JPS6228581B2 - - Google Patents

Info

Publication number
JPS6228581B2
JPS6228581B2 JP4979682A JP4979682A JPS6228581B2 JP S6228581 B2 JPS6228581 B2 JP S6228581B2 JP 4979682 A JP4979682 A JP 4979682A JP 4979682 A JP4979682 A JP 4979682A JP S6228581 B2 JPS6228581 B2 JP S6228581B2
Authority
JP
Japan
Prior art keywords
opening
layer
semiconductor layer
semiconductor
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4979682A
Other languages
Japanese (ja)
Other versions
JPS5874054A (en
Inventor
Kimyoshi Kimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP4979682A priority Critical patent/JPS5874054A/en
Publication of JPS5874054A publication Critical patent/JPS5874054A/en
Publication of JPS6228581B2 publication Critical patent/JPS6228581B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、半導体装置に関する。[Detailed description of the invention] The present invention relates to a semiconductor device.

従来、半導体素子の電極配線構造は、半導体基
板に直接金属を蒸着した構造で、比較的深いPN
接合には有効であつた。近年、半導体技術の進歩
により、非常に浅いPN接合(シヤロー・ジヤン
クシヨン型)の製作が可能となり、この浅いPN
接合を有する半導体素子に電極を形成する際に、
直接電極用金属を蒸着し、熱処理を行うと、この
電極用金属が半導体中に拡散されたり、接合部を
突き抜ける事故が多発する。このため、不純物拡
散層が変化し、層抵抗が変化するとか、接合が短
絡する等の欠点を有していた。
Conventionally, the electrode wiring structure of semiconductor devices is a structure in which metal is deposited directly on the semiconductor substrate, with relatively deep PN
It was effective for joining. In recent years, advances in semiconductor technology have made it possible to fabricate very shallow PN junctions (shallow junction type).
When forming electrodes on a semiconductor element having a junction,
When electrode metal is directly vapor-deposited and heat-treated, accidents often occur in which the electrode metal diffuses into the semiconductor or penetrates through the joint. For this reason, the impurity diffusion layer changes, resulting in a change in layer resistance and short circuits at the junctions.

これらの欠点を補うものとして最近第1図のよ
うな電極配線構造のものが提案されている。すな
わち、シリコン基板1の一表面に選択的に形成さ
れた酸化膜2をマスクとして不純物拡散層3を形
成する。さらに不純物拡散層3の一部を残して酸
化膜4を形成し、その全面に多結晶シリコン層を
成長させ、不純物拡散層3と同じ導電型を示す不
純物を拡散後熱酸化を行い、多結晶シリコン層5
と不純物拡散層3の電気的導通を得るとともに酸
化膜6を形成する。その後、酸化膜6を開孔し、
蒸着により金属電極7を形成する。すなわち上述
の多結晶シリコン5をシリコン基板と金属電極と
の間にはさむことにより、シリコンへの金属の拡
散を防ごうとする意図のものであるが、ある程度
は防止できても、完全ではなく、装置において耐
圧、リーク等の電気的不安定性を生ずることが少
なくなかつた。
In order to compensate for these drawbacks, an electrode wiring structure as shown in FIG. 1 has recently been proposed. That is, the impurity diffusion layer 3 is formed using the oxide film 2 selectively formed on one surface of the silicon substrate 1 as a mask. Furthermore, an oxide film 4 is formed leaving a part of the impurity diffusion layer 3, a polycrystalline silicon layer is grown on the entire surface, and after diffusing an impurity having the same conductivity type as the impurity diffusion layer 3, thermal oxidation is performed to form a polycrystalline silicon layer. silicon layer 5
Then, electrical continuity between the impurity diffusion layer 3 and the oxide film 6 is formed. After that, the oxide film 6 is opened,
A metal electrode 7 is formed by vapor deposition. That is, by sandwiching the above-mentioned polycrystalline silicon 5 between the silicon substrate and the metal electrode, it is intended to prevent the diffusion of metal into the silicon, but even if it can be prevented to some extent, it is not perfect. Electrical instability such as breakdown voltage and leakage often occurred in the equipment.

本発明は、上記欠点に鑑み、実質的に電極用金
属の半導体内への拡散を防止でき、かつ汎用性の
ある電極配線構造を備えた半導体装置を提供する
ことを目的とする。
SUMMARY OF THE INVENTION In view of the above drawbacks, it is an object of the present invention to provide a semiconductor device that can substantially prevent diffusion of electrode metal into a semiconductor and has a versatile electrode wiring structure.

本発明の特徴は、一導電型の半導体基板の一主
表面に形成された逆導電型の不純物領域と、該一
主表面上に設けられた絶縁膜と、該絶縁膜上を延
在しその両端部を除く中間部において該絶縁膜に
設けられた開口部を通して該不純物領域に接続せ
る逆導電型の半導体層と、該開口部上を除く該絶
縁膜上に位置する該半導体層の接続部に接続せる
金属電極とを具備し、該開口部の該接続部に向う
側の端を第1の端とし、該接続部の該開口部に向
う側の端を第2の端とし、該接続部の該開口部と
は反対側に向う端を第3の端とした場合、該半導
体層の該第3の端より該開口部とは反対側に延在
する長さは、該第1の端と該第2の端との間の該
半導体層の長さよりも長くなつている半導体装置
にある。
The present invention is characterized by an impurity region of an opposite conductivity type formed on one main surface of a semiconductor substrate of one conductivity type, an insulating film provided on the one main surface, and an impurity region extending over the insulating film. A connection portion between a semiconductor layer of an opposite conductivity type connected to the impurity region through an opening provided in the insulating film in an intermediate portion excluding both ends, and the semiconductor layer located on the insulating film except over the opening. a metal electrode to be connected to the opening, an end of the opening facing the connecting part is a first end, an end of the connecting part facing the opening is a second end, and the end of the opening facing the connecting part is a second end; When the end opposite to the opening is defined as the third end, the length extending from the third end of the semiconductor layer to the side opposite to the opening is the same as the first end. In the semiconductor device, the length of the semiconductor layer is longer than the length of the semiconductor layer between the semiconductor layer and the second end.

以下、本発明を図面を参照して説明する。 Hereinafter, the present invention will be explained with reference to the drawings.

第2図は本発明の一実施例を示す断面図であ
る。シリコン基板1の一表面に選択的に形成され
た酸化膜2をマスクとして不純物層3を形成す
る。さらに不純物層3の一部を残して酸化膜4を
形成し、その上から全面に半導体層たとえば多結
晶シリコン層を成長させる。この多結晶シリコン
層に対し、不純物層3と同じ導電型の不純物を拡
散後熱酸化を行い低抵抗とし多結晶シリコン層5
と不純物層3の電気的導通を得るとともに酸化膜
6を形成する。その後、多結晶シリコン層5と不
純物層3の接続部より横方向に数ミクロン以上離
れたところでかつこのシリコン層5の中間部の酸
化膜6にフオトエツチング技術で開孔し、蒸着に
より金属電極7を形成し、所定の形状を得る。金
属7をアロイすることにより多結晶シリコン5と
の接触を強固にする。
FIG. 2 is a sectional view showing an embodiment of the present invention. Impurity layer 3 is formed using oxide film 2 selectively formed on one surface of silicon substrate 1 as a mask. Further, an oxide film 4 is formed leaving a part of the impurity layer 3, and a semiconductor layer such as a polycrystalline silicon layer is grown over the entire surface. This polycrystalline silicon layer is thermally oxidized after diffusing impurities of the same conductivity type as the impurity layer 3 to lower the resistance of the polycrystalline silicon layer 5.
While obtaining electrical continuity between the impurity layer 3 and the impurity layer 3, an oxide film 6 is formed. Thereafter, a hole is formed in the oxide film 6 in the middle of the silicon layer 5 at a distance of several microns or more in the lateral direction from the connection between the polycrystalline silicon layer 5 and the impurity layer 3 using a photoetching technique, and a metal electrode 7 is formed by vapor deposition. to obtain a predetermined shape. By alloying the metal 7, the contact with the polycrystalline silicon 5 is strengthened.

上述した金属電極7の位置に関しては、多結晶
シリコン5と不純物層3との接続部と、多結晶シ
リコン5と金属電極7との接続部が重ならない程
度、約数ミクロン以上離せば熱処理時の金属の拡
散を防ぐことができるという原理に基づく。
As for the position of the metal electrode 7 mentioned above, it is important that the connection between the polycrystalline silicon 5 and the impurity layer 3 and the connection between the polycrystalline silicon 5 and the metal electrode 7 do not overlap, and that they are separated by a few microns or more, so that the connection between the polycrystalline silicon 5 and the impurity layer 3 is not overlapped. It is based on the principle that metal diffusion can be prevented.

本発明による第1の効果は、金属電極と多結晶
シリコンとの接続部が不純物層の接続部から離れ
ており、金属電極と半導体基板とは酸化膜を間に
はさむ構造となつているため、熱処理時に金属が
シリコン基板に拡散することを完全に防げること
である。
The first effect of the present invention is that the connection part between the metal electrode and polycrystalline silicon is separated from the connection part of the impurity layer, and the metal electrode and the semiconductor substrate have a structure in which an oxide film is sandwiched between them. It is possible to completely prevent metal from diffusing into the silicon substrate during heat treatment.

また、本発明による第2の効果は、酸化膜上に
多結晶シリコンが形成されるため、多結晶シリコ
ンと電極金属の接触面積が大きくとれ、電極金属
の段切れが少ないため、電気的により確実な接触
性・安定性をもつ電極配線構造を得ることができ
る。
In addition, the second effect of the present invention is that since polycrystalline silicon is formed on the oxide film, the contact area between the polycrystalline silicon and the electrode metal can be large, and there are fewer breaks in the electrode metal, making it more electrically reliable. An electrode wiring structure with excellent contact properties and stability can be obtained.

また、本発明の第3の効果は、金属電極が半導
体層の端部近傍に接続するのではなくその中間部
に接続しているから、汎用性のある技術となる。
すなわちこのような構造により、半導体層の端部
はたとえば半導体基板の他の素子領域に接続しこ
の金属電極を両素子領域の共通電極とすることが
できる。
Further, the third effect of the present invention is that the metal electrode is not connected to the vicinity of the end of the semiconductor layer but to the intermediate portion thereof, so that the technique is versatile.
That is, with such a structure, the end of the semiconductor layer can be connected to, for example, another element region of the semiconductor substrate, and this metal electrode can be used as a common electrode for both element regions.

なお、実施例では、シリコン基板につき説明し
たが、他の半導体を使用しても同様の効果が得ら
れる。
Although the embodiments have been described using a silicon substrate, similar effects can be obtained even if other semiconductors are used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の半導体素子の電極配線構造を示
す断面図、第2図は本発明の実施例による半導体
素子の電極配線構造を示す断面図である。 尚、図において、1はシリコン基板、2は酸化
膜、3は不純物層、4は酸化膜、5は不純物拡散
層3と同じ導電型の不純物を含む多結晶シリコン
層、6は酸化膜、7は電極用金属である。
FIG. 1 is a sectional view showing the electrode wiring structure of a conventional semiconductor device, and FIG. 2 is a sectional view showing the electrode wiring structure of a semiconductor device according to an embodiment of the present invention. In the figure, 1 is a silicon substrate, 2 is an oxide film, 3 is an impurity layer, 4 is an oxide film, 5 is a polycrystalline silicon layer containing an impurity of the same conductivity type as the impurity diffusion layer 3, 6 is an oxide film, and 7 is the electrode metal.

Claims (1)

【特許請求の範囲】[Claims] 1 一導電型の半導体基板の一主表面に形成され
た逆導電型の不純物領域と、該一主表面上に設け
られた絶縁膜と、該絶縁膜上を延在しその両端部
を除く中間部において該絶縁膜に設けられた開口
部を通して該不純物領域に接続せる逆導電型の半
導体層と、該開口部上を除く該絶縁膜上に位置す
る該半導体層の接続部に接続せる金属電極とを具
備し、該開口部の該接続部に向う側の端を第1の
端とし、該接続部の該開口部に向う側の端を第2
の端とし、該接続部の該開口部とは反対側に向う
端を第3の端とした場合、該半導体層の該第3の
端より該開口部とは反対側に延在する長さは、該
第1の端と該第2の端との間の該半導体層の長さ
よりも長くなつていることを特徴とする半導体装
置。
1. An impurity region of the opposite conductivity type formed on one main surface of a semiconductor substrate of one conductivity type, an insulating film provided on the one main surface, and an intermediate region extending over the insulating film excluding both ends thereof. a semiconductor layer of an opposite conductivity type connected to the impurity region through an opening provided in the insulating film in the section, and a metal electrode connected to a connecting portion of the semiconductor layer located on the insulating film except over the opening. The end of the opening facing the connecting part is a first end, and the end of the connecting part facing the opening is a second end.
and the end of the connecting portion opposite to the opening is the third end, a length extending from the third end of the semiconductor layer to the side opposite to the opening. is longer than the length of the semiconductor layer between the first end and the second end.
JP4979682A 1982-03-27 1982-03-27 Semiconductor device Granted JPS5874054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4979682A JPS5874054A (en) 1982-03-27 1982-03-27 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4979682A JPS5874054A (en) 1982-03-27 1982-03-27 Semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8629072A Division JPS4943574A (en) 1972-08-30 1972-08-30

Publications (2)

Publication Number Publication Date
JPS5874054A JPS5874054A (en) 1983-05-04
JPS6228581B2 true JPS6228581B2 (en) 1987-06-22

Family

ID=12841108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4979682A Granted JPS5874054A (en) 1982-03-27 1982-03-27 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS5874054A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62183143A (en) * 1986-02-06 1987-08-11 Nec Corp Semiconductor device

Also Published As

Publication number Publication date
JPS5874054A (en) 1983-05-04

Similar Documents

Publication Publication Date Title
JPS63314850A (en) Semiconductor device
JPS6010673A (en) Semiconductor device
JPS6228581B2 (en)
JPS627703B2 (en)
JP2504498B2 (en) Semiconductor device
KR910007513B1 (en) Wiring connection of semiconductor device
JPH01262654A (en) Semiconductor device
JPS61210668A (en) Semiconductor device
JP2719569B2 (en) Semiconductor device
JPH02192724A (en) Semiconductor device and its manufacture
JPS6113383B2 (en)
JPH0260167A (en) Semiconductor device
JP4587192B2 (en) Semiconductor device
JP3938261B2 (en) Semiconductor resistance element and manufacturing method thereof
JPH01293661A (en) Semiconductor device
JPS60117771A (en) Semiconductor device
JPS5914650A (en) Semiconductor integrated circuit device
JPS6140133B2 (en)
JPS6196757A (en) Semiconductor device
JPH03236281A (en) Power semiconductor device
JPS62160761A (en) Semiconductor device
JPS6116563A (en) Semiconductor device
JPS5842257A (en) Semiconductor device
JPH0344412B2 (en)
JPS5895837A (en) Semiconductor integrated circuit device