WO1999028126A1 - Prepreg for multilayer printed wiring boards and process for producing the same - Google Patents
Prepreg for multilayer printed wiring boards and process for producing the same Download PDFInfo
- Publication number
- WO1999028126A1 WO1999028126A1 PCT/JP1998/005372 JP9805372W WO9928126A1 WO 1999028126 A1 WO1999028126 A1 WO 1999028126A1 JP 9805372 W JP9805372 W JP 9805372W WO 9928126 A1 WO9928126 A1 WO 9928126A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glass
- resin
- nonwoven fabric
- prepreg
- printed wiring
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/40—Shaping or impregnating by compression not applied
- B29C70/50—Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
- B29C70/504—Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC] using rollers or pressure bands
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B15/00—Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
- B29B15/08—Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
- B29B15/10—Coating or impregnating independently of the moulding or shaping step
- B29B15/12—Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length
- B29B15/122—Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length with a matrix in liquid form, e.g. as melt, solution or latex
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0313—Organic insulating material
- H05K1/0353—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
- H05K1/0366—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/02—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
- H05K3/022—Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
Definitions
- the present invention relates to a pre-preda for a multilayer printed wiring board using a glass nonwoven fabric and a method for producing the same.
- glass cloth has been mainly used as an insulating base material of a laminate for a printed wiring board.
- a method of manufacturing a laminated board for a printed wiring board using the glass cloth first, a glass cloth is impregnated with a matrix resin such as a liquid epoxy resin whose viscosity has been reduced with a solvent, using a squeezing apparatus. After the excess resin is squeezed and adjusted to the specified resin impregnation amount, it is passed through a dryer and heated to remove the solvent and produce a prepreg in which the resin curing stage is adjusted. After cutting to the prescribed size suitable for the copper-clad laminate, arranging copper foil for circuit on one or both sides, or laminating the number of sheets according to the configuration, printing by heating and pressing with a press A method of manufacturing a wiring laminate II has been adopted.
- glass cloth is expensive, so instead, glass cloth is used for only one layer on each of the front and back sides, and the core is laminated with prepreg made of glass non-woven fabric.
- Printed wiring called CEM-3 There are also fields in which ⁇ laminates are used.
- the amount of the matrix resin impregnated in a laminated board composed of only glass cloth as the insulating base material is about 40% by weight, whereas the use of an insulating base material made of glass non-woven fabric results in the use of a matrix resin.
- glass fiber In comparison with glass fiber and resin by volume, glass fiber is about 25%, resin is about 75%, and the volume occupied by resin is overwhelming.
- glass nonwoven fabric was used as the insulating base material, glass fibers could not be contained in a high proportion.
- a pre-zero pre-printer used for a printed wiring board is required to have further thinner and smoother properties.
- the glass non-woven fabric obtained by papermaking a small amount of glass fiber chopped strands dispersed in water as the raw material has a straight glass fiber and a smooth surface. It is difficult to obtain a sufficient tensile strength as a non-woven fabric using only glass fiber as a raw material, such as a paper made from an organic raw material without entanglement. Therefore, in order to secure sufficient tensile strength, a method of impregnating a paper-made glass nonwoven fabric with a binder such as a water-soluble acryl resin or epoxy resin and curing it is adopted.
- a binder such as a water-soluble acryl resin or epoxy resin
- Glass nonwoven fabric cannot be used, and in order to have sufficient strength, a thick nonwoven fabric with a large basis weight must be used as the glass nonwoven fabric, and a resin binder to be impregnated Because of the necessity of increasing the impregnation amount of prepreg, it was not possible to produce a prepreg having a high glass fiber content and a small thickness.
- an increase in the amount of resin used for impregnation leads to an increase in the amount of a surfactant for dispersing such a resin in water. In addition to deteriorating the water, it has caused long-term deterioration in insulation performance.
- the solvent contained in the resin impregnated into the glass fiber is removed, but when the solvent is removed, the volume of the resin part decreases and the resin moves from the surface to the inside. Due to the phenomenon of sink marks, when copper foil is laminated using a non-woven glass surface and press-molded, the surface becomes 10 / m Near intense irregularities may occur. Therefore, when the copper foil is removed by etching or the like on the laminated plate existing on the surface, the copper foil is likely to remain in the concave portion, and the copper foil in the convex portion is easily removed. There was a problem such as disconnection of a circuit or connection of the circuit by mistake due to the remaining copper foil. In addition, if such irregularities are present, spots are generated at the time of bonding the copper foil, which causes disconnection and the like as described above.
- the present invention is directed to a prepreg using a glass nonwoven fabric impregnated with a resin as an insulating substrate, to prevent bubbles remaining when cutting the glass nonwoven fabric substrate and impregnating the resin, and to reduce the glass fiber content.
- An object of the present invention is to provide a glass nonwoven fabric prepreg for a multilayer printed wiring board which is high, has excellent surface smoothness, and is thin. It is another object of the present invention to continuously and efficiently manufacture such a pre-preda.
- the present inventors have studied various methods for impregnating a glass nonwoven fabric substrate with a resin in order to solve the above-mentioned problems.
- a liquid resin is applied to one side of a specific carrier sheet, and then a glass non-woven fabric made of highly flat glass fiber is supplied thereon to impregnate the resin, thereby cutting the glass non-woven fabric base and cutting the resin.
- the present inventors have found that bubbles can be prevented from remaining when the resin is impregnated, and that the resin impregnation amount can be reduced, and the present invention has been completed.
- the present invention relates to a prepreg for a multilayer printed wiring board using a glass nonwoven fabric impregnated with a resin as an insulating base material, wherein the insulating base material has a heat-resistant temperature of 150 ° C. or higher.
- the present invention relates to a multi-layer printed pre-preparator for a torii wire plate, which is laminated on a carrier sheet made of a copper foil, and wherein the glass nonwoven fabric is made of a highly flat glass fiber.
- the present invention provides a method for applying a liquid matrix resin to one side of a carrier sheet made of a synthetic resin film or a copper foil for a circuit having a heat resistance temperature of 150 ° C. or more, and then forming a highly flat glass fiber on the liquid matrix resin.
- the present invention relates to a method for producing a pre-preda for a multilayer printed wiring board, comprising laminating a glass non-woven fabric composed of a resin, impregnating with a resin, and drying and semi-curing the resin.
- FIG. 1 is a schematic side view of a laminating apparatus used in an embodiment of the method of the present invention.
- FIG. 2 is a schematic view of the process of the conventional method.
- the ratio of the major axis to the minor axis of the high flat glass fiber must be 3. : 1 to 8: 1, more preferably 3: 1 to 5: 1, most preferably 3.5: 1 to 4.5: 1.
- the conventional cross-sectional shape is likely to occur in glass fiber having a circular shape, and bubbles occupy a large amount of space in the nonwoven fabric. The problem can be avoided, and the content of glass fibers in the laminate can be increased.
- the resin content of the laminate can be reduced to the same level as glass cloth. .
- the glass nonwoven fabric comprising a conventional cross-sectional shape of a glass fiber is circular, than the tensile strength point, its weight per unit area weight is 5 0 g / m 2 ⁇ 1 0 0 g / m 2 and is commercially available glass nonwoven It was used for composite copper-clad laminates such as CEM-III, but in the present invention, since highly flat glass fiber is used as the glass nonwoven, a glass nonwoven made of glass fiber having a circular cross-sectional shape has hitherto been used. Glass non-woven fabrics having a basis weight in the range of 10 g / m 2 to 50 g / m 2 , which is rarely used in the above, can be used.
- the ratio of the major axis to the minor axis of the glass fiber is 3: 1 to 5: 1, and the equivalent diameter is 9 to 15 (where the equivalent diameter is the dimension representing the cross-section of the flat glass fiber, the same weight, A value expressed in terms of the diameter when converted to a round glass fiber of the same length.)
- a nonwoven glass nonwoven fabric with a basis weight of 10 gZm 2 to 50 gZ m 2 using a chopped strand of highly flat glass fiber is density 0. 3 ⁇ 0. 4 5 gr / cm 3 resin content of the laminate is reduced as large as, also, since also have a good dimensional stability of the glass cloth and the same degree, the multilayer of the present invention It is suitable as a pre-preda for printed wiring boards.
- the carrier sheet used in the present invention needs to be one that does not deform at the heating temperature when the solvent of the resin impregnated in the glass nonwoven fabric is removed from the viewpoint of securing the tensile strength of the glass nonwoven fabric during the manufacturing process.
- the matrix resin used for the impregnation is an epoxy thermosetting resin FR-4
- a thermoplastic polyester resin film or the like which does not deform at a heating temperature of 150 ° C. for removing the solvent.
- PEN polyallyl ether nitrile resin
- a heat-resistant continuous sheet having a smooth surface such as a copper foil for a circuit to be bonded can also be used as a carrier sheet.
- the thickness of the carrier sheet is preferably about 0.02 to 1 mm.
- the synthetic resin carrier sheet is removed during actual use, and a glass non-woven fabric base or a copper non-foiled glass non-woven fabric base is laminated and used as a prepreg for a multilayer printed wiring board.
- those using a circuit copper foil as a carrier sheet can be used as it is for the surface of a double-sided copper-clad printed wiring board or a copper-clad laminate for a multilayer printed wiring board.
- the resin to be impregnated into the glass nonwoven fabric that can be used in the present invention is not particularly limited as long as it is a resin that can be dissolved in a solvent and impregnated into the glass nonwoven fabric, but an epoxy resin, an unsaturated polyester resin, or the like is preferable. .
- the prepreg of the present invention As a method for producing the prepreg of the present invention using these carrier sheets, such a sheet material is sent out onto a flat conveyor that moves as a carrier sheet, and one surface thereof is impregnated with a glass nonwoven fabric in advance. There is a method in which the required resin amount is continuously and uniformly applied, and a glass nonwoven fabric or the like is sequentially laminated thereon. Also, a method of laminating a glass nonwoven fabric on a carrier sheet and supplying a resin from above to impregnate the resin, or a method of applying a resin to the rear surface of the carrier sheet to adjust the amount of adhesion, and then forming a glass nonwoven fabric or the like.
- the prepreg of the present invention may be manufactured by a method of sequentially supplying and stacking.
- a well-known liquid application method such as a kiss roll coater, a knife coater, or a rod coater is used.
- a well-known liquid application method such as a kiss roll coater, a knife coater, or a rod coater is used.
- the glass nonwoven fabric is sequentially impregnated so as not to trap air bubbles from one side on the resin surface, air bubbles can be greatly reduced as compared with the conventional one.
- the copper foil can be laminated on the glass nonwoven fabric.
- a single-sided copper-foiled glass nonwoven fabric impregnated with resin or a resin-impregnated glass nonwoven fabric without copper foil is brought into contact with a heating roller to remove the solvent of the resin impregnated into the glass nonwoven fabric. Remove and pre-cure. Further, if necessary, a glass nonwoven fabric prepreg can be manufactured more stably and continuously by passing the resin through a pair of heating / pressing ports to ensure the impregnation of the resin into the glass nonwoven fabric substrate. It becomes possible.
- a carrier sheet is present in the impregnation step to the partial curing step, so that the tensile strength required for handling in the production step can be secured.
- the glass nonwoven fabric can sufficiently withstand a lamination process in a continuous line, and a multi-layer printed wiring board pre-preda can be stably obtained.
- the basis weight of the glass nonwoven fabric is desirably 100 g / m 2 or less from the viewpoint that the resin is uniformly and completely impregnated.
- the basis weight is 1 g / m 2.
- the 0 gZm 2 ⁇ 5 0 gZ m 2 of tensile strength weak nonwoven may also be used.
- the manufacturing process of the prepreg for a glass-nonwoven copper-clad laminate shown in Fig. 1 consists of a carrier sheet feeder, a resin coating device, a glass nonwoven fabric feeder, a copper foil feeder, a heating roller unit, a trimming device, and a winding device. .
- the carrier sheet 1 starts moving by operating the feeding device and the winding device. After supplying the resin to the resin coating device, the kiss coater roller 3 is rotated to form a resin layer, and the carrier sheet 1 is brought into contact with the resin layer 4 on the roller 13 to apply the resin to the carrier sheet.
- the amount of application is adjusted by calculating the required amount of resin of the base material in advance, adjusting the rotation speed of the kiss coater 3 and the clearance of the guide roller 2, and managing the resin viscosity. . Furthermore, the thickness is made more uniform by squeeze barco 1-5.
- Carrier sheet 1 is in a state where resin is evenly applied, and the moving carrier sheet
- the glass nonwoven fabric 7 is fed out onto the sheet 1 by a glass nonwoven fabric sending device, and is laminated on the resin layer 4 on the carrier sheet 1.
- the glass nonwoven fabric 7 is sequentially impregnated with the resin from one side, bubbles are less likely to be generated.
- bubbles generated when impregnating a glass nonwoven fabric with a resin are trapped in the glass nonwoven fabric.
- the generation of bubbles itself is unlikely to occur, and the bubbles are further reduced. Even if it occurs, it is not trapped in the glass nonwoven fabric, so that uniform impregnation can be performed.
- the preheater 6 is an auxiliary heating device when it is necessary to promote the removal of the solvent in the resin.
- the laminated sheet 9 is brought into a semi-cured state by bringing the impregnated resin into a semi-cured state by bringing the laminated sheet 9 into contact with a heating roller 10 and a heating / pressing roller 11 at 150 to 180 ° C. Trimming to the required width by 2 and winding by a winding device 13 give a continuous glass nonwoven prepreg.
- a high-flat glass fiber with a major diameter: minor diameter of 4: 1 and an equivalent diameter of 13 / zm is used as the glass non-woven fabric, and an epoxy adhesive is applied at a solid content of 6% by weight. It was used in m 2.
- composition (FR-4 formulation) of the epoxy resin varnish used for impregnation is as follows.
- a film of a 50 zm polyallyl ether nitrile resin was used as the carrier sheet. Using these materials, a prepredder was manufactured using the apparatus shown in FIG. 1 described above. The results are shown in Table 1.
- the obtained prepreg was cut into 50 cm squares, 10 sheets were laminated, and copper foil with a thickness of 18 m was stacked on both sides, sandwiched between mirror plates, and pressed. It was produced by pressing at a force of 50 kg / cm 2 and a temperature of 170 ° C. for 60 minutes.
- the surface smoothness was measured using a universal shape measuring instrument (manufactured by Kosaka Laboratory Co., Ltd .; trade name: SEF-1A) based on “Surface Roughness Measurement Method” of JISB-0601. Was.
- a prepreg was produced under the same production conditions as in Example 1 except that a circuit copper foil of 18 / zm was used as a carrier sheet and the basis weight of the glass nonwoven fabric was 20 g / m 2 .
- the results are shown in Table 1.
- the preparation of the surface smoothness measurement sample and the method for measuring the same are the same as in Example 1.
- a prepreg was manufactured in the same manner as in Example 1 except that a glass nonwoven fabric having a basis weight of 50 g / m 2 made of glass fiber having a round cross section was used. The results are shown in Table 1. The preparation of the surface smoothness measurement sample and the measurement method thereof are the same as those in Example 1. (Comparative Example 2)
- the glass nonwoven fabric prepreg for a multilayer printed wiring board of the present invention is a prepreg having a high glass fiber content, excellent surface smoothness, and a small thickness as compared with conventional ones.
- the resin is sequentially laminated on the glass nonwoven fabric on the moving carrier sheet, and the resin is impregnated from one side of the glass nonwoven fabric. Even if it occurs, the impregnation can be performed under conditions where air bubbles can easily escape.
- the impregnation can be performed under conditions where air bubbles can easily escape.
- the amount of emulsion type lumber impregnated in the glass nonwoven fabric can be reduced, the amount of surfactant added to convert the emulsion type resin into an emulsion can be reduced. It is possible to do.
- this surfactant has an adverse effect on the water resistance and heat resistance of the printed wiring board, etc., and in order to make up for the lack of strength, which has conventionally been desired to reduce the amount thereof.
- the amount of the emulsion resin had to be increased, so that the amount of the surfactant could not be reduced to less than 10% by weight in the past.
- the amount of the surfactant can be significantly reduced to 6% by weight or less.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Reinforced Plastic Materials (AREA)
- Laminated Bodies (AREA)
Abstract
A prepreg for multilayer printed wiring boards having an insulating substrate comprising a resin-impregnated nonwoven glass fabric, characterized in that the nonwoven glass fabric is layered on a carrier sheet made of a synthetic resin film having a heat-resisting temperature of 150 °C or above or a copper-base circuit foil and that the fabric is constituted of highly flat glass fibers. The prepreg is increased in glass fiber content, excellent in dimensional stability and surface flatness, and is reduced in thickness, thus providing a prepreg based on nonwoven glass fabric suitable for multilayer printed wiring boards.
Description
明 細 書 多層プリント配線板用プリプレダ及びその製造方法 技術分野 Description: Pre-preda for multilayer printed wiring board and manufacturing method thereof
本発明は、 ガラス不織布を用いた多層プリント配線板用プリプレダ及びその製 造方法に関する。 TECHNICAL FIELD The present invention relates to a pre-preda for a multilayer printed wiring board using a glass nonwoven fabric and a method for producing the same.
背景技術 Background art
従来よりプリント配線板用積層板の絶縁基材としては、 ガラスクロスが主に用 いられている。 そして、 このガラスクロスを用いたプリント配線板用積層板の製 造方法としては、 まず、 ガラスクロスに、 溶剤で粘度を低く した液体状のェポキ シ樹脂などのマトリックス樹脂をディップ含浸させ、 スクイズ装置により余分の 樹脂をスクイズし、 規定の樹脂含浸量に調整した後、 ドライヤーを通過させ加熱 することにより、 溶剤を除去し、 樹脂の硬化の段階を調整したプリプレダを製造 し、 次いで、 このプリプレグを銅張積層板に合った所定の寸法に切断し、 片面又 は両面に回路用銅箔を配置し、 あるいは構成に応じた枚数を積層した後、 プレス により加熱、 加圧成形することによりプリン卜配線用積層扳を製造するという方 法が採られている。 Conventionally, glass cloth has been mainly used as an insulating base material of a laminate for a printed wiring board. As a method of manufacturing a laminated board for a printed wiring board using the glass cloth, first, a glass cloth is impregnated with a matrix resin such as a liquid epoxy resin whose viscosity has been reduced with a solvent, using a squeezing apparatus. After the excess resin is squeezed and adjusted to the specified resin impregnation amount, it is passed through a dryer and heated to remove the solvent and produce a prepreg in which the resin curing stage is adjusted. After cutting to the prescribed size suitable for the copper-clad laminate, arranging copper foil for circuit on one or both sides, or laminating the number of sheets according to the configuration, printing by heating and pressing with a press A method of manufacturing a wiring laminate II has been adopted.
一方、 ガラスクロスは高価であるため、 その代わりとして表と裏の両面の各一 層にのみガラスクロスを使用し、 芯の部分はガラス不織布のプリプレグを積層す る C E M— 3と呼ばれるプリン卜配線扳用積層板が用いられる分野もある。 On the other hand, glass cloth is expensive, so instead, glass cloth is used for only one layer on each of the front and back sides, and the core is laminated with prepreg made of glass non-woven fabric. Printed wiring called CEM-3 There are also fields in which 扳 laminates are used.
しかしながら、 絶縁基材をガラスクロスのみで構成する積層板では、 含浸して いるマ卜リックス樹脂の量は 4 0重量%程度であるのに対し、 ガラス不織布から なる絶縁基材を用いるとマトリックス樹脂の量が 6 0重量%以上と大幅に増加し てしまい (なお、 ガラス繊維と樹脂を体積で比較すると、 ガラス繊維が約 2 5 %、 樹脂が約 7 5 %で樹脂の占める体積が圧倒的に多い。 ) 、 その結果、 絶縁基材に ガラス不織布を用いた場合には、 ガラス繊維を高 、割合で含有させることができ なかった。 However, the amount of the matrix resin impregnated in a laminated board composed of only glass cloth as the insulating base material is about 40% by weight, whereas the use of an insulating base material made of glass non-woven fabric results in the use of a matrix resin. (In comparison with glass fiber and resin by volume, glass fiber is about 25%, resin is about 75%, and the volume occupied by resin is overwhelming. As a result, when glass nonwoven fabric was used as the insulating base material, glass fibers could not be contained in a high proportion.
このように、 ガラス繊維に対して樹脂の含有量が大きい場合には、 積層板の熱
W . Thus, when the content of the resin is large relative to the glass fiber, the heat W.
2 膨張による寸法変化、 特に厚さ方向の熱膨張率が大きく、 積層板に孔を開け、 内 面に無電解メツキ等で上下の面の導電を図るスルーホールメツキをした部分が熱 膨張により断線する場合があり、 積層板の寸法安定性と 、う点で信頼性に問題が あった。 (2) Dimensional change due to expansion, especially thermal expansion coefficient in the thickness direction is large, holes are drilled in the laminated board, and through-hole plating is performed on the inner surface by electroless plating etc. to disconnect the upper and lower surfaces due to thermal expansion. In some cases, there was a problem in the dimensional stability of the laminate and in reliability.
5 上記問題のほかに、 近年の電子機器の小型化及び高性能化により、 多層板と呼 ばれる複数の回路基板を積層したものが用いられるようになり、 その結果、 回路 を構成している銅の幅がますます細く且つ隙間なく配置され、 しかもその回路基 板が数十枚集積されたものが製造されるようになつてきた。 5 In addition to the above-mentioned problems, recent miniaturization and high performance of electronic devices have resulted in the use of multiple circuit boards, called multilayer boards, which have been used. The width of the circuit board has been increasingly narrower and arranged without gaps, and moreover, tens of circuit boards have been integrated.
したがって、 このような状況下においては、 プリント配線板に使用されるプリ0 プレダにも、 より一層の薄さ、 平滑性等が要求されるようになってきている。 Therefore, in such a situation, a pre-zero pre-printer used for a printed wiring board is required to have further thinner and smoother properties.
し力、し、 原料となるガラス繊維チョップドストランドを水中に少量分散したも のを抄紙することで得られるガラス不織布は、 ガラス繊維が直線状であり且つそ の表面も平滑であるため、 繊維相互の絡みが無く、 有機質の原料から抄紙された もののように、 原料となるガラス繊維のみで不織布として十分な引張り強度を得5 ることは困難である。 よって、 十分な引張り強度を確保するためには、 抄紙した ガラス不織布に水溶性のァクリル樹脂やエポキシ樹脂などのバインダ一を含浸さ せ、 硬化させる方法が採られているのであるが、 含浸により全てのガラス不織布 が使用可能となるわけでなく、 十分な強度を有するためには、 用いるガラス不織 布として目付重量の大きい厚めの不織布を使用しなければならず、 また、 含浸さ0 せる樹脂バインダーの含浸量を増加させる必要があるため、 ガラス繊維含有量が 高く、 そして厚さの薄いプリプレグを製造することは出来なかった。 The glass non-woven fabric obtained by papermaking a small amount of glass fiber chopped strands dispersed in water as the raw material has a straight glass fiber and a smooth surface. It is difficult to obtain a sufficient tensile strength as a non-woven fabric using only glass fiber as a raw material, such as a paper made from an organic raw material without entanglement. Therefore, in order to secure sufficient tensile strength, a method of impregnating a paper-made glass nonwoven fabric with a binder such as a water-soluble acryl resin or epoxy resin and curing it is adopted. Glass nonwoven fabric cannot be used, and in order to have sufficient strength, a thick nonwoven fabric with a large basis weight must be used as the glass nonwoven fabric, and a resin binder to be impregnated Because of the necessity of increasing the impregnation amount of prepreg, it was not possible to produce a prepreg having a high glass fiber content and a small thickness.
また、 含浸に使用する樹脂量 (例えば、 エポキシ樹脂等) の増大は、 かかる樹 脂を水中に分散させるための界面活性剤の量を増加させることにつながり、 その 影響は、 絶縁基材における耐熱水性を悪化させるとともに、 長期の絶縁性能の低5 下を引き起こす原因となっていた。 Also, an increase in the amount of resin used for impregnation (for example, epoxy resin) leads to an increase in the amount of a surfactant for dispersing such a resin in water. In addition to deteriorating the water, it has caused long-term deterioration in insulation performance.
更に、 プリプレグを製造する過程においては、 ガラス繊維に含浸した樹脂に含 まれる溶剤が除去されるのであるが、 溶剤が除去されると樹脂部分の体積が減少 し樹脂が表面から内部に移動する 「ヒケ」 の現象が生じるため、 表面がガラス不 織布であるものを使用して銅箔を積層した後プレス成型すると、 表面に 1 0 / m
近い激しい凹凸が生じることがある。 よって、 ガラス不織布からなるプリプレダ 力〈表面に存在する積層板においてエッチング等で銅箔を除去する場合、 凹の部分 には銅箔が残りやすく凸の部分の銅箔は除去されやすくなるため、 微細な回路が 断線したり残つた銅箔によつて間違つて接続されたりする等の問題があつた。 ま た、 このような凹凸が存在すると、 銅箔の接着の際には斑が生じてしまうため、 上記同様に断線等の原因となっていた。 Furthermore, in the process of manufacturing the prepreg, the solvent contained in the resin impregnated into the glass fiber is removed, but when the solvent is removed, the volume of the resin part decreases and the resin moves from the surface to the inside. Due to the phenomenon of sink marks, when copper foil is laminated using a non-woven glass surface and press-molded, the surface becomes 10 / m Near intense irregularities may occur. Therefore, when the copper foil is removed by etching or the like on the laminated plate existing on the surface, the copper foil is likely to remain in the concave portion, and the copper foil in the convex portion is easily removed. There was a problem such as disconnection of a circuit or connection of the circuit by mistake due to the remaining copper foil. In addition, if such irregularities are present, spots are generated at the time of bonding the copper foil, which causes disconnection and the like as described above.
上記問題点を解決するために、 まず、 プリプレダ中のガラス不織布の密度を上 げてガラスクロスの密度に近づけようとする試みが、 異形断面を有するガラス繊 維を使用して行われ、 既に特公平 7— 1 2 2 2 3 5号公報、 特開平 6— 2 5 7 0 4 2号公報及び特開平 8— 1 2 7 9 9 4号公報等にその技術が公開されている。 また、 ガラス不織布からなる絶縁基材に平滑性を付与するために、 偏平な断面 を有するガラス繊維の使用が検討された。 しかし、 樹脂を含浸させたガラス不織 布をスクイズし、 プリプレグ中に含まれる樹脂量を調整する等の連続工程からな るディ ップ含浸法においては、 この工程時に加えられる引張り力に耐えられずガ ラス不織布が切断してしまうので、 予めガラス不織布自体に十分な強度を付与し ておかなければならなかった。 すなわち、 十分な強度を得るためには、 接着用樹 脂を増加し且つ厚めのガラス不織布を使用することが依然必要であり、 より薄い 多層板用プリプレグが要求されている近年の市場の要求に応えることができなか つた。 In order to solve the above problems, first, an attempt was made to increase the density of the glass nonwoven fabric in the pre-predator so as to approach the density of the glass cloth, using a glass fiber having an irregular cross section. The technology is disclosed in Japanese Unexamined Patent Publication No. Hei 7-122322, Japanese Unexamined Patent Publication No. Hei 6-250702 and Japanese Unexamined Patent Publication No. Hei 8-127794. In addition, the use of glass fibers having a flat cross section was considered in order to impart smoothness to an insulating substrate made of a glass nonwoven fabric. However, in the dip impregnation method, which consists of a continuous process of squeezing the resin-impregnated glass non-woven fabric and adjusting the amount of resin contained in the prepreg, it cannot withstand the tensile force applied during this process. However, since the glass nonwoven fabric is cut, sufficient strength must be given to the glass nonwoven fabric in advance. In other words, in order to obtain sufficient strength, it is still necessary to increase the amount of adhesive resin and use a thicker glass nonwoven fabric, and to meet the recent market demand for thinner prepregs for multilayer boards. I couldn't respond.
更に、 従来のディップ含浸法では、 ガラス不織布の両面からほぼ同時に樹脂が 浸透して含浸が行われるので、 中心部に気泡が残りやすく、 不織布の厚さが厚く なればなるほどより一層気泡が残りやすくなるという点でも問題であつた。 本発明は、 樹脂を含浸させたガラス不織布を絶縁基材として用いるプリプレグ に於いて、 ガラス不織布基材の切断及び樹脂を含浸させる際に発生する気泡残り を防止し、 また、 ガラス繊維含有率が高く、 表面平滑性に優れ且つ厚さの薄い多 層プリント配線板用ガラス不織布プリプレグを提供することを目的とする。 また、 本発明は、 このようなプリプレダを連続的に安定して、 効率良く製造す ることをも目的としたものである。 Furthermore, in the conventional dip impregnation method, the resin penetrates from both sides of the glass non-woven fabric almost simultaneously, and impregnation is carried out.Therefore, air bubbles are likely to remain at the center, and the thicker the non-woven fabric, the more easily the air bubbles remain. It was also a problem. The present invention is directed to a prepreg using a glass nonwoven fabric impregnated with a resin as an insulating substrate, to prevent bubbles remaining when cutting the glass nonwoven fabric substrate and impregnating the resin, and to reduce the glass fiber content. An object of the present invention is to provide a glass nonwoven fabric prepreg for a multilayer printed wiring board which is high, has excellent surface smoothness, and is thin. It is another object of the present invention to continuously and efficiently manufacture such a pre-preda.
発明の開示
本発明者らは、 前述の課題を解決するため、 ガラス不織布基材に樹脂を含浸さ せるための種々の方法を検討した。 そして、 その結果、 特定のキャリアシートの 片面に液体状樹脂を塗布し、 次いで高偏平ガラス繊維からなるガラス不織布をそ の上に供給し樹脂を含浸させることにより、 ガラス不織布基材の切断及び樹脂を 含浸させる際に発生する気泡残りを防止するとともに、 樹脂の含浸量を低くでき ることを見出し、 本発明を完成させるに至ったのである。 Disclosure of the invention The present inventors have studied various methods for impregnating a glass nonwoven fabric substrate with a resin in order to solve the above-mentioned problems. As a result, a liquid resin is applied to one side of a specific carrier sheet, and then a glass non-woven fabric made of highly flat glass fiber is supplied thereon to impregnate the resin, thereby cutting the glass non-woven fabric base and cutting the resin. The present inventors have found that bubbles can be prevented from remaining when the resin is impregnated, and that the resin impregnation amount can be reduced, and the present invention has been completed.
すなわち、 本発明は、 樹脂で含浸されたガラス不織布を絶縁基材とする多層プ リント配線板用プリプレグであつて、 該絶縁基材が耐熱温度 1 5 0 °C以上の合成 樹脂フィルム又は回路用銅箔からなるキヤリアシー卜の上に積層されており、 該 ガラス不織布が高偏平ガラス繊維から構成されることを特徴とする多層プリント 酉己線板用プリプレダに関する。 That is, the present invention relates to a prepreg for a multilayer printed wiring board using a glass nonwoven fabric impregnated with a resin as an insulating base material, wherein the insulating base material has a heat-resistant temperature of 150 ° C. or higher. The present invention relates to a multi-layer printed pre-preparator for a torii wire plate, which is laminated on a carrier sheet made of a copper foil, and wherein the glass nonwoven fabric is made of a highly flat glass fiber.
また、 本発明は、 耐熱温度 1 5 0 °C以上の合成樹脂フィルム又は回路用銅箔か らなるキャリアシートの片面に液体状のマ卜リックス樹脂を塗布した後、 その上 に高偏平ガラス繊維から構成されるガラス不織布を積層し、 樹脂を含浸させた後、 乾燥、 半硬化処理することを特徴とする、 多層プリン卜配線板用プリプレダの製 造方法に関する。 In addition, the present invention provides a method for applying a liquid matrix resin to one side of a carrier sheet made of a synthetic resin film or a copper foil for a circuit having a heat resistance temperature of 150 ° C. or more, and then forming a highly flat glass fiber on the liquid matrix resin. The present invention relates to a method for producing a pre-preda for a multilayer printed wiring board, comprising laminating a glass non-woven fabric composed of a resin, impregnating with a resin, and drying and semi-curing the resin.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明方法の実施例に用いた積層装置の略示的側面図である。 FIG. 1 is a schematic side view of a laminating apparatus used in an embodiment of the method of the present invention.
図 2は、 従来方法の工程概略図である。 FIG. 2 is a schematic view of the process of the conventional method.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明においては、 高偏平ガラス繊維からなるガラス不織布を用いることが必 要であるが、 より高い引張り強度を有するガラス不織布を得るためには、 高偏平 ガラス繊維の長径:短径の比を 3 : 1〜 8 : 1、 より好ましくは 3 : 1〜 5 : 1、 最も好ましくは 3 . 5 : 1〜4 . 5 : 1にすることが望ましい。 In the present invention, it is necessary to use a glass nonwoven fabric made of a highly flat glass fiber. However, in order to obtain a glass nonwoven fabric having a higher tensile strength, the ratio of the major axis to the minor axis of the high flat glass fiber must be 3. : 1 to 8: 1, more preferably 3: 1 to 5: 1, most preferably 3.5: 1 to 4.5: 1.
そして更に、 本発明のようにガラス不織布に高偏平ガラス繊維を用いると、 従 来の断面形状が円形のガラス繊維において生じ易かった、 不織布中に空間の占め る割合が大きいため気泡が抜け難いという問題を回避することができ、 積層板中 のガラス繊維の含有量を高めることが可能となる。 Furthermore, when highly flat glass fiber is used for the glass nonwoven fabric as in the present invention, the conventional cross-sectional shape is likely to occur in glass fiber having a circular shape, and bubbles occupy a large amount of space in the nonwoven fabric. The problem can be avoided, and the content of glass fibers in the laminate can be increased.
その結果、 積層板の樹脂含有量をガラスクロスと同等にまで減少させることが
. As a result, the resin content of the laminate can be reduced to the same level as glass cloth. .
5 でき、 良好な寸法安定性を有する積層板が得られることになる。 加えて、 ガラス 不織布に高偏平ガラス繊維を用いた場合には、 高偏平ガラス繊維が表面に並ぶた め、 ガラスクロスよりも更に平滑な積層板表面を得ることができ好適である。 また、 従来の断面形状が円形であるガラス繊維からなるガラス不織布において は、 引張り強度の点より、 その目付重量が 5 0 g/m2 〜1 0 0 g/m2 である 市販のガラス不織布が前記 CEM— I I I等のコンポジッ ト銅張積層板に使用さ れていたが、 本発明においてはガラス不織布として高偏平ガラス繊維を用いるた め、 いままで断面形状が円形であるガラス繊維からなるガラス不織布においてほ とんど使用されていない、 目付重量が 1 0 g/m2 〜5 0 g/m2 の範囲にある ガラス不織布も使用可能となる。 5 and a laminate having good dimensional stability can be obtained. In addition, when highly flat glass fibers are used for the glass nonwoven fabric, since the highly flat glass fibers are arranged on the surface, it is possible to obtain a smoother laminated board surface than glass cloth, which is preferable. In the glass nonwoven fabric comprising a conventional cross-sectional shape of a glass fiber is circular, than the tensile strength point, its weight per unit area weight is 5 0 g / m 2 ~1 0 0 g / m 2 and is commercially available glass nonwoven It was used for composite copper-clad laminates such as CEM-III, but in the present invention, since highly flat glass fiber is used as the glass nonwoven, a glass nonwoven made of glass fiber having a circular cross-sectional shape has hitherto been used. Glass non-woven fabrics having a basis weight in the range of 10 g / m 2 to 50 g / m 2 , which is rarely used in the above, can be used.
特に、 ガラス繊維の長径:短径の比が 3 : 1〜5 : 1で、 相当径が 9〜1 5 (ここで相当径とは偏平断面のガラス繊維の断面を表す寸法として、 同重量、 同じ長さの丸型ガラス繊維に換算した時の直径であらわした値。 ) である高偏平 ガラス繊維のチョップドストランドを使用した目付重量 1 0 gZm2 〜 5 0 gZ m2 のガラス不織布は、 かさ密度が 0. 3〜0. 4 5 g r/cm3 と大きいため 積層板の樹脂含有量が少なくなり、 また、 ガラスクロスと同程度という良好な寸 法安定性をも有するため、 本発明の多層プリント配線板用のプリプレダとして好 適である。 In particular, the ratio of the major axis to the minor axis of the glass fiber is 3: 1 to 5: 1, and the equivalent diameter is 9 to 15 (where the equivalent diameter is the dimension representing the cross-section of the flat glass fiber, the same weight, A value expressed in terms of the diameter when converted to a round glass fiber of the same length.) A nonwoven glass nonwoven fabric with a basis weight of 10 gZm 2 to 50 gZ m 2 using a chopped strand of highly flat glass fiber is density 0. 3~0. 4 5 gr / cm 3 resin content of the laminate is reduced as large as, also, since also have a good dimensional stability of the glass cloth and the same degree, the multilayer of the present invention It is suitable as a pre-preda for printed wiring boards.
本発明に用いられるキヤリアシートは、 製造工程中ガラス不織布の引張り強度 を確保するという点より、 ガラス不織布に含浸した樹脂の溶剤を除去する際の加 熱温度において変形しないものである必要がある。 具体的には、 ポリエチレンテ レフタレ一卜樹脂 (PET) 、 ポリフエ二レンサルフアイ ド樹脂 (PPS) 、 ポ リエーテルィミ ド樹脂 (p I ) 、 ポリアリルエーテル二トリル樹脂 (PEN) 等 の耐熱温度 1 5 0°C以上の合成樹脂フィルムを用いることが好ましい。 The carrier sheet used in the present invention needs to be one that does not deform at the heating temperature when the solvent of the resin impregnated in the glass nonwoven fabric is removed from the viewpoint of securing the tensile strength of the glass nonwoven fabric during the manufacturing process. Specifically, the heat-resistant temperature of polyethylene terephthalate resin (PET), polyphenylene sulfide resin (PPS), polyetherimide resin (pI), polyallyl ether nitrile resin (PEN), etc. It is preferable to use a C or higher synthetic resin film.
例えば、 含浸に用いるマトリックス樹脂をエポキシ系熱硬化性樹脂 F R— 4と する場合には、 溶剤除去のための加熱温度 1 5 0°Cにおいて変形の無い熱可塑性 ポリエステル樹脂フィルム等の使用が好ましく、 1 7 0 °C以上の耐熱性を有する ポリアリルエーテル二トリル樹脂 (PEN) フイルム等の使用がより好ましい。 そのほか、 上記のような合成樹脂キヤリアシー卜に代えて、 回路基板の表面に
接着する回路用銅箔のような表面平滑な耐熱性連続シー卜もキャリアシートとし て使用できる。 For example, when the matrix resin used for the impregnation is an epoxy thermosetting resin FR-4, it is preferable to use a thermoplastic polyester resin film or the like which does not deform at a heating temperature of 150 ° C. for removing the solvent. It is more preferable to use a polyallyl ether nitrile resin (PEN) film having a heat resistance of 170 ° C. or more. In addition, instead of the synthetic resin carrier sheet as described above, A heat-resistant continuous sheet having a smooth surface such as a copper foil for a circuit to be bonded can also be used as a carrier sheet.
また、 キャリアシートの厚さは、 0 . 0 2〜 1 mm程度であることが好ま しい。 The thickness of the carrier sheet is preferably about 0.02 to 1 mm.
なお、 合成樹脂キャリアシートは、 実際の使用時には除かれ、 ガラス不織布基 材又は銅箔貼りガラス不織布基材が積層され、 多層プリン卜配線板用プリプレグ として用いられる。 The synthetic resin carrier sheet is removed during actual use, and a glass non-woven fabric base or a copper non-foiled glass non-woven fabric base is laminated and used as a prepreg for a multilayer printed wiring board.
一方、 回路用銅箔をキャリアシートとして使用したものは、 そのまま両面銅張 プリント配線板の表面、 あるいは、 多層プリント配線扳用銅張積層板に使用する ことができ好適である。 On the other hand, those using a circuit copper foil as a carrier sheet can be used as it is for the surface of a double-sided copper-clad printed wiring board or a copper-clad laminate for a multilayer printed wiring board.
また、 本発明において使用できるガラス不織布に含浸させる樹脂としては、 溶 剤で溶解してガラス不織布に含浸することができる樹脂であれば特に制限はない が、 エポキシ樹脂、 不飽和ポリエステル樹脂等が好ましい。 The resin to be impregnated into the glass nonwoven fabric that can be used in the present invention is not particularly limited as long as it is a resin that can be dissolved in a solvent and impregnated into the glass nonwoven fabric, but an epoxy resin, an unsaturated polyester resin, or the like is preferable. .
これらのキヤリアシートを使用して、 本発明のプリプレグを製造する方法とし ては、 このようなシート材をキャリアシートとして移動する平坦なコンベア一の 上に送り出し、 その片面に予めガラス不織布に含浸させる必要樹脂量を連続して 均一に塗布しその上にガラス不織布などを順次積層する方法が挙げられる。 また、 キャリアシ一卜の上にガラス不織布を積層しその上から樹脂を供給し樹 脂を含浸させる方法、 あるいはキヤリアシー卜の裏面に樹脂を塗布し付着量を調 整した後、 ガラス不織布などを順次供給積層する方法によって、 本発明のプリプ レグを製造してもよい。 As a method for producing the prepreg of the present invention using these carrier sheets, such a sheet material is sent out onto a flat conveyor that moves as a carrier sheet, and one surface thereof is impregnated with a glass nonwoven fabric in advance. There is a method in which the required resin amount is continuously and uniformly applied, and a glass nonwoven fabric or the like is sequentially laminated thereon. Also, a method of laminating a glass nonwoven fabric on a carrier sheet and supplying a resin from above to impregnate the resin, or a method of applying a resin to the rear surface of the carrier sheet to adjust the amount of adhesion, and then forming a glass nonwoven fabric or the like. The prepreg of the present invention may be manufactured by a method of sequentially supplying and stacking.
キャリアシートへ樹脂を均一に塗布するには、 公知のキスロールコ一夕一、 ナ ィフコータ一、 ロッ ドコーターなどの液体塗布方法を使用する。 この際、 ガラス 不織布は、 樹脂面に片側から気泡を抱き込まないよう順次含浸状態にしていくた め、 従来のものに比べ大幅に気泡を減少させることができる。 In order to uniformly apply the resin to the carrier sheet, a well-known liquid application method such as a kiss roll coater, a knife coater, or a rod coater is used. At this time, since the glass nonwoven fabric is sequentially impregnated so as not to trap air bubbles from one side on the resin surface, air bubbles can be greatly reduced as compared with the conventional one.
なお、 樹脂をガラス不織布に含浸させた後に、 銅箔をガラス不織布上に積層す ることも出来る。 After the resin is impregnated into the glass nonwoven fabric, the copper foil can be laminated on the glass nonwoven fabric.
次に、 樹脂を含浸した片面銅箔張りガラス不織布、 又は銅箔のない樹脂含浸ガ ラス不織布を加熱ローラーに接触させ、 ガラス不織布に含浸した樹脂の溶剤を除
去するとともに、 予備硬化させる。 更に、 必要とあれば一対以上の加熱加圧口一 ラーを通過させ、 ガラス不織布基材への樹脂の含浸をより確実にすることで、 ガ ラス不織布プリプレグの製造をより安定且つ連続的に行うことが可能となる。 前述のように、 従来においては、 目付の小さいガラス不織布を絶縁基材として 用い連続ラインで積層する際に、 ガラス不織布基材の低い引張り強度あるいは耐 溶剤性の不足による引張り強度の低下という問題があった。 すなわち、 ガラス不 織布のガラス繊維同士を接着しているエポキシ樹脂、 アクリル樹脂などの接着力 が含浸する樹脂中の溶剤により低下し、 プリプレグ製造工程において不織布が切 断され効率的に連続して生産することができなかった。 Next, a single-sided copper-foiled glass nonwoven fabric impregnated with resin or a resin-impregnated glass nonwoven fabric without copper foil is brought into contact with a heating roller to remove the solvent of the resin impregnated into the glass nonwoven fabric. Remove and pre-cure. Further, if necessary, a glass nonwoven fabric prepreg can be manufactured more stably and continuously by passing the resin through a pair of heating / pressing ports to ensure the impregnation of the resin into the glass nonwoven fabric substrate. It becomes possible. As described above, in the past, when using a nonwoven glass nonwoven fabric as an insulating base material and laminating it on a continuous line, there was a problem that the tensile strength of the glass nonwoven base material was low or the tensile strength was reduced due to lack of solvent resistance. there were. That is, the adhesive strength of the epoxy resin, acrylic resin, etc., which bonds the glass fibers of the glass nonwoven fabric to each other, is reduced by the solvent in the impregnated resin. Could not be produced.
し力、しな力くら、 本発明においては、 含浸工程から部分硬化工程においてキヤリ ァシー卜が存在するため、 製造工程の取扱いに必要な引張り強度を確保すること ができる。 このように、 本発明においては、 小さい目付のガラス不織布を使用し ても、 連続ラインでの積層工程にも充分耐え得ることができ、 多層プリント配線 板用プリプレダを安定して得ることができる。 すなわち、 ガラス不織布の目付重 量は、 樹脂が均一且つ完全に含浸するという点より 1 0 0 g/m2 以下が望まし いのであるが、 本発明の製造方法によれば、 目付重量が 1 0 gZm2 〜5 0 gZ m2 という引張り強度の弱い不織布を使用することもできる。 In the present invention, a carrier sheet is present in the impregnation step to the partial curing step, so that the tensile strength required for handling in the production step can be secured. As described above, in the present invention, even if a glass nonwoven fabric having a small basis weight is used, the glass nonwoven fabric can sufficiently withstand a lamination process in a continuous line, and a multi-layer printed wiring board pre-preda can be stably obtained. That is, the basis weight of the glass nonwoven fabric is desirably 100 g / m 2 or less from the viewpoint that the resin is uniformly and completely impregnated. However, according to the production method of the present invention, the basis weight is 1 g / m 2. the 0 gZm 2 ~5 0 gZ m 2 of tensile strength weak nonwoven may also be used.
以下、 本発明の実施の一例を、 図 1を参照し説明する。 Hereinafter, an embodiment of the present invention will be described with reference to FIG.
図 1のガラスー不織布銅張り積層板用プリプレグの製造工程は、 キヤリアシー ト送り出し装置、 樹脂塗工装置、 ガラス不織布送り出し装置、 銅箔送り出し装置、 加熱ローラ一装置、 トリ ミング装置、 巻き取り装置よりなる。 The manufacturing process of the prepreg for a glass-nonwoven copper-clad laminate shown in Fig. 1 consists of a carrier sheet feeder, a resin coating device, a glass nonwoven fabric feeder, a copper foil feeder, a heating roller unit, a trimming device, and a winding device. .
キャリアシート 1は、 送り出し装置、 巻き取り装置の稼動により移動を開始す る。 樹脂塗工装置に樹脂を供給した後、 キスコータ一ローラー 3を回転させ樹脂 層を形成しキヤリアシート 1をローラ一 3上の樹脂層 4と接触させることで樹脂 をキャリアシートに塗布する。 塗布量は、 予め基材の必要樹脂量を算出し、 キス コ—ター口—ラー 3の回転速度とガイ ドロ—ラ—2のクリアランスを調整するこ と及び樹脂粘度を管理することで調節する。 更に、 スクイズバーコ一夕一 5によ り、 より均一な厚さにする。 The carrier sheet 1 starts moving by operating the feeding device and the winding device. After supplying the resin to the resin coating device, the kiss coater roller 3 is rotated to form a resin layer, and the carrier sheet 1 is brought into contact with the resin layer 4 on the roller 13 to apply the resin to the carrier sheet. The amount of application is adjusted by calculating the required amount of resin of the base material in advance, adjusting the rotation speed of the kiss coater 3 and the clearance of the guide roller 2, and managing the resin viscosity. . Furthermore, the thickness is made more uniform by squeeze barco 1-5.
キャリアシート 1は樹脂が均一塗布された状態であり、 移動するキヤリアシー
ト 1の上に、 ガラス不織布送り出し装置により、 ガラス不織布 7を、 送り出し、 キャリアシート 1上の樹脂層 4に積層する。 この際、 ガラス不織布 7には、 片面 から順次樹脂の含浸が行われるため、 気泡が発生し難くなる。 Carrier sheet 1 is in a state where resin is evenly applied, and the moving carrier sheet The glass nonwoven fabric 7 is fed out onto the sheet 1 by a glass nonwoven fabric sending device, and is laminated on the resin layer 4 on the carrier sheet 1. At this time, since the glass nonwoven fabric 7 is sequentially impregnated with the resin from one side, bubbles are less likely to be generated.
また、 従来のディップ法等の方法では、 ガラス不織布に樹脂を含浸させる際に 発生する気泡がガラス不織布内に閉じ込められていたが、 本発明によれば、 気泡 の発生自体生じ難く、 更に気泡が生じた場合でもガラス不織布内に閉じ込められ ることはないため、 均一な含浸を行うことが可能となる。 Further, in a conventional method such as a dip method, bubbles generated when impregnating a glass nonwoven fabric with a resin are trapped in the glass nonwoven fabric. However, according to the present invention, the generation of bubbles itself is unlikely to occur, and the bubbles are further reduced. Even if it occurs, it is not trapped in the glass nonwoven fabric, so that uniform impregnation can be performed.
なお、 プレヒータ 6は、 樹脂中の溶剤の除去を促進する必要がある場合の補助 加熱装置である。 The preheater 6 is an auxiliary heating device when it is necessary to promote the removal of the solvent in the resin.
必要に応じキヤリアシー卜 1の上の樹脂を含浸したガラス不織布の上にさらに、 回路用銅箔 8を送り出し積層することも可能である。 If necessary, it is also possible to send out and laminate a circuit copper foil 8 on a resin-impregnated glass non-woven fabric on the carrier sheet 1.
次に、 この積層シート 9を 1 5 0〜 1 8 0 °Cの加熱ローラー 1 0及び加熱加圧 ローラー 1 1に接触させることで含浸した樹脂を半硬化の状態にした後、 トリミ ング装置 1 2により必要幅にトリミングを行い巻き取り装置 1 3で巻き取ること により連続したガラス不織布プリプレグを得る。 Then, the laminated sheet 9 is brought into a semi-cured state by bringing the impregnated resin into a semi-cured state by bringing the laminated sheet 9 into contact with a heating roller 10 and a heating / pressing roller 11 at 150 to 180 ° C. Trimming to the required width by 2 and winding by a winding device 13 give a continuous glass nonwoven prepreg.
(実施例 1 ) (Example 1)
ガラス不織布として長径:短径が 4 : 1で、 相当径 1 3 /z mの高偏平ガラス繊 維を使用し、 エポキシ系の接着剤を固形分で 6重量%付着させた目付重量 4 0 g /m 2 のものを使用した。 A high-flat glass fiber with a major diameter: minor diameter of 4: 1 and an equivalent diameter of 13 / zm is used as the glass non-woven fabric, and an epoxy adhesive is applied at a solid content of 6% by weight. It was used in m 2.
含浸に用いたエポキシ樹脂ワニスの組成 (F R— 4処方) は、 以下の通りであ る。 The composition (FR-4 formulation) of the epoxy resin varnish used for impregnation is as follows.
•ェピコート 5 0 4 6— B— 8 0 (油化シヱルエポキシ社製) ; 1 0 0部 •ェピコ一卜 1 5 4 (油化シ Xルエポキシ社製) ; 2 0部 • Epicoat 504-B-80 (Yukaka Epoxy); 100 parts • Epicoat 1554 (Yukaki Epoxy); 20 parts
• ジシアンジァミ ド; 4部 • Dicyanamide; 4 copies
·ベンジルジメチルァミ ン ; 0 . 2部 · Benzyldimethylamine; 0.2 parts
• ジメチルホルムァミ ド; 3 0部 • Dimethylformamide; 30 parts
• メチルェチルケトン ; 1 5部 • Methyl ethyl ketone; 15 parts
キヤリア一シ一卜としては、 5 0 z mのポリアリルエーテル二卜リル樹脂のフ イルムを使用した。
これらの材料を使用して、 前述した図 1に示す装置によりプリプレダを製造し た。 その結果を表 1に示す。 As the carrier sheet, a film of a 50 zm polyallyl ether nitrile resin was used. Using these materials, a prepredder was manufactured using the apparatus shown in FIG. 1 described above. The results are shown in Table 1.
なおここで、 表面平滑性の測定用試料は、 得られたプリプレグを 5 0 c m角に 切断し 1 0枚積層し、 両面に厚さ 1 8 mの銅箔を重ね鏡面板に挟み、 プレス圧 力 5 0 k g / c m2 、 温度 1 7 0 °Cで 6 0分間プレスすることにより作製した。 また、 表面平滑性は、 J I S B— 0 6 0 1の 「表面粗さ測定法」 に基づき、 万 能形状測定機 (小坂研究所株式会社製;商品名 S E F— 1 A) を使用して測定し た。 Here, for the sample for measuring surface smoothness, the obtained prepreg was cut into 50 cm squares, 10 sheets were laminated, and copper foil with a thickness of 18 m was stacked on both sides, sandwiched between mirror plates, and pressed. It was produced by pressing at a force of 50 kg / cm 2 and a temperature of 170 ° C. for 60 minutes. The surface smoothness was measured using a universal shape measuring instrument (manufactured by Kosaka Laboratory Co., Ltd .; trade name: SEF-1A) based on “Surface Roughness Measurement Method” of JISB-0601. Was.
(実施例 2 ) (Example 2)
キャリア一シートとして 1 8 /z mの回路用銅箔を使用し、 ガラス不織布の目付 重量が 2 0 g /m2 である他は、 実施例 1と同一の製造条件でプリプレグを製造 した。 その結果を表 1に示す。 なお、 表面平滑性測定試料の作製及びその測定方 法は、 実施例 1と同様である。 A prepreg was produced under the same production conditions as in Example 1 except that a circuit copper foil of 18 / zm was used as a carrier sheet and the basis weight of the glass nonwoven fabric was 20 g / m 2 . The results are shown in Table 1. The preparation of the surface smoothness measurement sample and the method for measuring the same are the same as in Example 1.
(比較例 1 ) (Comparative Example 1)
断面が丸型のガラス繊維からなる目付重量 5 0 g /m2 のガラス不織布を使用 した他は、 実施例 1と同様にしてプリプレグを製造した。 その結果を表 1に示す。 なお、 表面平滑性測定試料の作製及びその測定方法は、 実施例 1と同様である。 (比較例 2 ) A prepreg was manufactured in the same manner as in Example 1 except that a glass nonwoven fabric having a basis weight of 50 g / m 2 made of glass fiber having a round cross section was used. The results are shown in Table 1. The preparation of the surface smoothness measurement sample and the measurement method thereof are the same as those in Example 1. (Comparative Example 2)
実施例 1及び 2並びに比較例 1に使用したガラス不織布を使用して、 図 2に示 すような従来法であるディップ法によりプリプレダの製造を試みた。 しかし、 製 造工程中、 樹脂を含浸したガラス不織布のシートの切断が多く見られ、 製造自体 が困難であった。
1 o 表 1Using the glass nonwoven fabric used in Examples 1 and 2 and Comparative Example 1, an attempt was made to manufacture a prepreg by a conventional dip method as shown in FIG. However, during the manufacturing process, the sheet of glass nonwoven fabric impregnated with resin was often cut, and the manufacturing itself was difficult. 1 o Table 1
上記結果から明らかなように、 本発明の多層プリント配線板用ガラス不織布プ リブレグは、 従来のものに比べ、 ガラス繊維含有率が高く、 表面平滑性に優れ且 つ厚さの薄いプリプレグである。 As is clear from the above results, the glass nonwoven fabric prepreg for a multilayer printed wiring board of the present invention is a prepreg having a high glass fiber content, excellent surface smoothness, and a small thickness as compared with conventional ones.
また、 本発明においては、 移動するキャリアシートの上でガラス不織布に樹脂 を順次積層させ、 ガラス不織布の片面から樹脂を含浸させる方法を採るために、 ガラス不織布内に気泡が生じ難く、 たとえ気泡が生じたとしても気泡が逃げやす い条件で含浸を行うことができる。 このように、 本発明によれば、 含浸時に気泡 がガラス不織布に閉じ込もるという従来のディップ含浸法での問題点を解決する ことができ、 ガラス不織布への樹脂の十分な含浸が容易となるため、 気泡の無い、 表面平滑性の優れたプリプレグシートを得ることができる。 Further, in the present invention, the resin is sequentially laminated on the glass nonwoven fabric on the moving carrier sheet, and the resin is impregnated from one side of the glass nonwoven fabric. Even if it occurs, the impregnation can be performed under conditions where air bubbles can easily escape. As described above, according to the present invention, it is possible to solve the problem of the conventional dip impregnation method in which bubbles are trapped in the glass nonwoven fabric during the impregnation, and it is easy to sufficiently impregnate the glass nonwoven fabric with the resin. Therefore, a prepreg sheet having no bubbles and excellent surface smoothness can be obtained.
そして、 キャリアシートの存在の下、 ガラス不織布及び樹脂を移動させながら
ガラス不織布に樹脂を含浸することにより、 引張り強度の低いガラス不織布の使 用が可能となり、 これまで使用できなかった目付重量 1 0〜5 0 g /m 2 のガラ ス不織布も絶縁基材として使用できるようになる。 And while moving the glass non-woven fabric and resin in the presence of the carrier sheet By impregnating the resin into the glass nonwoven fabric, it is possible to use the the tensile strength low glass nonwoven, using glass nonwoven having a basis weight 1 0~5 0 g / m 2 which can not be used as the insulating base material so far become able to.
更に、 本発明においてはガラス不織布に含浸させるェマルジョンタイプの樹月旨 の量を少なくさせることができるため、 ェマルジヨンタイプの樹脂をェマルジョ ンにするために加えられる界面活性剤の量を減少させることが可能となる。 ここ で、 この界面活性剤は、 プリント配線基板の耐水性及び耐熱性等に悪影響を及ぼ すものであり、 従来よりその量を減少させることが望ましかったのである力 \ 強 度不足を補うためにはェマルジョン樹脂の量を多くせざるを得なかったため、 従 来においては界面活性剤の量を 1 0重量%以下には出来なかったのである。 しか しな力 ら、 本発明の構成を採ることにより、 界面活性剤の量は 6重量%以下と大 幅に減少できることとなる。
Furthermore, in the present invention, since the amount of emulsion type lumber impregnated in the glass nonwoven fabric can be reduced, the amount of surfactant added to convert the emulsion type resin into an emulsion can be reduced. It is possible to do. Here, this surfactant has an adverse effect on the water resistance and heat resistance of the printed wiring board, etc., and in order to make up for the lack of strength, which has conventionally been desired to reduce the amount thereof. Thus, the amount of the emulsion resin had to be increased, so that the amount of the surfactant could not be reduced to less than 10% by weight in the past. However, by employing the constitution of the present invention, the amount of the surfactant can be significantly reduced to 6% by weight or less.
Claims
1. 樹脂で含浸されたガラス不織布からなる絶縁基材を含む多層プリン卜配線 板用プリプレグであつて、 該ガラス不織布が耐熱温度 1 5 0 °C以上の合成樹脂フ イルム又は回路用銅箔からなるキャリアシートの上に積層されており、 該ガラス 不織布が高偏平ガラス繊維から構成されることを特徴とする多層プリン卜配線板 用プリプレダ。 1. A prepreg for a multilayer printed wiring board including an insulating base material made of a glass nonwoven fabric impregnated with a resin, wherein the glass nonwoven fabric is made of a synthetic resin film having a heat resistance temperature of 150 ° C or more or a copper foil for a circuit. A pre-printer for a multilayer printed wiring board, wherein the glass non-woven fabric is made of highly flat glass fibers laminated on a carrier sheet.
2. 前記高偏平ガラス繊維の長径と短径の比が 3 : 1〜8 : 1である、 請求の 範囲第 1項記載の多層プリント酉己線板用プリプレグ。 2. The prepreg according to claim 1, wherein a ratio of a major axis to a minor axis of the highly flat glass fiber is 3 : 1 to 8: 1.
3. 前記ガラス不織布の目付重量が 1 0 g Zm 2 〜5 0 g /m 2 である、 請求 の範囲第 1項記載の多層プリント配線板用プリプレダ。 3. The pre-preda for a multilayer printed wiring board according to claim 1, wherein the basis weight of the glass nonwoven fabric is 10 g Zm 2 to 50 g / m 2 .
4. 耐熱温度 1 5 0 °C以上の合成樹脂フィルム又は回路用銅箔からなるキヤリ ァシー卜の片面に液体状の樹脂を塗布した後、 その上に高偏平ガラス繊維から構 成されるガラス不織布を積層し、 該ガラス不織布に該樹脂を含浸させた後、 乾燥 し半硬化処理することを特徴とする、 多層プリント配線板用プリプレダの製造方 法。 4. A nonwoven glass fabric composed of highly flat glass fiber after applying a liquid resin to one side of a carrier sheet made of a synthetic resin film or copper foil for circuits with a heat resistance temperature of 150 ° C or higher. A method for producing a multi-layer printed wiring board pre-predder, comprising: laminating a glass non-woven fabric with the resin; drying the glass non-woven fabric; and performing a semi-curing treatment.
5. 前記高偏平ガラス繊維の長径と短径の比が 3 : 1〜5 : 1である、 請求の 範囲第 4項記載の製造方法。 5. The method according to claim 4, wherein the ratio of the major axis to the minor axis of the highly flat glass fiber is 3: 1 to 5: 1.
6. 前記ガラス不織布の目付重量が 1 0 g /m 2 ~ 5 0 g /m 2 である、 請求 の範囲第 4項記載の製造方法。
6. The method according to claim 4, wherein the basis weight of the glass nonwoven fabric is 10 g / m 2 to 50 g / m 2 .
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9/330411 | 1997-12-01 | ||
JP33041197 | 1997-12-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1999028126A1 true WO1999028126A1 (en) | 1999-06-10 |
Family
ID=18232310
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1998/005372 WO1999028126A1 (en) | 1997-12-01 | 1998-11-30 | Prepreg for multilayer printed wiring boards and process for producing the same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO1999028126A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001315123A (en) * | 2000-03-03 | 2001-11-13 | Hitachi Chem Co Ltd | Prepreg manufacturing method, prepreg, metal-clad laminated sheet and printed wiring board |
WO2020071483A1 (en) * | 2018-10-03 | 2020-04-09 | 株式会社カネカ | Uncured laminate, reinforcing fiber composite material, method for producing uncured laminate, and method for producing reinforcing fiber composite material |
CN111186138A (en) * | 2020-04-13 | 2020-05-22 | 北京化工大学 | 3D printing device and process for continuous fiber melt impregnation |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52106467A (en) * | 1976-03-05 | 1977-09-07 | Chuo Meiban Kougiyou Kk | Flexible printed circuit substrate and method of producing same |
JPS63132044A (en) * | 1986-11-25 | 1988-06-04 | 新神戸電機株式会社 | Metallic foil-clad laminated board |
JPH07144390A (en) * | 1993-11-25 | 1995-06-06 | Matsushita Electric Works Ltd | Composite laminated board and manufacture thereof |
JPH07122235B2 (en) * | 1986-01-16 | 1995-12-25 | 日東紡績株式会社 | Fiberglass paper for laminated boards |
JPH08127994A (en) * | 1994-10-28 | 1996-05-21 | Honshu Paper Co Ltd | Nonwoven fabric for multilayer printed circuit board |
-
1998
- 1998-11-30 WO PCT/JP1998/005372 patent/WO1999028126A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52106467A (en) * | 1976-03-05 | 1977-09-07 | Chuo Meiban Kougiyou Kk | Flexible printed circuit substrate and method of producing same |
JPH07122235B2 (en) * | 1986-01-16 | 1995-12-25 | 日東紡績株式会社 | Fiberglass paper for laminated boards |
JPS63132044A (en) * | 1986-11-25 | 1988-06-04 | 新神戸電機株式会社 | Metallic foil-clad laminated board |
JPH07144390A (en) * | 1993-11-25 | 1995-06-06 | Matsushita Electric Works Ltd | Composite laminated board and manufacture thereof |
JPH08127994A (en) * | 1994-10-28 | 1996-05-21 | Honshu Paper Co Ltd | Nonwoven fabric for multilayer printed circuit board |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001315123A (en) * | 2000-03-03 | 2001-11-13 | Hitachi Chem Co Ltd | Prepreg manufacturing method, prepreg, metal-clad laminated sheet and printed wiring board |
WO2020071483A1 (en) * | 2018-10-03 | 2020-04-09 | 株式会社カネカ | Uncured laminate, reinforcing fiber composite material, method for producing uncured laminate, and method for producing reinforcing fiber composite material |
JPWO2020071483A1 (en) * | 2018-10-03 | 2021-09-24 | 株式会社カネカ | Unhardened laminates, reinforced fiber composites, and how to make them |
US12049545B2 (en) | 2018-10-03 | 2024-07-30 | Kaneka Corporation | Uncured laminate, reinforcing fiber composite material, method for producing uncured laminate, and method for producing reinforcing fiber composite material |
CN111186138A (en) * | 2020-04-13 | 2020-05-22 | 北京化工大学 | 3D printing device and process for continuous fiber melt impregnation |
CN111186138B (en) * | 2020-04-13 | 2021-04-23 | 北京化工大学 | 3D printing device and process for continuous fiber melt impregnation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100403649B1 (en) | Laminate and its manufacturing method | |
JP3011867B2 (en) | Manufacturing method of laminated board | |
JP2004123870A (en) | Prepreg manufacturing process and transfer sheet | |
WO1999028126A1 (en) | Prepreg for multilayer printed wiring boards and process for producing the same | |
US20030045164A1 (en) | Non-woven fabric material and prepreg, and circuit board using the same | |
JPH1017684A (en) | Production of prepreg and laminate | |
JPH10135590A (en) | Substrate for printed circuit | |
JP3327366B2 (en) | Manufacturing method of laminated board | |
JP3011871B2 (en) | Manufacturing method of laminated board | |
JP4759896B2 (en) | Manufacturing method of printed wiring board manufacturing material | |
JP3343722B2 (en) | Method for producing composite prepreg and laminate | |
JP3354346B2 (en) | Manufacturing method of laminated board | |
JPH05310957A (en) | Fiber sheet and circuit substrate using the same | |
JP3565737B2 (en) | Manufacturing method of laminated board | |
JPH10338758A (en) | Production of prepreg and laminated sheet | |
JPH10128745A (en) | Resin impregnating method | |
JP3207332B2 (en) | Manufacturing method of laminated board | |
JPH1158610A (en) | Manufacture of metal foil clad laminated sheet | |
JPH11236456A (en) | Resin sheet, metallic foil-clad laminate and multilayer printed wiring board | |
JPH02130146A (en) | Electrical laminate | |
JPS62189795A (en) | Manufacture of heat conductive wiring board | |
JPS6347127A (en) | Manufacture of mulilayer printed interconnection board | |
JPH02187333A (en) | Laminated sheet | |
JPH08197680A (en) | Continuous production of metal foil clad laminated sheet | |
JPH10324755A (en) | Resin impregnated substrate, its production, laminated sheet and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA CN JP KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: KR |
|
NENP | Non-entry into the national phase |
Ref country code: CA |
|
122 | Ep: pct application non-entry in european phase |