JP2948958B2 - Transducer circuit - Google Patents

Transducer circuit

Info

Publication number
JP2948958B2
JP2948958B2 JP3276867A JP27686791A JP2948958B2 JP 2948958 B2 JP2948958 B2 JP 2948958B2 JP 3276867 A JP3276867 A JP 3276867A JP 27686791 A JP27686791 A JP 27686791A JP 2948958 B2 JP2948958 B2 JP 2948958B2
Authority
JP
Japan
Prior art keywords
resistor
temperature
circuit
sensor
span
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3276867A
Other languages
Japanese (ja)
Other versions
JPH0587586A (en
Inventor
清之 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOKURIKU DENKI KOGYO KK
Original Assignee
HOKURIKU DENKI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOKURIKU DENKI KOGYO KK filed Critical HOKURIKU DENKI KOGYO KK
Priority to JP3276867A priority Critical patent/JP2948958B2/en
Publication of JPH0587586A publication Critical patent/JPH0587586A/en
Application granted granted Critical
Publication of JP2948958B2 publication Critical patent/JP2948958B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】圧力や磁気等の物理量を電気信号
に変換して取り出すトランスジューサ回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transducer circuit for converting a physical quantity such as pressure or magnetism into an electric signal and extracting it.

【0002】[0002]

【従来の技術】従来、例えば圧力センサに使用されてい
る回路は、図5に示すように、電源端子10に定電流電
源12が接続され、定電流電源12に、ピエゾ抵抗効果
を利用した半導体圧力センサ14が直列に接続されてい
る。半導体圧力センサ14には、オフセット調整とオフ
セット温度補償用に、抵抗器16,18がセンサ14の
抵抗体と各々並列及び直列に接続されている。オフセッ
ト温度補償とは、図4において、破線eで示す室温にお
ける圧力−出力特性に対し、直線c,dに示すように使
用温度範囲の上限(c)と下限(d)とで出力が各々直線c,
dのように平行移動してしまうのを補償するものであ
る。さらに、センサ14と並列にスパン(計測範囲であ
り増幅度に対応する)温度補償用のバイパス抵抗器20
が接続されている。スパン温度補償とは、図4に示す圧
力−出力特性が、温度変化によってその傾きが変化して
しまうのを補償するものであり、図4の直線c,dが破
線eと平行になるようにすることである。従って、オフ
セット温度補償と、スパン温度補償とが完全に成される
と、図4の直線c,dは、破線eに重なる。
2. Description of the Related Art Conventionally, for example, a circuit used for a pressure sensor, as shown in FIG. 5, has a constant current power supply 12 connected to a power supply terminal 10, and a semiconductor using a piezoresistive effect. The pressure sensors 14 are connected in series. Resistors 16 and 18 are connected to the semiconductor pressure sensor 14 in parallel and series, respectively, with the resistor of the sensor 14 for offset adjustment and offset temperature compensation. The offset temperature compensation means that the output is linear at the upper limit (c) and the lower limit (d) of the operating temperature range as shown by straight lines c and d, respectively, with respect to the pressure-output characteristic at room temperature indicated by a broken line e in FIG. c,
This is to compensate for the parallel movement like d. Further, in parallel with the sensor 14, a bypass resistor 20 for span (a measurement range and corresponding to an amplification degree) temperature compensation.
Is connected. The span temperature compensation is to compensate for the change in the slope of the pressure-output characteristic shown in FIG. 4 due to the temperature change, and to make the straight lines c and d in FIG. 4 parallel to the broken line e. It is to be. Accordingly, when the offset temperature compensation and the span temperature compensation are completely performed, the straight lines c and d in FIG. 4 overlap the broken line e.

【0004】そして、センサ14の出力は、一対の演算
増幅器22の非反転入力端子続され、演算増幅器22の
反転入力端子にはスパン調整用可変抵抗器24が接続さ
れている。各演算増幅器22の出力は演算増幅器26に
入力され増幅されて出力端子28に出力される。演算増
幅器26の非反転入力端子には、オフセット調整用可変
抵抗器30が接続されている。
The output of the sensor 14 is connected to a non-inverting input terminal of a pair of operational amplifiers 22, and a variable resistor 24 for span adjustment is connected to the inverting input terminals of the operational amplifier 22. The output of each operational amplifier 22 is input to an operational amplifier 26, amplified, and output to an output terminal 28. An offset adjusting variable resistor 30 is connected to a non-inverting input terminal of the operational amplifier 26.

【0005】また、上記と同様の回路配置で、センサの
駆動電源に定電圧電源を用い、同様にセンサの出力を演
算増幅器で増幅して出力するとともに、温度補償用の拡
散抵抗体を、オフセット調整およびスパン調整用の各可
変抵抗器と並列に設けたトランスジューサ回路もある。
Further, in the same circuit arrangement as described above, a constant voltage power supply is used as a drive power supply for the sensor, and the output of the sensor is similarly amplified and output by an operational amplifier, and a diffusion resistor for temperature compensation is offset by an offset. There is also a transducer circuit provided in parallel with each variable resistor for adjustment and span adjustment.

【0006】[0006]

【発明が解決しようとする課題】上記従来の技術の前者
の場合、定電流電源12を使用しているため定電流電源
12内での抵抗器による電圧降下があり、低電圧の電源
を使用することができないという欠点がある。また、こ
の回路で駆動電源を定電圧電源に換えると、スパン温度
補償範囲が1500〜3000ppm/度と大きくなり、温度補
償抵抗を回路に入れただけでは正確に補償しきれないと
いう問題もある。これは、図3に示すように、半導体圧
力センサ14の拡散抵抗体は、不純物濃度により温度係
数が変化するためである。この変化は、図3のaの曲線
で示す、抵抗体の抵抗値の温度係数の変化と、図3のb
の直線で示す、ピエゾ抵抗効果の温度係数の変化の両方
があり、定電流電源での駆動の場合図3のa+bが、ス
パン温度係数として作用するが、定電圧電源駆動の場
合、図3のbがスパン温度係数となるからである。さら
に、定電圧電源駆動の場合、バイパス抵抗器20の抵抗
値を低くしなければならず、これによってセンサ14に
流れる電流が少なくなり、感度が落ちててしまい、実用
化できるものではなかった。
In the former case of the prior art, since a constant current power supply 12 is used, there is a voltage drop due to a resistor in the constant current power supply 12, and a low voltage power supply is used. There is a drawback that you can not. Further, when the driving power supply is replaced with a constant voltage power supply in this circuit, the span temperature compensation range becomes as large as 1500 to 3000 ppm / degree, and there is also a problem that it is not possible to compensate accurately only by inserting a temperature compensation resistor in the circuit. This is because the temperature coefficient of the diffusion resistor of the semiconductor pressure sensor 14 changes depending on the impurity concentration, as shown in FIG. This change is represented by the change in the temperature coefficient of the resistance value of the resistor shown by the curve in FIG.
In the case of driving with a constant current power supply, a + b in FIG. 3 acts as the span temperature coefficient, and in the case of driving with a constant voltage power supply, This is because b becomes the span temperature coefficient. Furthermore, in the case of driving with a constant voltage power supply, the resistance value of the bypass resistor 20 must be reduced, which reduces the current flowing through the sensor 14 and lowers the sensitivity, which is not practical.

【0007】また、上記従来の技術の後者の場合、スパ
ン調整とスパン温度補償との間に相関関係があり、一方
を調整すると他方の調整値が狂ってしまい、再び他方の
調整を行なわなければならず、サイクリックに調整をし
て所定の調整値に設定しなければならないという問題が
あり、調整に時間がかかり、精度も悪いという欠点があ
った。
In the latter case of the prior art, there is a correlation between the span adjustment and the span temperature compensation. If one of the two is adjusted, the other adjustment value will be out of order, and the other adjustment must be performed again. In addition, there is a problem that it is necessary to cyclically adjust and set a predetermined adjustment value, and there is a disadvantage that the adjustment takes time and accuracy is poor.

【0008】この発明は、上記従来の技術の問題点に鑑
みて成されたもので、駆動電源の種類を選ばず、正確に
温度補償されたトランスジューサ回路を提供することを
目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the related art, and it is an object of the present invention to provide a transducer circuit whose temperature is accurately compensated regardless of the type of driving power supply.

【0009】[0009]

【課題を解決するための手段】この発明は、駆動電源に
接続されたセンサと、このセンサの出力が接続された増
幅器と、センサ出力のオフセット調整用可変抵抗器と、
スパン調整用可変抵抗器とを有し、上記スパン調整用可
変抵抗器と感温抵抗器がカスケード接続されているとと
もに、上記感温抵抗器を含みこの感温抵抗器の所定温度
における抵抗値と等しい抵抗値であって、温度係数が上
記スパン調整用可変抵抗器とセンサを含む回路の温度係
数と絶対値がほぼ等しく符号が逆の温度係数である温度
補償用抵抗体回路を、上記スパン調整用可変抵抗器とカ
スケードに設けたトランスジューサ回路である。
According to the present invention, there is provided a sensor connected to a drive power supply, an amplifier connected to the output of the sensor, a variable resistor for adjusting the offset of the sensor output,
A variable resistor for span adjustment, wherein the variable resistor for span adjustment and the temperature-sensitive resistor are cascaded, and the resistance value at a predetermined temperature of the temperature-sensitive resistor including the temperature-sensitive resistor is included. A temperature compensating resistor circuit having an equal resistance value and a temperature coefficient whose temperature coefficient is substantially equal to the temperature coefficient of the circuit including the span adjustment variable resistor and the sensor and whose sign is opposite to that of the span adjustment variable resistor, And a transducer circuit provided in cascade with a variable resistor.

【0010】[0010]

【作用】この発明のトランスジューサ回路は、センサや
スパン調整用可変抵抗器等の抵抗値の温度依存性を、逆
の温度特性を有した温度補償用抵抗器回路により打ち消
し、温度補償範囲が大きくても正確な測定を可能にした
ものである。
According to the transducer circuit of the present invention, the temperature dependency of the resistance value of the sensor and the variable resistor for span adjustment is canceled by the temperature compensation resistor circuit having the opposite temperature characteristic, and the temperature compensation range is large. Also enables accurate measurement.

【0011】[0011]

【実施例】以下この発明の実施例について図面に基づい
て説明する。図1はこの発明の第一実施例の圧力センサ
回路を示すもので、定電圧電源または定電流電源である
駆動電源32に、半導体圧力センサ34が直列に接続さ
れ、このセンサ34は、半導体チップ表面に不純物を拡
散させて形成した拡散抵抗体からなり、各抵抗体35,
36,37,38がブリッジに接続されている。抵抗体
38には、これと平行に抵抗器40が接続され、抵抗体
37と直列に抵抗器42が接続されている。抵抗器4
0,42はセンサ出力のオフセット調整とオフセット温
度補償用の抵抗である。センサ34の出力端子44、4
5は各々一対の演算増幅器46,48の非反転入力端子
に接続されている。なお、抵抗器40,42は、センサ
34の各抵抗体に対し、オフセット調整とオフセット温
度補償を行なうための任意の場所に1または複数個取付
可能なものである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a pressure sensor circuit according to a first embodiment of the present invention. A semiconductor pressure sensor 34 is connected in series to a drive power supply 32 which is a constant voltage power supply or a constant current power supply. It consists of a diffusion resistor formed by diffusing impurities on the surface.
36, 37 and 38 are connected to the bridge. A resistor 40 is connected in parallel with the resistor 38, and a resistor 42 is connected in series with the resistor 37. Resistor 4
Reference numerals 0 and 42 denote resistors for offset adjustment of the sensor output and offset temperature compensation. Output terminals 44 and 4 of sensor 34
5 is connected to the non-inverting input terminals of a pair of operational amplifiers 46 and 48, respectively. One or more resistors 40 and 42 can be attached to each of the resistors of the sensor 34 at arbitrary locations for performing offset adjustment and offset temperature compensation.

【0012】この回路は、プラス電源端子50とマイナ
ス電源端子52との間に設けられ、センサ34の抵抗体
36および抵抗器42は、マイナス電源端子52に接続
されている。プラス電源端子50とマイナス電源端子5
2との間には、抵抗器54、可変抵抗器56、および抵
抗器58が直列に接続されている。可変抵抗器56は、
オフセット調整用可変抵抗器でありその摺動子は、抵抗
器60を介して演算増幅器46の反転入力端子に接続さ
れている。演算増幅器46の出力は、スパン調整用可変
抵抗器62を介して、演算増幅器48の反転入力端子に
接続されているとともに、抵抗体回路64の一方の側に
接続されている。抵抗体回路64の他方の側は、演算増
幅器48の出力に接続しているとともに、この実施例の
圧力センサ回路の出力端子68に接続している。
This circuit is provided between a positive power supply terminal 50 and a negative power supply terminal 52, and the resistor 36 and the resistor 42 of the sensor 34 are connected to the negative power supply terminal 52. Positive power supply terminal 50 and negative power supply terminal 5
2, a resistor 54, a variable resistor 56, and a resistor 58 are connected in series. The variable resistor 56 is
The variable resistor for offset adjustment, the slider of which is connected to the inverting input terminal of the operational amplifier 46 via the resistor 60. The output of the operational amplifier 46 is connected to an inverting input terminal of the operational amplifier 48 via a span adjusting variable resistor 62 and to one side of a resistor circuit 64. The other side of the resistor circuit 64 is connected to the output of the operational amplifier 48 and to the output terminal 68 of the pressure sensor circuit of this embodiment.

【0013】抵抗体回路64には、感温抵抗器70と直
列に温度係数が極めて小さい金属被膜抵抗の固定抵抗器
72が接続され、この抵抗器70,72と並列に金属被
膜抵抗の固定抵抗器74が接続されている。抵抗体回路
64の抵抗値は、室温(例えば25℃)での感温抵抗器
70の抵抗値と等しい値で、温度係数が、スパン調整用
可変抵抗器62とセンサ34を含む回路の温度係数と絶
対値が等しく符号が逆になるよう、抵抗器72,74を
選択するものである。抵抗器72,74の抵抗値設定方
法は、抵抗器72の抵抗値をRs、抵抗器74の抵抗値
をRp、感温抵抗器70の抵抗値をRtとすると、 Rt=R25(1+αt) …(1) t=T−T25 、Tは使用温度、T25は25℃、αは感
温抵抗器70の温度係数、R25は25℃の時の感温抵抗
器70の抵抗値である。、すると、抵抗回路64の抵抗
値rtは次のように表わされる。 rt=r25(1+βt) …(2) βは求める感温抵抗回路64の温度係数であり、従って
−βがスパン調整用可変抵抗器62とセンサ34を含む
回路の温度係数である。また、上記の通り r25=R25 …(3) であるから rt=(Rt+Rs)Rp/(Rt+Rs+Rp) …(4) r25=(R25+Rs)Rp/(Rt+Rs+Rp)=R25 …(5) よって Rp=R25(R25+Rs)/Rs …(6) (4),(6)より (Rt+Rs)R25(R25+Rs) =R25s(1+βt){Rt+RS+R25(R25+Rs)/Rs} これを整理して (Rt+Rs)(R25−Rsβt)=R25(1+βt)(R25+Rs) よって Rt=R25(1+βt)(R25+Rs)/(R25−Rsβt)−Rs …(7) (1),(7)より R25(1+αt)=R25(1+βt)(R25+Rs)/(R25−Rsβt)−Rs これを整理して βtRs 2+R25βt(2+αt)Rs+R25 2(β−α)t=0 より Rs 2+R25(2+αt)Rs+R25 2(β−α)/β=0 Rs>0より Rs=〔{(2+αt)2−4(β−α)/β}1/2−(2+αt)〕R25/2 =〔{1+αt+α22/4+(α−β)/β}1/2−(1+αt/2)〕R25 1>>αt>>α22/4、1>>(α−β)/(2β)より Rs≒〔{1+αt/2+(α−β)/(2β)}−(1+αt/2)〕R25 ={(α−β)/(2β)}R25 …(8) (6),(8)より Rp=〔R25{R25+(α−β)/(2β)R25}〕/〔{(α−β)/(2β)}R25 〕 ={(α+β)/(α−β)}R25 …(9) 上記式(8)、(9)が抵抗器72,74の各々の抵抗
値である。ここで、抵抗器72,74の温度係数は相対
的に極めて小さく無視できる値である。
A fixed resistor 72 having a very small temperature coefficient is connected in series with the temperature-sensitive resistor 70 to the resistor circuit 64. A fixed resistor 72 having a metal film resistor is connected in parallel with the resistors 70 and 72. Unit 74 is connected. The resistance value of the resistor circuit 64 is equal to the resistance value of the temperature-sensitive resistor 70 at room temperature (for example, 25 ° C.), and the temperature coefficient is the temperature coefficient of the circuit including the span adjustment variable resistor 62 and the sensor 34. The resistors 72 and 74 are selected so that the absolute values are equal and the signs are opposite. Resistance value setting method of the resistor 72 and 74, the resistance value of the resistor 72 Rs, the resistance value of the resistor 74 Rp, the resistance value of the temperature-sensitive resistor 70 When Rt, R t = R 25 ( 1 + αt ) (1) t = T−T 25 , T is the operating temperature, T 25 is 25 ° C., α is the temperature coefficient of the temperature sensitive resistor 70, and R 25 is the resistance value of the temperature sensitive resistor 70 at 25 ° C. It is. , Then, the resistance value r t of the resistance circuit 64 is expressed as follows. the temperature coefficient of r t = r 25 (1 + βt) ... (2) β is determined temperature-sensitive resistor 64, thus -β is a temperature coefficient of a circuit including the span adjusting variable resistor 62 and the sensor 34. Further, as described above, since r 25 = R 25 (3), rt = (R t + R s ) R p / (R t + R s + R p ) (4) r 25 = (R 25 + R s ) R p / (R t + R s + R p ) = R 25 (5) Therefore, R p = R 25 (R 25 + R s ) / R s (6) From (4) and (6), (R t + R s) ) R 25 (R 25 + R s ) = R 25 R s (1 + βt) {R t + R S + R 25 (R 25 + R s ) / R s } This is arranged (R t + R s ) (R 25 −R s βt) = R 25 (1 + βt) (R 25 + R s) Therefore, Rt = R 25 (1 + βt ) (R 25 + R s) / (R 25 -R s βt) -R s ... (7) (1), ( According to 7), R 25 (1 + αt) = R 25 (1 + βt) (R 25 + R s ) / (R 25 −R s β t ) −R s By rearranging these, β t R s 2 + R 25 β t (2 + αt) R s + R 25 2 (β-α) t = 0 than R s 2 + R 25 (2 + αt) R s + R 25 2 (β-α) / β = 0 R s> 0 than R s = [{(2 + αt) 2 -4 (β −α) / β} 1/2 − (2+ [alpha] t)] R 25/2 = [{1 + αt + α 2 t 2/4 + (α-β) / β} 1/2 - (1 + αt / 2) ] R 25 1 >> αt >> α 2 t 2 / 4,1 >> From (α-β) / (2β), R s ≒ [{1 + αt / 2 + (α-β) / (2β)}-(1 + αt / 2)] R 25 = {(α-β) / (2β) } R 25 … (8) From (6) and (8), R p = [R 25 {R 25 + (α-β) / (2β) R 25 }] / [{(α-β) / (2β) } R 25 ] = {(α + β) / (α-β)} R 25 (9) Equations (8) and (9) are the resistance values of the resistors 72 and 74. Here, the temperature coefficients of the resistors 72 and 74 are relatively small and can be ignored.

【0014】この実施例の圧力センサ回路は、センサ3
4の出力端子44,45の出力電圧と演算増幅器48の
出力電圧とが等しくなるように、オフセット調整用可変
抵抗器56を調整し、この後、スパン調整用可変抵抗器
62を調整して、所望のスパンに合わせる。この実施例
の圧力センサの動作は、半導体のダイヤフラムからなる
センサ34が圧力を受けると変形し、これをセンサ34
に形成された抵抗体35〜38が抵抗値変化として検出
し、出力端子36,37の出力差として出力され、演算
増幅器46,48を経て、設定された増幅度に増幅され
て出力端子68から出力される。なお、スパン調整用可
変抵抗器62と抵抗体回路64の位置は逆に接続されて
いても良いことは言うまでもない。
The pressure sensor circuit of this embodiment has a sensor 3
4 is adjusted so that the output voltages of the output terminals 44 and 45 and the output voltage of the operational amplifier 48 become equal, and then the variable resistor 62 for span adjustment is adjusted. Adjust to the desired span. The operation of the pressure sensor of this embodiment is such that the sensor 34 made of a semiconductor diaphragm is deformed when pressure is applied,
Is detected as a change in resistance value, is output as an output difference between output terminals 36 and 37, is amplified to a set amplification degree via operational amplifiers 46 and 48, and is output from an output terminal 68. Is output. Needless to say, the positions of the span adjustment variable resistor 62 and the resistor circuit 64 may be reversed.

【0015】この実施例の圧力センサ回路によれば、ス
パン調整用可変抵抗器62と直列に、この可変抵抗器6
2およびセンサ34を含む回路の温度特性を打ち消すよ
うな温度係数を有した抵抗体回路64を接続したので、
スパン温度補償を確実に行なうことができ、駆動電源3
2に定電圧電源、即ち電源に直接接続した場合のよう
に、回路特性上温度係数が大きい回路であっても、確実
に温度変化によるスパンの変動を無くすことができる。
また、オフセット調整、スパン調整、オフセット温度補
償、およびスパン温度補償が各々独立し、互いに影響し
合わないので、調整および補償作業を一度に完了させる
ことができる。
According to the pressure sensor circuit of this embodiment, the variable resistor 6 is connected in series with the span adjusting variable resistor 62.
2 and a resistor circuit 64 having a temperature coefficient that cancels out the temperature characteristics of the circuit including the sensor 34,
Span temperature compensation can be performed reliably, and the drive power supply 3
Even in a circuit having a large temperature coefficient in terms of circuit characteristics, as in the case of connecting directly to a constant-voltage power supply, that is, a power supply, it is possible to surely eliminate fluctuations in span due to temperature changes.
Further, since the offset adjustment, span adjustment, offset temperature compensation, and span temperature compensation are independent of each other and do not affect each other, the adjustment and compensation work can be completed at once.

【0016】次にこの発明の第二実施例について図2に
基づいて説明する。ここで、上記第一実施例と同様の部
材は同一符号を付して説明を省略する。この実施例で
は、演算増幅器80,82の非反転入力端子に、センサ
34の出力端子44,45がそれぞれ接続されており、
オフセット調整用可変抵抗器56の摺動子が、演算増幅
器84の非反転入力端子に接続されている。そして、演
算増幅器84の出力が、演算増幅器80の反転入力端子
に接続されているとともに、スパン調整用可変抵抗器8
6、抵抗器88を介して演算増幅器82の反転入力端子
に接続されている。演算増幅器80,82の出力は、抵
抗器90,91を介して演算増幅器92の反転、非反転
入力端子にそれぞれ接続されている。そして、演算増幅
器92の反転入力端子と出力との間に抵抗体回路64が
接続されている。抵抗体回路64は、上記第一実施例の
ものと同様の構成で、同様の方法で抵抗値が設定される
ものである。なお、スパン調整用可変抵抗器と抵抗体回
路64は、直接または間接的にカスケード接続されてい
れば良く、所定のスパン調整及びスパン温度補償が可能
な位置に配置されていらば良い。
Next, a second embodiment of the present invention will be described with reference to FIG. Here, the same members as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted. In this embodiment, the output terminals 44 and 45 of the sensor 34 are connected to the non-inverting input terminals of the operational amplifiers 80 and 82, respectively.
The slider of the offset adjusting variable resistor 56 is connected to the non-inverting input terminal of the operational amplifier 84. The output of the operational amplifier 84 is connected to the inverting input terminal of the operational amplifier 80, and the variable resistor 8
6. It is connected to the inverting input terminal of the operational amplifier 82 via the resistor 88. Outputs of the operational amplifiers 80 and 82 are connected to inverting and non-inverting input terminals of an operational amplifier 92 via resistors 90 and 91, respectively. The resistor circuit 64 is connected between the inverting input terminal of the operational amplifier 92 and the output. The resistor circuit 64 has the same configuration as that of the first embodiment, and has a resistance value set in a similar manner. The variable resistor for span adjustment and the resistor circuit 64 may be directly or indirectly cascaded, and may be arranged at a position where predetermined span adjustment and span temperature compensation are possible.

【0017】この実施例によれば、精度が高く、増幅度
を大きく取ることができ、しかも、回路全体の温度特性
を無くすように抵抗体回路64が作用するので、複雑な
回路であっても、温度特性は良好なものにすることがで
きる。
According to this embodiment, the accuracy is high, the amplification degree can be increased, and the resistor circuit 64 acts so as to eliminate the temperature characteristic of the whole circuit. In addition, the temperature characteristics can be improved.

【0018】なお、この発明のトランスジューサ回路
は、圧力センサ以外に、磁気抵抗効果素子をブリッジに
組んだ磁気センサや、湿度センサ等、種々のセンサ用回
路のスパン温度補償に利用できるものである。また、ス
パン調整用可変抵抗器と感温抵抗器は、直接または間接
的にカスケード接続されていれば良い。
The transducer circuit of the present invention can be used for span temperature compensation of various sensor circuits such as a magnetic sensor in which a magnetoresistive element is assembled in a bridge, a humidity sensor, and the like, in addition to the pressure sensor. Also, the span adjustment variable resistor and the temperature sensitive resistor may be directly or indirectly cascaded.

【0019】[0019]

【発明の効果】この発明のトランスジューサ回路は、ス
パン調整用可変抵抗器に感温抵抗器をカスケードに接続
するとともに、上記感温抵抗器を含みこの感温抵抗器の
所定温度における抵抗値と等しい抵抗値であって、温度
係数が上記スパン調整用可変抵抗器とセンサを含む回路
の温度係数と絶対値が等しく符号が逆の温度係数である
温度補償用抵抗体回路を、上記スパン調整用可変抵抗器
とカスケードに接続して設けたので、スパン調整とスパ
ン温度補償とを独立に調整でき、互いに影響し合うこと
がない。従って、調整および補償作業が一度で完了す
る。さらに、回路全体の温度補償を行なうことができ、
センサ等の温度係数が大きく、さらにそのばらつきが大
きい場合であっても、各々確実に温度補償を行なうこと
ができ、精度の高いセンサ回路にすることができる。さ
らに、駆動電源に定電圧電源を用いても、確実に大幅な
温度補償を行なうことができ、低い電圧の電源での作動
環境においても、定電圧電源を利用することにより、電
源自体での電圧降下の無駄がなく、安価に高精度のセン
サ回路を提供することができる。
According to the transducer circuit of the present invention, a temperature-sensitive resistor is connected in cascade to a variable resistor for span adjustment, and the above-mentioned temperature-sensitive resistor is equal to a resistance value of the temperature-sensitive resistor at a predetermined temperature. A temperature compensation resistor circuit having a resistance value and a temperature coefficient whose absolute value is equal to the temperature coefficient of the circuit including the span adjustment variable resistor and the sensor and has the opposite sign to that of the span adjustment variable resistor. Since the resistors are connected in cascade with the resistor, the span adjustment and the span temperature compensation can be adjusted independently, and do not affect each other. Therefore, the adjustment and compensation work is completed at once. Furthermore, temperature compensation of the entire circuit can be performed,
Even when the temperature coefficient of a sensor or the like is large and its variation is large, temperature compensation can be reliably performed for each of them, and a highly accurate sensor circuit can be obtained. Furthermore, even if a constant-voltage power supply is used as the drive power supply, significant temperature compensation can be reliably performed. Even in an operation environment using a low-voltage power supply, the use of the constant-voltage power supply allows the voltage at the power supply itself to be increased. It is possible to provide a high-precision sensor circuit at a low cost without waste of the descent.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明のトランスジューサ回路の第一実施例
の回路図である。
FIG. 1 is a circuit diagram of a first embodiment of a transducer circuit of the present invention.

【図2】この発明のトランスジューサ回路の第二実施例
の回路図である。
FIG. 2 is a circuit diagram of a second embodiment of the transducer circuit of the present invention.

【図3】半導体拡散抵抗の不純物と温度係数の関係を示
すグラフである。
FIG. 3 is a graph showing a relationship between an impurity of a semiconductor diffusion resistor and a temperature coefficient.

【図4】圧力センサ回路の、圧力と出力の温度による変
動を示すグラフである。
FIG. 4 is a graph showing fluctuations in pressure and output of the pressure sensor circuit due to temperature.

【図5】従来の技術の圧力センサ回路の回路図である。FIG. 5 is a circuit diagram of a conventional pressure sensor circuit.

【符号の説明】[Explanation of symbols]

32 駆動電源 34 センサ 46,48,80,82,84,92 演算増幅器 64 抵抗体回路 70 感温抵抗器 56 オフセット調整用可変抵抗器 62,86 スパン調整用可変抵抗器 Reference Signs List 32 Drive power supply 34 Sensor 46, 48, 80, 82, 84, 92 Operational amplifier 64 Resistor circuit 70 Temperature sensitive resistor 56 Variable resistor for offset adjustment 62, 86 Variable resistor for span adjustment

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 所定の物理量を電気的に検出するセンサ
と、このセンサを作動させる駆動電源と、このセンサの
出力が接続された増幅器と、センサ出力のオフセット調
整用可変抵抗器と、スパン調整用可変抵抗器とを有した
トランスジューサ回路において、上記スパン調整用可変
抵抗器と感温抵抗器がカスケード接続されているととも
に、上記感温抵抗器を含みこの感温抵抗器の所定温度に
おける抵抗値と等しい抵抗値であって、温度係数が上記
スパン調整用可変抵抗器とセンサを含む回路の温度係数
と絶対値がほぼ等しく符号が逆の温度係数である温度補
償用抵抗体回路を、上記スパン調整用可変抵抗器とカス
ケード接続により設けたことを特徴とするトランスジュ
ーサ回路。
1. A sensor for electrically detecting a predetermined physical quantity, a drive power supply for operating the sensor, an amplifier connected to the output of the sensor, a variable resistor for offset adjustment of the sensor output, and a span adjustment. And a resistance value at a predetermined temperature of the temperature-sensitive resistor including the temperature-sensitive resistor, wherein the variable resistor for span adjustment and the temperature-sensitive resistor are cascade-connected. A temperature compensation resistor circuit having a resistance value equal to the temperature coefficient of which the temperature coefficient is substantially equal to the temperature coefficient of the circuit including the span adjustment variable resistor and the sensor and the sign of which is opposite to that of the circuit is A transducer circuit characterized by being provided in cascade connection with an adjusting variable resistor.
JP3276867A 1991-09-27 1991-09-27 Transducer circuit Expired - Lifetime JP2948958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3276867A JP2948958B2 (en) 1991-09-27 1991-09-27 Transducer circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3276867A JP2948958B2 (en) 1991-09-27 1991-09-27 Transducer circuit

Publications (2)

Publication Number Publication Date
JPH0587586A JPH0587586A (en) 1993-04-06
JP2948958B2 true JP2948958B2 (en) 1999-09-13

Family

ID=17575522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3276867A Expired - Lifetime JP2948958B2 (en) 1991-09-27 1991-09-27 Transducer circuit

Country Status (1)

Country Link
JP (1) JP2948958B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002524020A (en) * 1996-09-27 2002-07-30 ハネウエル・インコーポレーテッド Compensation technology for resistance bridge
JP5718563B2 (en) * 2009-11-03 2015-05-13 日本特殊陶業株式会社 Pressure detection device

Also Published As

Publication number Publication date
JPH0587586A (en) 1993-04-06

Similar Documents

Publication Publication Date Title
US5187985A (en) Amplified pressure transducer
US5550469A (en) Hall-effect device driver with temperature-dependent sensitivity compensation
CA2145698C (en) Electronic circuit for a transducer
JP3399953B2 (en) Pressure sensor
US4169243A (en) Remote sensing apparatus
JPH0351733A (en) Amplifying and compensating circuit for semiconductor pressure sensor
JP2000162066A (en) Sensor device
US4190796A (en) Pressure detecting apparatus having linear output characteristic
WO1988006719A1 (en) Transducer signal conditioner
JP2948958B2 (en) Transducer circuit
US6107861A (en) Circuit for self compensation of silicon strain gauge pressure transmitters
JP2898500B2 (en) Pressure sensor with temperature characteristic correction
JPS6255629B2 (en)
JPS6197543A (en) Compensation circuit for semiconductor pressure sensor
JPS6336447B2 (en)
JPS6343697B2 (en)
JPH0618540A (en) Wind velocity sensor
JP2934538B2 (en) Transducer circuit and manufacturing method thereof
JPH11160347A (en) Sensor circuit
CN217112512U (en) Active bridge type resistor detection system
JP2610736B2 (en) Amplification compensation circuit of semiconductor pressure sensor
JPS6361961A (en) Current detector
RU2165602C2 (en) Semiconductor pressure transducer
CS218455B1 (en) Connection of the source of the feeding current for the semiconductor tensometrical bridge with the temperature compensation of the sensibility thereof
KR830001352B1 (en) Semiconductor pressure detector with zero temperature compensation