JPS62283694A - Manufacture of printed wiring board - Google Patents

Manufacture of printed wiring board

Info

Publication number
JPS62283694A
JPS62283694A JP12585586A JP12585586A JPS62283694A JP S62283694 A JPS62283694 A JP S62283694A JP 12585586 A JP12585586 A JP 12585586A JP 12585586 A JP12585586 A JP 12585586A JP S62283694 A JPS62283694 A JP S62283694A
Authority
JP
Japan
Prior art keywords
wiring board
printed wiring
manufacturing
film
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12585586A
Other languages
Japanese (ja)
Other versions
JPH07105577B2 (en
Inventor
畠山 実
一郎 駒田
守屋 紘典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Gore Tex Inc
Original Assignee
Japan Gore Tex Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Gore Tex Inc filed Critical Japan Gore Tex Inc
Priority to JP61125855A priority Critical patent/JPH07105577B2/en
Priority to GB8712769A priority patent/GB2195269B/en
Priority to AT87304816T priority patent/ATE88608T1/en
Priority to EP87304816A priority patent/EP0248617B1/en
Priority to DE8787304816T priority patent/DE3785487T2/en
Priority to CA000538491A priority patent/CA1276758C/en
Priority to AU73747/87A priority patent/AU7374787A/en
Publication of JPS62283694A publication Critical patent/JPS62283694A/en
Priority to HK118/93A priority patent/HK11893A/en
Publication of JPH07105577B2 publication Critical patent/JPH07105577B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 &発明の詳細な説明 「発明の目的」 本発明はプリント配線基板の製造法に係り、低誘電率で
、電気的特性が夫々の利用目的に即応して適宜゛にコン
トロールされた多様なプリント配線基板を同じ素材を採
用して簡易適切に製造することのできる方法を提供しよ
うとするものである。
[Detailed Description of the Invention] & Detailed Description of the Invention "Object of the Invention" The present invention relates to a method for manufacturing a printed wiring board, which has a low dielectric constant and electrical characteristics that can be adjusted as appropriate to suit each purpose of use. The present invention aims to provide a method that can easily and appropriately manufacture a variety of controlled printed wiring boards using the same material.

産業上の利用分野 一般的な各種電子機器から信号高速化の要求される計算
機などの多様な機器に即応せしめた各種プリント配線基
板の製造技術。
Industrial Application Fields: Manufacturing technology for various types of printed wiring boards that can be used in a variety of devices, from general electronic devices to computers that require faster signal speeds.

従来の技術 電子機器などに用いられるプリント配線基板として従来
用いられているものは以下の如くである。
2. Description of the Related Art Printed wiring boards conventionally used in electronic devices and the like are as follows.

■ ガラス布、紙にエポキシ樹脂を含浸硬化させたガラ
スエポキシ基材または紙エポキシ基材あるいは紙にフェ
ノール樹脂を含浸硬化させた紙フエノール基材。
■ Glass epoxy base material or paper epoxy base material, which is made by impregnating glass cloth or paper with epoxy resin and hardening it, or paper phenol base material, which is made by impregnating paper with phenol resin and hardening it.

■ ポリイミドフィルムやポリエスルフィルムなどのフ
レキシブルな絶縁基材。
■ Flexible insulating base materials such as polyimide film and polyester film.

■ プラス繊維とneリイミドとの複合基材による耐熱
性プリント配線基材。
■ Heat-resistant printed wiring base material made from a composite base material of plus fiber and neliimide.

■ 二テ午シケプラー、−リイミドケプラー、エポキシ
クォーツなどの低透電率基材。
■ Low conductivity base materials such as Nitemoshi Keppler, -Liimide Keppler, and epoxy quartz.

■ ガラス布と四弗化エチレン樹脂による低誘[率基材
■ Low dielectric constant base material made of glass cloth and tetrafluoroethylene resin.

発明が解決しようとする問題点 然し上記したような従来のものは、何れにしても得られ
る製品の特性は特定しており、同じ素材から多様な特性
をもつ製品を得ることができない。又■は従来の一般的
なものであるが、誘電率が高く、近時における高速化を
高度に必要とする計算機などに採用し難いっ ■■も同様であって誘電率の低いプリント配線基板を得
ることができない。因みにこれらのものの誘電率は周波
数IMHz に対し大略以下の如くである。
Problems to be Solved by the Invention However, in the conventional products as described above, the characteristics of the product obtained are specified in any case, and it is not possible to obtain products with diverse characteristics from the same material. Also, ■■ is a conventional and common type, but it has a high dielectric constant, and it is difficult to use it in modern computers that require high speed. can't get it. Incidentally, the dielectric constants of these materials are approximately as follows with respect to the frequency IMHz.

■ 4.5〜5.5 ■  3.5〜5.0 ■ 4.3〜47 ■は耐熱性に優れているとしても、その誘電率は3.5
〜4.0程度で前記したような信号高速化目的に即応す
るものでない。
■ 4.5 to 5.5 ■ 3.5 to 5.0 ■ 4.3 to 47 Although ■ has excellent heat resistance, its dielectric constant is 3.5.
~4.0, which does not immediately meet the purpose of increasing signal speed as described above.

■は誘電率が2.5〜3と低く低誘電率基材とされてい
るが、金属箔との接着性に問題がちや加工性に難点があ
る。
(2) has a low dielectric constant of 2.5 to 3 and is considered a low dielectric constant base material, but it tends to have problems with adhesiveness to metal foil and has difficulties in processability.

又これらのものは誘電率において単に計算機等における
要請を溝足しない、たけてなく耐熱性、伝熱性、機械的
強度、フレキシブル性などの特性においてもそれぞれに
異っており、具体的な夫々の用途に即応するにはこれら
の特性についても考慮し実際に採用すべき素材°を決定
することが必要である。従ってこのような需要に即応す
るにはメーカ側において常に多様な素材を手配し差備す
ることが必要であって、それでなければ一部の特定製品
についてしか受註製産できない。
In addition, these materials differ in terms of dielectric constant, which simply does not meet the requirements of computers, etc., and also in characteristics such as heat resistance, heat conductivity, mechanical strength, and flexibility. In order to respond quickly to the application, it is necessary to consider these characteristics and decide on the material to be actually used. Therefore, in order to promptly respond to such demands, it is necessary for manufacturers to constantly arrange and stock a variety of materials, otherwise they will only be able to manufacture made-to-order products for certain specific products.

勿論それなりに多様な素材を準備していても、新しい受
註製産に当って採用された素材が上記のような緒特性と
の関係で必ずしも好ましいものとなし得ない。
Of course, even if a variety of materials are prepared, the material selected for new custom production cannot necessarily be preferred due to the above-mentioned characteristics.

「発明の構成」 問題点を解決するための手段 ポリテトラフルオロエチレン多孔質組織体を素材とし、
該素材の多孔i組織に1耐熱性、低誘電率などの目的と
する配線基板の必要特性に即応した樹脂液を含浸せしめ
てから前記配線基板の必要特性に即応した圧下条件下で
加圧硬化することを特数とするプリント配線基板の製造
法。
"Structure of the Invention" Means for solving the problem A polytetrafluoroethylene porous structure is used as a material,
The porous i-structure of the material is impregnated with a resin liquid that meets the required characteristics of the intended wiring board, such as heat resistance and low dielectric constant, and then is cured under pressure under pressure conditions that match the required characteristics of the wiring board. A manufacturing method for printed wiring boards that is characterized by:

作用 ポリテトラフルオロエチレン多孔′JR組織体はそれ自
体が誘電率1.1〜1.8程度の低誘電率を示す。又こ
のような多孔質組織体はポリテトラフルオロエチレン自
体が化学的に安定で他の樹脂や接着剤による接着に適し
ないものであるに拘わらず、その多孔質組織により適宜
の樹脂液を含浸結合させる。
The working polytetrafluoroethylene porous 'JR structure itself exhibits a low dielectric constant of about 1.1 to 1.8. In addition, although polytetrafluoroethylene itself is chemically stable and is not suitable for bonding with other resins or adhesives, such porous structures can be impregnated with an appropriate resin liquid and bonded. let

前記のように含浸結合された樹脂液の電気的および物理
的ないし化学的特性の如何により得られるプリント配線
基材の特性が第1次に変化せしめられる。
The characteristics of the resulting printed wiring substrate are primarily changed depending on the electrical and physical or chemical characteristics of the resin liquid impregnated and bonded as described above.

上記のように樹脂液を含浸した多孔質組織体を加圧硬化
するに当ってその圧下条件を適宜に選ぶことにより得ら
れるプリント配線基材の特性が第2次に変化せしめられ
る。
As described above, when the porous structure impregnated with the resin liquid is pressure-cured, the properties of the resulting printed wiring substrate can be changed to a second degree by appropriately selecting the rolling conditions.

前記した第1次および第2次の特性変化が複合されるこ
とによって同じ素材を採用して得られるプリント配線基
板の電気的、物理的ないし化学的な特性は多様に変化せ
しめられる。
By combining the above-mentioned primary and secondary characteristic changes, the electrical, physical, and chemical characteristics of printed wiring boards obtained by using the same material can be varied in various ways.

実施例 上記したような本発明によるものについて更に仔;ia
を説明すると、今日における電気機器その他に用いられ
るプリント配線基板として要求される特性はまことに多
様である。例えば前記した計算機などにおいては、信号
の高速化が強く要望され、このような信号高速化のため
に今日においてはガリウム砒素等にぶる超高速素子も開
発されており、それが適用されるプリント配線基板に関
しても高速化に即応する特性をもつことが強く望まれて
いる。これに対しICチップを直接実装する基板等では
実装形態により誘電率が低いこともさることながら、基
板の熱膨張率や熱伝導性、更に機械的強度を持つことも
要求されている。
EXAMPLES Further details of the invention as described above; ia
To explain this, the characteristics required of today's printed wiring boards used in electrical equipment and other devices are truly diverse. For example, in the above-mentioned computers, there is a strong demand for higher signal speeds, and today ultra-high-speed elements such as gallium arsenide have been developed to speed up signals, and printed wiring to which these elements are applied. There is also a strong desire for substrates to have characteristics that can quickly respond to higher speeds. On the other hand, substrates on which IC chips are directly mounted are required not only to have a low dielectric constant, but also to have a high thermal expansion coefficient, thermal conductivity, and mechanical strength, depending on the mounting form.

然して前記した計算機のような場合の信号伝播遅延時間
では材質の誘電率平方根に比例し、ストリップ線路では
次式によって表わされる。
However, in the case of the above-mentioned computer, the signal propagation delay time is proportional to the square root of the dielectric constant of the material, and in the case of a strip line, it is expressed by the following equation.

7エ□ (n式/ml 但し t:材料の誘電率、 C:光速3X10’ m/see 従って信号の高速化に即応するには材料の誘電率1を小
さくすることが不可欠である。
7E□ (n formula/ml, where t: dielectric constant of the material, C: speed of light 3 x 10' m/see) Therefore, in order to respond quickly to higher signal speeds, it is essential to reduce the dielectric constant 1 of the material.

一方前記したICチップを直接実装する基板のような場
合においては、誘電率Cは多少犠牲にしても基板の熱膨
張率や熱伝導性、機械的強1ft−ウまくマツチングさ
せることが重要なポイントとなる。
On the other hand, in the case of a board on which an IC chip is directly mounted as described above, it is important to properly match the thermal expansion coefficient, thermal conductivity, and mechanical strength of the board even if the dielectric constant C is sacrificed to some extent. becomes.

本発明においては上述したようなプリント配線基板に関
する種々の要請に即応すべく検討を重ねて創案されたも
のであって、誘電率について言うならば、ポリテトラフ
ルオロエチレン多孔質組織体1はそれ自体が低誘電率で
あって、列えば空孔率80悌のもので誘電率は1.2と
非常に低いつしかしこのポリテトラフルオロエチレンは
引張り力や圧縮力に対する機械的強度に難点があり、こ
れを多孔質組織とすることにより他の樹脂分を含浸硬化
させることができ、このようにして含浸された樹脂分に
よってこれらの不利を解消する。又該多孔質組織体の引
張りや圧縮力に対する機械的強度を高める。
The present invention was created after repeated studies in order to promptly meet the various demands regarding printed wiring boards as described above, and in terms of dielectric constant, the polytetrafluoroethylene porous structure 1 itself has However, this polytetrafluoroethylene has a low dielectric constant of 1.2 with a porosity of 80.However, this polytetrafluoroethylene has a drawback in mechanical strength against tensile and compressive forces. By forming this into a porous structure, other resin components can be impregnated and hardened, and these disadvantages can be overcome by the resin component impregnated in this way. It also increases the mechanical strength of the porous tissue against tensile and compressive forces.

然し上記のように単に低誘電率ないし耐熱性のような樹
脂を含浸させたものにおいては組織内になお相当の空孔
が残っており、回路形成のだめのエツチング時にエツチ
ング液が空孔内に侵入して無用なエツチングをなし、又
エツチング液成分の残留耐着を避は得ないし、更にはプ
リント配線基板としての使用時に前記空孔内に外気、特
に湿分が侵入して絶縁性、誘電特性に悪影響を与える。
However, as mentioned above, when the material is simply impregnated with a low-permittivity or heat-resistant resin, a considerable number of pores still remain in the structure, and the etching solution may penetrate into the pores during etching to form a circuit. This results in unnecessary etching, unavoidable residual adhesion of etching solution components, and furthermore, when used as a printed wiring board, outside air, especially moisture, enters into the holes and deteriorates the insulation and dielectric properties. adversely affect.

斯かる不利は本発明においてプレス成形が加えられるこ
とにより解消されるが、一方においてこのプレス成形で
空孔率が減少すると、誘を率が次第に大きくなる。
Such disadvantages are overcome by adding press forming in the present invention, but on the other hand, when the porosity is reduced by this press forming, the dielectric constant gradually increases.

従って上記のように樹脂分を含浸させたものを加圧硬化
させて成形するに当ってその加圧の程度t一種々に変え
ることにエリ同じ樹脂を含8させても得られる製品の誘
電率、絶縁性更には可曲性、機械的強度その池の特性が
種々に異ったもめとして得られる。
Therefore, when molding a product impregnated with a resin by pressure curing as described above, the dielectric constant of the product obtained even if the same resin is impregnated can be changed by varying the degree of pressure t. Various properties such as insulation, flexibility, mechanical strength and other properties can be obtained.

前記したポリテトラフルオロエチレン多孔質組織体1は
ポリテトラフルオロエチレンフィルムに対する圧延、延
伸加工によって第1,2図のように微小結節部11間に
無数の微細繊維12がくもの巣状に形成されたものとし
て得られる。このような組織体1は適宜に複数枚を重合
して用いることができ、その空孔率としては一般的に3
0〜90%のものとして準備することができる。誘電率
としては空孔率が高くなる程低いこととなり、上記空孔
率範囲の場合において、1.1〜1.8となる。
The above-mentioned polytetrafluoroethylene porous structure 1 is formed by rolling and stretching a polytetrafluoroethylene film to form numerous fine fibers 12 in a spider web shape between micro nodules 11 as shown in FIGS. 1 and 2. It can be obtained as something. Such a structure 1 can be used by appropriately polymerizing a plurality of sheets, and the porosity thereof is generally 3.
It can be prepared as 0-90%. The higher the porosity, the lower the dielectric constant, and in the case of the above porosity range, it is 1.1 to 1.8.

上記のようなポリテトラフルオロエチレン多孔質組織体
1f−含浸される樹脂液としては耐熱性樹脂、低誘電率
樹脂、などがあり、これらの樹脂についての具体例は以
下の如くである。
The resin solution impregnated into the polytetrafluoroethylene porous structure 1f as described above includes heat-resistant resins, low dielectric constant resins, etc., and specific examples of these resins are as follows.

耐熱性樹脂:エポキシ、ポリイミド、ポリエステル、ア
クリル、トリアゾン、ビスマレイミド、トリアジンの各
樹脂 低誘電率樹脂:ポリオレフィン、ポリサルホン、ポリエ
ーテルサルホン、FEP等の各樹脂このような樹脂を含
浸した前記多孔質組織体1に対するプレス成形硬化は目
的とする配線基板の特性如何によって適宜に選ばれ、低
誘電率を目的としたものでは軽度のプレス成形をなし、
又絶縁性を重視する場合は充分なプレス成形が行われる
。プレス機またはロール加圧して硬化させれば多孔質組
織が適度に潰れ、含浸樹脂および組織体1よりなる基板
材の空孔率は低減することになり、その程度によって得
られる基板の電気的ないし機械的な特性は決定されるし
、寸法的安定性も確保される。
Heat-resistant resins: Epoxy, polyimide, polyester, acrylic, triazone, bismaleimide, triazine resins Low dielectric constant resins: Polyolefins, polysulfones, polyethersulfones, FEPs, etc. The porous material impregnated with such resins Press molding hardening for the structure 1 is appropriately selected depending on the characteristics of the intended wiring board, and if the purpose is a low dielectric constant, a light press molding is performed.
In addition, if insulation is important, sufficient press molding is performed. If it is hardened by applying pressure with a press machine or a roll, the porous structure will be crushed appropriately, and the porosity of the substrate material made of the impregnated resin and the structure 1 will be reduced, and depending on the degree, the electrical and Mechanical properties are determined and dimensional stability is also ensured.

上記のようにして得られる基材に対しstCや5j04
 、石英・せウダーなど無機物をポリテトラ7A/オロ
エチレン樹脂内に混入することにより熱伝導性、寸法安
定性、機械的強度などを更に改善することができる。又
ガラス繊維、クラオーツ繊維、アラミド繊維等の繊維状
補強材を積層せしめ、或いは短い繊維状補強材を積層な
いし混入することによっても寸法安定性や強度を向上し
得る。
For the base material obtained as above, stC and 5j04
Thermal conductivity, dimensional stability, mechanical strength, etc. can be further improved by mixing inorganic substances such as quartz and powder into the polytetra 7A/oleoethylene resin. Dimensional stability and strength can also be improved by laminating fibrous reinforcing materials such as glass fibers, clay fibers, aramid fibers, etc., or by laminating or mixing short fibrous reinforcing materials.

更に上記のような基材の少くとも片面又は内部にポリイ
ミドフィルム、ポリエーテルケトンフィルム、ポリサル
7オンフイルム、ポリエステルフィルム等の樹脂フィル
ムによる補強材を積層して端裂強度、引張強さ等の機械
的特性を更に向上し、又組織内への含湿ないし通気性を
阻止する。
Furthermore, a reinforcing material made of a resin film such as polyimide film, polyetherketone film, polysal 7-on film, or polyester film is laminated on at least one side or inside of the above-mentioned base material to improve mechanical strength such as edge tear strength and tensile strength. It further improves physical properties and prevents moisture absorption and air permeability into the tissue.

又基材の少くとも一面又は内部にガラスエポヤシ板やセ
ラミックろ板゛などの硬質絶縁材を設けることにより曲
げ強度、寸法安定性を高めると共に部品実装基板として
優れた製品を得しめる。
Furthermore, by providing a hard insulating material such as a glass epoxy board or a ceramic filter plate on at least one surface or inside of the base material, bending strength and dimensional stability are increased, and a product excellent as a component mounting board can be obtained.

更に軟質又は硬質金属体のような熱伝導材を設けること
により回路通電時の発熱を有効に伝導せしめ、特に軟質
熱伝導体の場合には基板の形状を変形し得るフレキシブ
ル基板として得ることができる。
Furthermore, by providing a heat conductive material such as a soft or hard metal body, heat generated when the circuit is energized can be effectively conducted, and especially in the case of a soft heat conductor, it is possible to obtain a flexible board that can change the shape of the board. .

上記のような基材において鋼箔などの金属箔を用いて導
電回路を形成するに当り、該基材に含浸された樹脂分が
この金属箔に対する接着性に劣る場合や繊維状或いは樹
脂フィルム補強材又は硬質絶縁体に前記金属箔t−積層
する場合には接着剤を用いて接着することができ、又導
電回路はイオンデレーティング法、真空蒸着法、スパッ
タリング等によって形成することもできる。勿論メッキ
触媒層を設けてアデイテイング法によって導電回路を形
成することもできるう本発明によるものにおいて前述し
たような基板材がそれなりの空孔率を有し父上記のよう
な被覆層を表裏に形成した場合においてその周側に樹脂
液をコーティングし気密層を形成することにより外気の
組織内侵入を遮断し、又エツチング液の侵入を阻止し、
微細な回路・9ターンのエツチングを可能ならしめ、湿
分等の侵入による絶縁性や誘′R1,!¥f性の劣化を
回避する。
When forming a conductive circuit using metal foil such as steel foil on the above-mentioned base material, there are cases where the resin impregnated into the base material has poor adhesion to the metal foil, or when fibrous or resin film reinforcement is used. When the metal foil is laminated on a material or a hard insulator, it can be bonded using an adhesive, and the conductive circuit can also be formed by an ion derating method, a vacuum evaporation method, sputtering, or the like. Of course, it is also possible to provide a plating catalyst layer and form a conductive circuit by the adating method.In the present invention, the substrate material as described above has a certain porosity and a coating layer as described above is applied on the front and back sides. When formed, coating the peripheral side with resin liquid to form an airtight layer blocks outside air from entering the tissue, and also prevents etching solution from entering.
Enables etching of minute circuits and 9 turns, and improves insulation and resistance against moisture intrusion. Avoid deterioration of quality.

本発明によるものの具体的な製造例について説明すると
以下の如くである。
A specific manufacturing example of the product according to the present invention will be described below.

製造例16 厚さが0.1 mで空孔率が70鴫の多孔質、41Jテ
トラフルオロエチレン嘆1にエポキシatt+旨を40
 vt%含浸させ且つ厚さ0.08wm+までプレス成
形硬化させた基材の表裏にそれぞれ銅箔を積層接着させ
たものの誘電率は2.2であって、従来のものより充分
に低誘1!率であり、高速コンピュータ用として好適な
製品を得ることができた。
Production Example 16 A porous material with a thickness of 0.1 m and a porosity of 70, 41J tetrafluoroethylene and 40% epoxy att+.
The dielectric constant of the base material, which is laminated and bonded to the front and back sides of a base material impregnated with vt% and press-molded and cured to a thickness of 0.08 wm+, is 2.2, which is much lower than the conventional one! We were able to obtain a product suitable for use in high-speed computers.

製造例2 型造例1におけると同じ多孔質ぼりテトラフルオロエチ
レン膜1に8度4〜8μmの石英ハウダーを50wt%
混入した厚さ0. l■多孔質ポリテトラフルオロエチ
レン膜100wt1iに対し工Fj?キシ樹脂を30w
t 部含浸させ、しかも厚さ0.09mmまでプレス成
形硬化させた基材の両面に鋼箔を加圧積層させたものの
誘電率は25であり、熱伝導が良好な高速コンピュータ
用として好ましい特性を有していることが確認された。
Production Example 2 50wt% of quartz howder of 8 degrees 4 to 8 μm was added to the same porous tetrafluoroethylene membrane 1 as in molding example 1.
Mixed thickness 0. l ■ Porous polytetrafluoroethylene membrane 100wt1i? 30w xy resin
The dielectric constant of steel foil laminated under pressure on both sides of a base material which is impregnated with t part and hardened by press molding to a thickness of 0.09 mm is 25, which is a desirable characteristic for high-speed computers with good heat conduction. It was confirmed that it has.

製造例1 空孔率70%の4リテトラフルオロエチレン膜にエポキ
シ樹脂t−製造例1におけると同じに含浸させると共に
第3図に示すように中間にクウオーソ繊維3を介装せし
め、又両面に銅箔4を積層せしめ、圧下率20%の加圧
をなして硬化させたものの誘電率は2.5であって、寸
法安定性の優れた高速コンピュータ用として好ましい製
品であった。
Production Example 1 A 4-liter trifluoroethylene membrane with a porosity of 70% was impregnated with epoxy resin T in the same manner as in Production Example 1, and as shown in FIG. The dielectric constant of a product on which copper foil 4 was laminated and cured by applying pressure at a reduction rate of 20% was 2.5, and was a product with excellent dimensional stability suitable for use in high-speed computers.

製造例4゜ クォーツf1維3に代え、ポリエステルエーテルケトン
フィルム5を第4図に示したように介装し、圧下率を3
3%とした外は製造例3におけると同様にして得たプリ
ント基板の誘電率はλ8であって、製造例3と同様に機
械的強度の優れた高速コンピュータ用として好ましい製
品であることを知った。
Production Example 4゜In place of the quartz f1 fiber 3, a polyester ether ketone film 5 was inserted as shown in Fig. 4, and the rolling reduction was 3.
The dielectric constant of the printed circuit board obtained in the same manner as in Production Example 3, except for the setting of 3%, was λ8, and as in Production Example 3, it was found that it was a product suitable for use in high-speed computers with excellent mechanical strength. Ta.

製造例& 空孔率70%のポリテトラフルオロエチレン多孔質フィ
ルムにエポキシ樹脂を40 wt%含浸させると共に厚
さ0.1鱈のガラスエポキシ板6と銅箔4を第6図に示
すように両面に積層し、圧下率20%の圧下をなして硬
化させたものの誘m率は3.1であって機械的強度、曲
げ剛性等が優れ、部品を多数実装する高速コンピュータ
用として好ましいプリント基板であったっ「発明の効果
」 以上説明したような本発明によるときは同じ素材である
ポリテトラフルオロエチレン多孔質体を用い、特性が種
々に異ったプリント基板を適切に製造することができ、
この種基板を得るための素材管理を容易にし、多様な用
途に即応し得るものであって、工業的にその効果の太き
い発明である。
Manufacturing Example & A polytetrafluoroethylene porous film with a porosity of 70% is impregnated with 40 wt% of epoxy resin, and a glass epoxy plate 6 with a thickness of 0.1 mm and a copper foil 4 are bonded on both sides as shown in FIG. It has a dielectric constant of 3.1 when laminated and cured by rolling down at a rolling reduction rate of 20%, and has excellent mechanical strength and bending rigidity, making it a preferred printed circuit board for high-speed computers that mount a large number of parts. ``Effects of the Invention'' According to the present invention as explained above, printed circuit boards with various characteristics can be appropriately manufactured using the same material, polytetrafluoroethylene porous body, and
This invention facilitates the material management for obtaining this type of substrate and can be quickly applied to a variety of uses, making it a highly effective invention industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の技術的内容を示すものであって、第1図
と第2図はそれぞれ本発明で用いるポリテトラフルオロ
エチレン多孔質組織体の繊維徂議代表例を示した顕微鏡
写真、第3図から第6図は本発明の製造例による断面構
成を拡大して示した各説明図である。 然してこれらの図面において、1はポリテトラフルオロ
エチレン多孔A組11H1iE、 3UクオーツRa、
4は銅箔、5はポリエステルエーテルケトンフィルム、
6はガラスエポキシ板、11は微小結節部、12は微細
繊維と示すものである。。 特許 出 願 人   ソヤノ伎ゴアテックス株式会社
発   明   者   畠    山       
 実開            駒   1)    
   部同           守   屋   紘
   典第 J 國 第 6 ■ ん 第 6  圓 第 /  圓 イ’r(l:fJ組熾f(=
The drawings show the technical content of the present invention, and FIGS. 1 and 2 are micrographs showing a representative example of a fiber-based polytetrafluoroethylene porous structure used in the present invention, and FIG. 6 to 6 are explanatory diagrams showing enlarged cross-sectional structures according to manufacturing examples of the present invention. In these drawings, 1 is polytetrafluoroethylene porous group A 11H1iE, 3U quartz Ra,
4 is copper foil, 5 is polyester ether ketone film,
6 is a glass epoxy plate, 11 is a micro nodule, and 12 is a fine fiber. . Patent applicant: Soyanogi Gore-Tex Co., Ltd. Inventor: Hatakeyama
Real opening piece 1)
Department Moriya Hiroten J Koku No. 6 ■ N No. 6 En No. / En I'r (l:fJ group division f(=

Claims (1)

【特許請求の範囲】 1、ポリテトラフルオロエチレン多孔質組織体を素材と
し、該素材の多孔質組織に耐熱性、低誘電率などの目的
とする配線基板の必要特性に即応した樹脂液を含浸せし
めてから前記配線基板の必要特性に即応した圧下条件下
で加圧硬化することを特徴とするプリント配線基板の製
造法。 2、無機質粉末を混入したポリテトラフルオロエチレン
多孔質組織体を素材とした特許請求の範囲第1項に記載
のプリント配線基板の製造法。 3、加圧硬化をプレスまたはロール加圧によって実施す
る特許請求の範囲第1項または第2項の何れか1つに記
載のプリント配線基板の製造法。 4、加圧硬化された基材面に無機質粉末による被覆層を
形成する特許請求の範囲第1項から第3項の何れか1つ
に記載したプリント配線基板の製造法。 5、加圧硬化された基材面にガラス繊維、クウオツ繊維
、アラミド繊維等の繊維状補強材、ポリイミドフィルム
、ポリエーテルエーテルケトンフィルム、ポリエーテル
サルフォンフィルム、ポリエステルフィルム等の樹脂フ
ィルム、硬質絶縁体、軟質または硬質金属体の何れか1
種または2種以上を層着する特許請求の範囲第1項から
第4項の何れか1つに記載のプリント配線基板の製造法
。 6、加圧硬化される基材中にガラス繊維、クウオツ繊維
、アラミド繊維等の繊維状補強材、ポリイミドフィルム
、ポリエーテルエーテルケトンフィルム、ポリエーテル
サルフォンフィルム、ポリエステルフィルム等の樹脂フ
ィルム、硬質絶縁体、軟質または硬質金属体の何れか1
種または2種以上を層着する特許請求の範囲第1項から
第4項の何れか1つに記載のプリント配線基板の製造法
[Claims] 1. A polytetrafluoroethylene porous structure is used as a material, and the porous structure of the material is impregnated with a resin liquid that meets the required characteristics of the intended wiring board, such as heat resistance and low dielectric constant. 1. A method for manufacturing a printed wiring board, comprising: drying the printed wiring board, and then hardening under pressure under rolling conditions that correspond to the required characteristics of the wiring board. 2. The method of manufacturing a printed wiring board according to claim 1, which is made of a polytetrafluoroethylene porous structure mixed with inorganic powder. 3. The method for manufacturing a printed wiring board according to claim 1 or 2, wherein the pressure curing is performed by press or roll pressure. 4. The method for manufacturing a printed wiring board according to any one of claims 1 to 3, which comprises forming a coating layer of inorganic powder on a pressure-cured base material surface. 5. Fibrous reinforcing materials such as glass fiber, quartz fiber, and aramid fiber, resin films such as polyimide film, polyether ether ketone film, polyether sulfone film, and polyester film, and hard insulation are applied to the pressure-cured base material surface. body, either a soft or hard metal body
The method for manufacturing a printed wiring board according to any one of claims 1 to 4, which comprises layering one or more types. 6. In the base material to be cured under pressure, fibrous reinforcing materials such as glass fiber, quartz fiber, aramid fiber, etc., resin films such as polyimide film, polyether ether ketone film, polyether sulfone film, polyester film, and hard insulation. body, either a soft or hard metal body
The method for manufacturing a printed wiring board according to any one of claims 1 to 4, which comprises layering one or more types.
JP61125855A 1986-06-02 1986-06-02 Printed wiring board manufacturing method Expired - Lifetime JPH07105577B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP61125855A JPH07105577B2 (en) 1986-06-02 1986-06-02 Printed wiring board manufacturing method
CA000538491A CA1276758C (en) 1986-06-02 1987-06-01 Process for making substrates for printed circuit boards
AT87304816T ATE88608T1 (en) 1986-06-02 1987-06-01 PROCESS FOR THE MANUFACTURE OF SUBSTRATES FOR PRINTED CIRCUITS.
EP87304816A EP0248617B1 (en) 1986-06-02 1987-06-01 Process for making substrates for printed circuit boards
DE8787304816T DE3785487T2 (en) 1986-06-02 1987-06-01 METHOD FOR PRODUCING CARRIERS FOR PRINTED CIRCUITS.
GB8712769A GB2195269B (en) 1986-06-02 1987-06-01 Process for making substrates for printed circuit boards
AU73747/87A AU7374787A (en) 1986-06-02 1987-06-02 Process for making substrates for printed circuit boards
HK118/93A HK11893A (en) 1986-06-02 1993-02-18 Process for making substrates for printed circuit boards

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61125855A JPH07105577B2 (en) 1986-06-02 1986-06-02 Printed wiring board manufacturing method

Publications (2)

Publication Number Publication Date
JPS62283694A true JPS62283694A (en) 1987-12-09
JPH07105577B2 JPH07105577B2 (en) 1995-11-13

Family

ID=14920607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61125855A Expired - Lifetime JPH07105577B2 (en) 1986-06-02 1986-06-02 Printed wiring board manufacturing method

Country Status (1)

Country Link
JP (1) JPH07105577B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0180974U (en) * 1987-11-20 1989-05-30
JPH11243277A (en) * 1998-02-26 1999-09-07 Ibiden Co Ltd Multilayer printed wiring board having filled via structure
US7071424B1 (en) 1998-02-26 2006-07-04 Ibiden Co., Ltd. Multilayer printed wiring board having filled-via structure
JP2007523247A (en) * 2004-02-19 2007-08-16 ゴア エンタープライズ ホールディングス,インコーポレイティド Low friction and wear resistant materials and articles made therefrom
JP2009190212A (en) * 2008-02-13 2009-08-27 Toho Kasei Kk Insulated substrate material for high-frequency band
JP2011135069A (en) * 2009-11-26 2011-07-07 Nitto Denko Corp Substrate for led mounting
JP2023518535A (en) * 2020-09-10 2023-05-02 サン―ア フロンテック カンパニー,リミテッド Low dielectric composite film for copper clad laminate (CCL) and low dielectric copper clad laminate (CCL) including the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6183913U (en) * 1984-11-08 1986-06-03
JPS6290808A (en) * 1985-02-26 1987-04-25 ダブリユ− エル ゴア アンド アソシエイツ インコ−ポレ−テツド Dielectric material and manufacture of the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6183913U (en) * 1984-11-08 1986-06-03
JPS6290808A (en) * 1985-02-26 1987-04-25 ダブリユ− エル ゴア アンド アソシエイツ インコ−ポレ−テツド Dielectric material and manufacture of the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0180974U (en) * 1987-11-20 1989-05-30
US8115111B2 (en) 1998-02-26 2012-02-14 Ibiden Co., Ltd. Multilayer printed wiring board with filled viahole structure
US7071424B1 (en) 1998-02-26 2006-07-04 Ibiden Co., Ltd. Multilayer printed wiring board having filled-via structure
US7390974B2 (en) 1998-02-26 2008-06-24 Ibiden Co., Ltd. Multilayer printed wiring board with filled viahole structure
US7622183B2 (en) 1998-02-26 2009-11-24 Ibiden Co., Ltd. Multilayer printed wiring board with filled viahole structure
US7737366B2 (en) 1998-02-26 2010-06-15 Ibiden Co., Ltd. Multilayer printed wiring board with filled viahole structure
JPH11243277A (en) * 1998-02-26 1999-09-07 Ibiden Co Ltd Multilayer printed wiring board having filled via structure
US8987603B2 (en) 1998-02-26 2015-03-24 Ibiden Co,. Ltd. Multilayer printed wiring board with filled viahole structure
JP2007523247A (en) * 2004-02-19 2007-08-16 ゴア エンタープライズ ホールディングス,インコーポレイティド Low friction and wear resistant materials and articles made therefrom
JP2009190212A (en) * 2008-02-13 2009-08-27 Toho Kasei Kk Insulated substrate material for high-frequency band
JP2011135069A (en) * 2009-11-26 2011-07-07 Nitto Denko Corp Substrate for led mounting
US8985818B2 (en) 2009-11-26 2015-03-24 Nitto Denko Corporation LED mounting substrate
JP2023518535A (en) * 2020-09-10 2023-05-02 サン―ア フロンテック カンパニー,リミテッド Low dielectric composite film for copper clad laminate (CCL) and low dielectric copper clad laminate (CCL) including the same

Also Published As

Publication number Publication date
JPH07105577B2 (en) 1995-11-13

Similar Documents

Publication Publication Date Title
EP0248617B1 (en) Process for making substrates for printed circuit boards
JP3119577B2 (en) Laminated board
KR20200061452A (en) Resin composition, manufacturing method the same, prepreg including the same, laminated plate including the same, metal foil coated with resin including the same
JPH0145417B2 (en)
JPS62283694A (en) Manufacture of printed wiring board
JPS607796A (en) Copper-lined laminated board for printed circuit and method of producing same
JPH1017684A (en) Production of prepreg and laminate
JPS61214495A (en) Metal foil having binder layer for covering laminate plate and manufacture of base material for printed circuit
KR100187577B1 (en) Copper-clad laminate, multilayer copper-clad laminate and process for producing the same
JPH0231792Y2 (en)
JP3327366B2 (en) Manufacturing method of laminated board
JPH03149891A (en) Circuit board
JPH10135590A (en) Substrate for printed circuit
JPH09254331A (en) Laminated sheet
JP2742123B2 (en) Manufacturing method of printed circuit board
JPH02252294A (en) Manufacture of multilayer board
JPH05310957A (en) Fiber sheet and circuit substrate using the same
WO1999028126A1 (en) Prepreg for multilayer printed wiring boards and process for producing the same
JPH08174736A (en) Laminated sheet
JPH0771839B2 (en) Laminated board manufacturing method
JPH05327150A (en) Laminated plate for printed circuit
JPS63224936A (en) Laminated board
JPH06260734A (en) Laminated board for printed wiring board
JPH03193342A (en) Manufacture of laminated sheet
JPH115276A (en) Laminated plate

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term