別の実施例を示す磁
気検出装置の概略回路構成図、第5図は従来技術の一例
を示す磁気検出装置の概略回路構成図、第6図は第5図
に示す磁気記録媒体に記録された磁気信号を磁気抵抗素
子を磁気記録媒体に対して相対的に移動することにより
検出した時の磁気検出装置の出力信号の時間変化を示す
グラフ、第7図は第5図に示す従来の磁気検出装置の出
力信号の振幅と温度との関係を示すグラフ、第8図
(a)は第5図に示す磁気検出装置の磁気抵抗ストライ
プに印加される磁界の磁束密度と磁気抵抗ストライプの
抵抗変化率との関係を2次曲線に近似して示したグラ
フ、第8図(b)は第5図に示す構成の磁気検出装置に
おいて磁気記録媒体と磁気抵抗素子とを相対移動した時
に磁気抵抗ストライプに印加される磁束密度の変化の一
例を示すグラフ、第8図(c)は第5図に示す磁気検出
装置において磁気抵抗ストライプに第8図(b)に示す
ような磁束密度が印加された時の磁気抵抗ストライプの
抵抗変化率の変化を示すグラフ、第9図は第5図に示す
磁気検出装置において磁気抵抗ストライプの抵抗変化率
が第8図(c)の如く変化した時の出力信号の変化を示
すグラフである。 1‥‥定電流源、2‥‥増幅器、3‥‥基準電圧回路、
4‥‥磁気記録媒体、MR‥‥磁気抵抗素子、MR1,MR2
‥磁気抵抗ストライプ、OP1‥‥オペアンプ、R1,R2
‥電流検出用抵抗、R4,R5‥‥基準電圧回路内の抵抗、
TR1,TR2‥‥トランジスタ、Vc‥‥電源電圧。
FIG. 1 is a schematic circuit configuration diagram of a magnetic detection device showing an embodiment of the present invention, and FIG. 2 is a graph showing the relationship between the amplitude of the output signal of the magnetic detection device according to the present invention shown in FIG. 1 and the temperature. FIG. 3 is a schematic circuit configuration diagram of a magnetic detection device showing another embodiment of the present invention, FIG. 4 is a schematic circuit configuration diagram of a magnetic detection device showing yet another embodiment of the present invention, and FIG. FIG. 6 is a schematic circuit configuration diagram of a magnetic detection device showing an example of a technique, and FIG. 6 shows a magnetic signal recorded on the magnetic recording medium shown in FIG. 5 by moving a magnetoresistive element relative to the magnetic recording medium. FIG. 8 is a graph showing the time change of the output signal of the magnetic detection device when it is detected. FIG. 7 is a graph showing the relationship between the amplitude of the output signal of the conventional magnetic detection device shown in FIG. 5 and the temperature. ) Indicates the magnetic field applied to the magnetoresistive stripe of the magnetic detection device shown in FIG. A graph showing the relationship between the bundle density and the resistance change rate of the magnetoresistive stripe approximated to a quadratic curve. FIG. 8B shows the magnetic recording medium and the magnetoresistive element in the magnetic detection device having the configuration shown in FIG. FIG. 8 (c) is a graph showing an example of a change in the magnetic flux density applied to the magnetoresistive stripe when the and are moved relative to each other, and FIG. 8 (b) shows the magnetoresistive stripe in the magnetic detecting device shown in FIG. FIG. 9 is a graph showing the change in resistance change rate of the magnetoresistive stripe when the magnetic flux density as shown in FIG. 9 is applied. FIG. 9 shows the change rate of the resistance of the magnetoresistive stripe in the magnetic detection device shown in FIG. 7 is a graph showing a change in output signal when the output signal changes as shown in FIG. 1 ... Constant current source, 2 ... Amplifier, 3 ... Reference voltage circuit,
4 Magnetic recording medium, MR, magnetoresistive element, MR 1 , MR 2
Magneto-resistive stripe, OP 1, operational amplifier, R 1 , R 2
Resistance for current detection, R 4 , R 5 ... Resistance in reference voltage circuit,
TR 1 , TR 2 Transistor, Vc Power supply voltage.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】磁気信号を記録した磁気記録媒体に対向配
置され上記磁気信号を検出する磁気抵抗素子と、上記磁
気抵抗素子に電圧を印加する電源と、上記磁気抵抗素子
と直列に接続される定電流源とを備え、上記磁気抵抗素
子は1つあるいは所定の間隔をおいて配置された2つの
磁気抵抗ストライプからなり、磁気抵抗素子が1つの磁
気抵抗ストライプからなる場合はその一端を上記電源に
接続し他端側を上記定電流源に接続して磁気抵抗ストラ
イプに定電流を流すことにより磁気抵抗ストライプの出
力電圧から磁気信号に応じた正弦波状の出力信号を検出
し、磁気抵抗素子が2つの磁気抵抗ストライプからなる
場合は該2つの磁気抵抗ストライプの一端側を共通の電
源に接続し他端側をそれぞれ定電流源に接続して上記2
つの磁気抵抗ストライプにそれぞれ同じ値の定電流を流
すことにより両磁気抵抗ストライプの出力電圧差(差動
出力)から磁気信号に応じた正弦波状の出力信号を検出
する磁気検出装置において、 上記定電流源は、磁気抵抗素子の磁気抵抗ストライプと
接続される電流制御用の増幅器と、該増幅器と接地側と
の間に接続され磁気抵抗ストライプに流れる電流値を検
出するための電流検出用抵抗と、電源と接地側との間に
直列接続した少なくとも2つの抵抗からなり電源側抵抗
と接地側抵抗の中間部が上記増幅器に接続され基準電圧
を増幅器に対して発生する基準電圧回路とを備え、 上記増幅器は、磁気抵抗ストライプと電流検出用抵抗と
の間に接続される電流制御素子(トランジスタ等)と、
電流制御素子と電流検出用抵抗との接続部の電圧が入力
される負の入力端子と上記基準電圧が入力される正の入
力端子及び上記電流制御素子の制御用端子に電圧を出力
する出力端子を有し上記正・負の入力端子に入力される
電圧が等しくなるように出力電圧を電流制御素子の制御
用端子に帰還して磁気抵抗ストライプに流れる電流を制
御するためのオペアンプとから構成され、 上記基準電圧回路内の上記接地側の抵抗は、上記電源側
の抵抗よりも大きな正の温度係数を有することを特徴と
する磁気検出装置。
1. A magnetoresistive element arranged to face a magnetic recording medium having a magnetic signal recorded thereon to detect the magnetic signal, a power supply for applying a voltage to the magnetoresistive element, and a series connection with the magnetoresistive element. A constant current source, wherein the magnetoresistive element comprises one or two magnetoresistive stripes arranged at a predetermined interval. When the magnetoresistive element comprises one magnetoresistive stripe, one end thereof is the power source. By connecting the other end side to the constant current source and flowing a constant current through the magnetoresistive stripe, a sinusoidal output signal corresponding to the magnetic signal is detected from the output voltage of the magnetoresistive stripe. In the case of two magnetoresistive stripes, one end of each of the two magnetoresistive stripes is connected to a common power source and the other end of each is connected to a constant current source.
In a magnetic detection device for detecting a sinusoidal output signal according to a magnetic signal from the output voltage difference (differential output) of both magnetoresistive stripes by applying a constant current of the same value to each of the magnetoresistive stripes, The source is an amplifier for current control connected to the magnetoresistive stripe of the magnetoresistive element, a current detection resistor connected between the amplifier and the ground side for detecting the current value flowing in the magnetoresistive stripe, A reference voltage circuit for connecting the power supply side resistor and the ground side resistor, wherein the intermediate portion of the power source side resistor and the ground side resistor is connected to the amplifier and generates a reference voltage to the amplifier; The amplifier includes a current control element (transistor or the like) connected between the magnetoresistive stripe and the current detection resistor,
A negative input terminal to which the voltage at the connection between the current control element and the current detection resistor is input, a positive input terminal to which the reference voltage is input, and an output terminal that outputs a voltage to the control terminal of the current control element. And an operational amplifier for controlling the current flowing through the magnetoresistive stripe by feeding back the output voltage to the control terminal of the current control element so that the voltages input to the positive and negative input terminals become equal. The magnetic detection device, wherein the ground side resistance in the reference voltage circuit has a positive temperature coefficient larger than that of the power supply side resistance.
JP1988050049U 1988-04-14 1988-04-14 Magnetic detection device Expired - Lifetime JPH0718972Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1988050049U JPH0718972Y2 (en) 1988-04-14 1988-04-14 Magnetic detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1988050049U JPH0718972Y2 (en) 1988-04-14 1988-04-14 Magnetic detection device

Publications (2)

Publication Number Publication Date
JPH01152208U JPH01152208U (en) 1989-10-20
JPH0718972Y2 true JPH0718972Y2 (en) 1995-05-01

Family

ID=31276126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1988050049U Expired - Lifetime JPH0718972Y2 (en) 1988-04-14 1988-04-14 Magnetic detection device

Country Status (1)

Country Link
JP (1) JPH0718972Y2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826215A (en) * 1981-08-07 1983-02-16 Nippon Denso Co Ltd Rotating angle detector

Also Published As

Publication number Publication date
JPH01152208U (en) 1989-10-20

Similar Documents

Publication Publication Date Title
US6246233B1 (en) Magnetoresistive sensor with reduced output signal jitter and temperature compensation
CA1287985C (en) Apparatus for magnetically detecting position or speed of moving body
US4629982A (en) Apparatus for detecting motion and direction using magnetoresistive sensors producing sum and difference signals
JP2846814B2 (en) Position measuring device
EP0063397A1 (en) Magnetic sensor
US5218279A (en) Method and apparatus for detection of physical quantities, servomotor system utilizing the method and apparatus and power steering apparatus using the servomotor system
JPH08242027A (en) Magnetic resistor circuit
JP2529960B2 (en) Magnetic position detector
CN109212439A (en) Magnetic field sensor
US6717399B2 (en) Magnetic sensing device with offset compensation
EP0580207A1 (en) Method and device for sensing movement of a ferro-magnetic object
DE3680435D1 (en) CONTACTLESS ANGLE SENSOR.
JPH0718972Y2 (en) Magnetic detection device
JP2000055998A (en) Magnetic sensor device and current sensor device
JPH02189484A (en) Magnetic sensor
JPH069306Y2 (en) Position detector
JPS5856408B2 (en) magnetic sensor
JP3220278B2 (en) Position detection device
JPS6047521B2 (en) Origin detection device
JPS6361961A (en) Current detector
JPH061201B2 (en) Position detection sensor
JPH04191685A (en) Magnetic field sensor
JP2546282B2 (en) Origin detection part of magnetic head for magnetic encoder
JP2685489B2 (en) Device that magnetically detects position and speed
JPH0755455Y2 (en) Magnetic encoder zero point detector