JPH0260167A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0260167A
JPH0260167A JP21163088A JP21163088A JPH0260167A JP H0260167 A JPH0260167 A JP H0260167A JP 21163088 A JP21163088 A JP 21163088A JP 21163088 A JP21163088 A JP 21163088A JP H0260167 A JPH0260167 A JP H0260167A
Authority
JP
Japan
Prior art keywords
semiconductor layer
layer
gate electrode
polysilicon
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21163088A
Other languages
Japanese (ja)
Inventor
Kazuo Yudasaka
一夫 湯田坂
Tsugumitsu Miyasaka
宮坂 継光
Masatsugu Kitada
北田 雅嗣
Eiichi Miura
栄一 三浦
Tadahiro Nakamichi
中道 忠弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP21163088A priority Critical patent/JPH0260167A/en
Publication of JPH0260167A publication Critical patent/JPH0260167A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To obtain a semiconductor device of an excellent electrical property by a method wherein a MOS semiconductor device is composed of a first and a second semiconductor layer and a gate electrode, where the first semiconductor layer and the gate electrode are overlapped with each other by a specified amount. CONSTITUTION:First semiconductor layers 102 and 302, which are to be a source and a drain region respectively, and second semiconductor layers 103 and 303, which are to be a sources drain and a channel region respectively, are formed on an insulating substrate 101. Moreover, gate electrodes 105 and 305 are formed thereon through the intermediary of an insulating layer 104, and a contact hole 306 which serves as an electrode lead-out section is provided thereon too. And, the layers 102 and 302 and the electrodes 105 and 305 are so formed as to overlap each other by a length of 2-4mum. When the overlapped length of the layer 302 with the electrode 305 is equal to 2mum or less, an ON-current of a MOS semiconductor device TFT decreases sharply, and when the overlapped length exceeds 2mum, the ON-current also decreases. By this setup, a TFT excellent in an electrical property can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、絶縁基板ないし絶縁膜上に形成するMOS型
半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a MOS type semiconductor device formed on an insulating substrate or an insulating film.

[従来の技術] 従来、絶縁基板ないし絶縁膜上に形成するMOS型半導
体装置(以下TPTと略す)では、その電気的特性はチ
ャネル部の半導体層の厚さが薄い程良いことが解ってい
る。一方ソース・ドレイン領域は低い抵抗値にするため
、該領域の半導体層はある程度の厚さが必要である。し
かし通常はチャネル部とソース・ドレイン領域は1層の
同時に形成される半導体層で形成されるため、チャネル
部の半導体層を薄く、且つソース・ドレイン領域の半導
体層を厚くするという2つの条件を同時に満たすことが
できない。そこで従来技術では前記2つの条件を満たす
方法として第2図に示す構造が提案されている。
[Prior Art] Conventionally, it has been known that in a MOS type semiconductor device (hereinafter abbreviated as TPT) formed on an insulating substrate or an insulating film, the thinner the thickness of the semiconductor layer in the channel portion, the better the electrical characteristics thereof. . On the other hand, in order to have a low resistance value in the source/drain regions, the semiconductor layer in these regions needs to have a certain thickness. However, since the channel part and the source/drain regions are usually formed of a single semiconductor layer formed at the same time, two conditions are met: the semiconductor layer in the channel part is thin and the semiconductor layer in the source/drain regions is thick. cannot be fulfilled at the same time. Therefore, in the prior art, a structure shown in FIG. 2 has been proposed as a method that satisfies the above two conditions.

第2図において、201は絶縁基板、202及び202
゛はソース・ドレインとなるべき高濃度に不純物が添加
された低抵抗のポリシリコンなどからなる第1の半導体
層、203は前記ソース・ドレイン領域とオーバラップ
し且つチャネル層を形成するポリシリコンなどからなる
第2の半導体層、204はゲート絶縁膜、205はポリ
シリコンなどからなるゲート電極である。第2図に示す
構造における特徴は、チャネル部の半導体層をできるだ
け薄くし、且つソース・ドレイン領域となる半導体層の
抵抗値を十分低くできるよう厚く形成することができる
ことである。
In FIG. 2, 201 is an insulating substrate, 202 and 202
203 is a first semiconductor layer made of highly impurity-doped, low-resistance polysilicon to become the source/drain, and 203 is polysilicon or the like which overlaps the source/drain region and forms a channel layer. 204 is a gate insulating film, and 205 is a gate electrode made of polysilicon or the like. A feature of the structure shown in FIG. 2 is that the semiconductor layer in the channel portion can be made as thin as possible and thick enough to have a sufficiently low resistance value of the semiconductor layer serving as the source/drain region.

[発明が解決しようとする課題     ]従従来前に
よる第2図に示す構造は、チャネル部の半導体層をでき
るだけ薄くし、且つソース・ドレイン領域となる半導体
層の抵抗値を十分低くできるよう厚く形成することがで
きる。 しかし前記構造においては必ずしもTPTの電
気的特性を良くすることができないという問題点がある
[Problems to be Solved by the Invention] The conventional structure shown in FIG. 2 has a structure in which the semiconductor layer in the channel portion is made as thin as possible and thick enough to sufficiently lower the resistance value of the semiconductor layer that becomes the source/drain region. can do. However, the above structure has a problem in that the electrical characteristics of the TPT cannot necessarily be improved.

即ち、第2図においてゲート電極205とソース・ドレ
インとなるべき第1の半導体層202.202゛とはオ
ーバラップしていないために、ソース・ドレイン領域の
一部の膜厚が薄くなり、該領域の抵抗値が高くなり、十
分なON電流がとれないという問題である。 従って本
発明の目的は、チャネル部の半導体層をできるだけ薄く
し、且つソース・ドレイン領域となる半導体層の抵抗値
を十分低くできるよう厚く形成する構造において\前記
問題点を解決し、電気的特性の優れたTPTを得る構造
を提案することである。
That is, in FIG. 2, since the gate electrode 205 and the first semiconductor layer 202, 202', which should become the source/drain, do not overlap, the film thickness of a part of the source/drain region becomes thinner. The problem is that the resistance value of the region becomes high and a sufficient ON current cannot be obtained. Therefore, an object of the present invention is to solve the above-mentioned problems in a structure in which the semiconductor layer in the channel region is made as thin as possible and is formed thick enough to sufficiently lower the resistance value of the semiconductor layer that becomes the source/drain region. The purpose of the present invention is to propose a structure that obtains an excellent TPT.

[課題を解決するための手段 ] 本発明において前記問題点を解決するための手段は、 (1)絶縁基板の一主面ないし絶縁膜上にMOS型トラ
ンジスタのソース及びドレインとなる第一の半導体層と
、前記ソース及びドレイン領域に重なり且つチャネル領
域となる第二の半導体層と、前記第二の半導体層の上に
形成された絶縁膜と、前記絶縁膜の上に前記第一の半導
体層と2〜4μm重なるゲート電極を有することを特徴
とする。
[Means for Solving the Problems] Means for solving the above-mentioned problems in the present invention are as follows: (1) A first semiconductor serving as a source and a drain of a MOS transistor is provided on one main surface or an insulating film of an insulating substrate. a second semiconductor layer overlapping the source and drain regions and serving as a channel region, an insulating film formed on the second semiconductor layer, and the first semiconductor layer on the insulating film. It is characterized by having a gate electrode that overlaps with the gate electrode by 2 to 4 μm.

〈2、特許請求の範囲第1項において第一の半導体層、
第二の半導体層及びゲート電極がポリシリコンで形成さ
れていることを特徴とする。
<2. In claim 1, the first semiconductor layer,
The second semiconductor layer and the gate electrode are made of polysilicon.

[実施例] 本発明の詳細を実施例にもとすき説明する。第3図は本
発明による実施例であり、TFTデバイスの平面図を示
している。第3図のX−X″にそった断面図を第1図に
示す。第1図及び第3図において、101はガラスなど
の絶縁基板、102,302はソース・ドレイン領域と
なる第1のポリシリコン層でありCVD法により120
0への厚さに形成する。103.303はソース・ドレ
イン領域及びチャネル領域となる第2のポリシリコン層
でありCVD法により厚さ900人に形成する。104
はゲート絶縁膜であり熱酸化により1200人の厚さに
形成する。105.305はゲート電極となるポリシリ
コン層でありCVD法により3500人の厚さに形成す
る。306は電極取り出し部となるコンタクトホールで
ある(第1図の断面図にはコンタクトホールは示してい
ない)。前記第1のポリシリコン層は、前記ゲート電極
となるポリシリコン層と、第3図dに示すように2〜4
μm重なっている。
[Examples] The details of the present invention will be explained based on examples. FIG. 3 is an embodiment according to the present invention, showing a plan view of a TFT device. FIG. 1 shows a cross-sectional view taken along the line X-X'' in FIG. It is a polysilicon layer with a thickness of 120% by CVD method.
Form to a thickness of 0. 103.303 is a second polysilicon layer which becomes a source/drain region and a channel region, and is formed to a thickness of 900 nm by CVD. 104
is a gate insulating film and is formed to a thickness of 1200 nm by thermal oxidation. Reference numeral 105.305 is a polysilicon layer which will become a gate electrode, and is formed to a thickness of 3500 nm using the CVD method. Reference numeral 306 is a contact hole that serves as an electrode extraction portion (the contact hole is not shown in the cross-sectional view of FIG. 1). As shown in FIG.
They overlap by μm.

発明者らはTPTの電気的特性が前記重なり量(第1の
ポリシリコン層とゲート電極の重なり)に強く依存する
ことをW1認した。第4図は前記重なり量とTPTのO
N電流の関係を示したものである。第4図において重な
り量がマイナスになっているのは、ゲート電極305と
第1のポリシリコン層102乃至302が離れているこ
とを示している。重なり量が2μmより小さい値では、
ON電流が急に小さくなり更に1μmより小さくなると
ON電流がゼロになることが解る。この理由は下記のと
おりである。
The inventors have recognized that the electrical characteristics of TPT strongly depend on the amount of overlap (overlap between the first polysilicon layer and the gate electrode). Figure 4 shows the amount of overlap and O of TPT.
This shows the relationship between N current. The negative overlap amount in FIG. 4 indicates that the gate electrode 305 and the first polysilicon layers 102 to 302 are separated from each other. When the amount of overlap is smaller than 2 μm,
It can be seen that when the ON current suddenly decreases and further becomes smaller than 1 μm, the ON current becomes zero. The reason for this is as follows.

従来技術によるTPTの断面図である第2図により説明
する。第2図の製造方法は第1のポリシリコン層202
、第2のポリシリコン層203を形成した後、ゲート酸
化膜204は前記第2のポリシリコン層を熱酸化して形
成する。前記第2のポリシリコン層は熱酸化により膜厚
が減少し残りの膜厚がチャネル層となる。次にゲート電
極205を第3のポリシリコン層で形成する。第2図で
示した断面図は前記第3のポリシリコン層の形成までで
あるが、この後ソース・ドレイン領域に不純物を拡散す
るため、ゲート電極をマスクにしてゲート酸化膜をエツ
チングする。このとき第2のポリシリコン層がわずかに
エッチされ膜厚が減少する。次に例えばリンを拡散する
とこの侍史に前記第2のポリシリコン層の膜厚が減少す
る。第2のポリシリコン層はチャネル領域となるためで
きるだけ薄く形成する必要があり、結局第2図において
ゲート電極205と第1のポリシリコン層がオーバラッ
プしていない領域でポリシリコン層が極端に薄くなる、
場合によっては該領域でポリシリコンがなくなってしま
うことがある。従って第4図に示すように重なり量がマ
イナスのところでON電流がゼロになるのである。重な
り量が0〜2μmの領域では第1のポリシリコンと第3
のポリシリコンのマスク合わせのずれにより、実質的に
重なり量がマイナスとなり、したがってON電流が小さ
くなる。
This will be explained with reference to FIG. 2, which is a sectional view of a TPT according to the prior art. The manufacturing method shown in FIG.
After forming the second polysilicon layer 203, the gate oxide film 204 is formed by thermally oxidizing the second polysilicon layer. The thickness of the second polysilicon layer is reduced by thermal oxidation, and the remaining thickness becomes a channel layer. Next, gate electrode 205 is formed from a third polysilicon layer. The cross-sectional view shown in FIG. 2 shows the process up to the formation of the third polysilicon layer. After that, in order to diffuse impurities into the source/drain regions, the gate oxide film is etched using the gate electrode as a mask. At this time, the second polysilicon layer is slightly etched and its thickness is reduced. Next, for example, when phosphorus is diffused, the thickness of the second polysilicon layer decreases. Since the second polysilicon layer becomes a channel region, it must be formed as thin as possible, and as a result, the polysilicon layer is extremely thin in the region where the gate electrode 205 and the first polysilicon layer do not overlap in FIG. Become,
In some cases, polysilicon may disappear in the region. Therefore, as shown in FIG. 4, the ON current becomes zero when the amount of overlap is negative. In the region where the amount of overlap is 0 to 2 μm, the first polysilicon and the third
Due to the misalignment of the polysilicon mask, the overlapping amount becomes substantially negative, and therefore the ON current becomes small.

第4図において重なり量が大きくなるとON電流が減少
するのは、チャネル部のポリシリコンの厚い領域が増加
するためである。
The ON current decreases as the amount of overlap increases in FIG. 4 because the thick region of polysilicon in the channel portion increases.

上述したようにソース・ドレインとなる第1のポリシリ
コンとゲート電極となる第3のポリシリコンの重なり量
は、小さすぎても大きすぎてもTPTのON電流は小さ
くなることが解る。
As described above, it can be seen that if the amount of overlap between the first polysilicon serving as the source/drain and the third polysilicon serving as the gate electrode is too small or too large, the ON current of the TPT will become small.

最も大きいON電流を得るためには、前記型なり量を2
〜4μmとするのがよい。
In order to obtain the largest ON current, the amount of molding should be 2.
It is preferable to set the thickness to 4 μm.

[発明の効果] 本発明によれば、ガラス基板乃至絶縁膜上に電気的特性
の優れたTPT素子を形成することができる。
[Effects of the Invention] According to the present invention, a TPT element with excellent electrical characteristics can be formed on a glass substrate or an insulating film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるTPTの断面図。第2図は従来技
術によるTPTの断面図。第3図は本発明によるTPT
の平面図。第4図は本発明の根拠を示すものであり、T
PT素子構造のパラメータとTPTの電気的特性の関係
図。 101.201・・・ガラス基板 102.202.302・・・ソース・ドレインとなる
ポリシリコン 103.203.303・・・チャネルとなるポリシリ
コン 104.204・・・ゲート絶縁膜 105.205・・・ゲート電極  以 玉出願人 セ
イコーエプソン株式会社 代理人 弁理士 上樋推管 他1名 重なり量(μm)
FIG. 1 is a sectional view of a TPT according to the present invention. FIG. 2 is a sectional view of a TPT according to the prior art. FIG. 3 shows a TPT according to the present invention.
Top view. FIG. 4 shows the basis of the present invention, and T
FIG. 3 is a diagram showing the relationship between the parameters of the PT element structure and the electrical characteristics of the TPT. 101.201...Glass substrate 102.202.302...Polysilicon serving as source/drain 103.203.303...Polysilicon serving as channel 104.204...Gate insulating film 105.205...・Gate electrode Applicant: Seiko Epson Co., Ltd. Agent Patent attorney: Ueghi Uikan and 1 other person Overlap amount (μm)

Claims (2)

【特許請求の範囲】[Claims] (1)絶縁基板の一主面ないし絶縁膜上にMOS型トラ
ンジスタのソース及びドレインとなる第一の半導体層と
、前記ソース及びドレイン領域に重なり且つチャネル領
域となる第二の半導体層と、前記第二の半導体層の上に
形成された絶縁膜と、前記絶縁膜の上に前記第一の半導
体層と2〜4μm重なるゲート電極を有することを特徴
とする半導体装置。
(1) A first semiconductor layer that becomes a source and a drain of a MOS transistor on one main surface or an insulating film of an insulating substrate; a second semiconductor layer that overlaps the source and drain regions and becomes a channel region; A semiconductor device comprising: an insulating film formed on a second semiconductor layer; and a gate electrode overlapping the first semiconductor layer by 2 to 4 μm on the insulating film.
(2)第一の半導体層、第二の半導体層及びゲート電極
がポリシリコンで形成されていることを特徴とする特許
請求の範囲第1項記載の半導体装置。
(2) The semiconductor device according to claim 1, wherein the first semiconductor layer, the second semiconductor layer, and the gate electrode are made of polysilicon.
JP21163088A 1988-08-26 1988-08-26 Semiconductor device Pending JPH0260167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21163088A JPH0260167A (en) 1988-08-26 1988-08-26 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21163088A JPH0260167A (en) 1988-08-26 1988-08-26 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH0260167A true JPH0260167A (en) 1990-02-28

Family

ID=16608957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21163088A Pending JPH0260167A (en) 1988-08-26 1988-08-26 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0260167A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61120149A (en) * 1984-11-15 1986-06-07 Konishiroku Photo Ind Co Ltd Silver halide color photographic sensitive material
JPS61120154A (en) * 1984-11-15 1986-06-07 Konishiroku Photo Ind Co Ltd Silver halide color photographic sensitive material
JPS61141446A (en) * 1984-12-14 1986-06-28 Konishiroku Photo Ind Co Ltd Silver halide color photographic sensitive material
KR20030033308A (en) * 2001-10-20 2003-05-01 현대자동차주식회사 Starting switch of an automobile

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6225731A (en) * 1985-07-26 1987-02-03 Hitachi Ltd Driving method for liquid crystal display device
JPS6386573A (en) * 1986-09-30 1988-04-16 Seiko Epson Corp Thin film transistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6225731A (en) * 1985-07-26 1987-02-03 Hitachi Ltd Driving method for liquid crystal display device
JPS6386573A (en) * 1986-09-30 1988-04-16 Seiko Epson Corp Thin film transistor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61120149A (en) * 1984-11-15 1986-06-07 Konishiroku Photo Ind Co Ltd Silver halide color photographic sensitive material
JPS61120154A (en) * 1984-11-15 1986-06-07 Konishiroku Photo Ind Co Ltd Silver halide color photographic sensitive material
JPH0554935B2 (en) * 1984-11-15 1993-08-13 Konishiroku Photo Ind
JPH0562729B2 (en) * 1984-11-15 1993-09-09 Konishiroku Photo Ind
JPS61141446A (en) * 1984-12-14 1986-06-28 Konishiroku Photo Ind Co Ltd Silver halide color photographic sensitive material
JPH0566574B2 (en) * 1984-12-14 1993-09-22 Konishiroku Photo Ind
KR20030033308A (en) * 2001-10-20 2003-05-01 현대자동차주식회사 Starting switch of an automobile

Similar Documents

Publication Publication Date Title
US5753546A (en) Method for fabricating metal oxide field effect transistors
JPS6070766A (en) Mos type semiconductor device
JPH03222336A (en) Manufacture of semiconductor device
JPH0260167A (en) Semiconductor device
JPS598065B2 (en) MOS integrated circuit manufacturing method
JPH039572A (en) Manufacture of semiconductor device
JPH0621369A (en) Manufacture of mos integrated circuit
KR960006339B1 (en) Fabricating method of semiconductor device
JPH04206732A (en) Thin film transistor
JP3099450B2 (en) Semiconductor device and manufacturing method thereof
JPS60121769A (en) Manufacture of mis semiconductor device
JPH04334063A (en) Thin film memory transistor and its manufacture
JPS6248907B2 (en)
JPS60214569A (en) Mos type semiconductor device
JPS61170066A (en) Semiconductor device and manufacture thereof
JPS5916377A (en) Manufacture of semiconductor device
JPS6345865A (en) Floating gate type mos semiconductor device
JPH03155166A (en) Thin film semiconductor element
JPS58140163A (en) Manufacture of semiconductor device
JPH0199261A (en) Semiconductor device and manufacture thereof
JPS60254751A (en) Manufacture of semiconductor device
JPH02256242A (en) Semiconductor device and manufacture thereof
JPH04348040A (en) Thin film transistor and manufacture thereof
JPS6278880A (en) Semiconductor device
JPH01266766A (en) Mis type semiconductor device