JPS62283664A - Manufacture of thin film semiconductor device - Google Patents

Manufacture of thin film semiconductor device

Info

Publication number
JPS62283664A
JPS62283664A JP12575486A JP12575486A JPS62283664A JP S62283664 A JPS62283664 A JP S62283664A JP 12575486 A JP12575486 A JP 12575486A JP 12575486 A JP12575486 A JP 12575486A JP S62283664 A JPS62283664 A JP S62283664A
Authority
JP
Japan
Prior art keywords
amorphous
deposited
film
component
components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12575486A
Other languages
Japanese (ja)
Inventor
Takashi Aoyama
隆 青山
Hidemi Adachi
安達 英美
Nobutake Konishi
信武 小西
Yoshikazu Hosokawa
細川 義和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12575486A priority Critical patent/JPS62283664A/en
Publication of JPS62283664A publication Critical patent/JPS62283664A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To increase the responding speed of a thin film semiconductor device by forming a multilayered film having different content rates of crystal components and order degrees of amorphous components by a plasma CVD method, and altering the amorphous component to crystal components. CONSTITUTION:A glass substrate is held at 400 deg.C, a layer 2 including fine crystal component and amorphous component is deposited by a plasma CVD method with monosilane gas diluted with hydrogen as a material, only hydrogen is introduced into a reaction furnace, and cooled to 300 deg.C. The monosilane is again fed to deposit a layer of only the amorphous component, and a semiconductor film is formed by repeating the operation three times. Then, a reaction furnace is set to 1 atm with nitrogen, a substrate temperature is set to 580 deg.C, and the amorphous layer of three layers is converted to crystal component 2a. After this film is island-photoetched, an SiO2 film is deposited. Then, an N<+> type layer is deposited while doping a phosphine, phosphorus is ion implanted to form a source, drain region after photoetching, and activated by heat treating. Then, PSG and aluminum are deposited, ITO is deposited, and TN type lquid crystal is sealed between another glass substrate deposited with ITO and the ITO. Thus, a semiconductor layer having high responding speed is obtained.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は薄膜半導体装置に係り、特に液晶などを表示に
用いるディスプレイに好適なアクティブマトリクス方式
の薄膜トランジスタ、およびその製造方法に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a thin film semiconductor device, and particularly to an active matrix type thin film transistor suitable for a display using liquid crystal or the like, and its manufacture. Regarding the method.

〔従来の技術〕[Conventional technology]

近年、液晶を表示に用いるディスプレイなどでは、各画
素の液晶を駆動するために、各画素ごとにTPT (薄
膜トランジスタ)を形成するアクティブマトリクス方式
が用いられている。このTPTは普通、石英基板上に成
長したPo1y −S i(多結晶シリコン(Poly
crystallinesilicon) )か、ガラ
ス基板上に成長したアモルファスシリコン中に形成され
る。Po1y −S iは通常、モノシラン(SiHi
)を原料として、減圧CVD法により640℃の温度で
形成される。この堆積温度が約600’C以下になると
Po1y −S iの結晶成分が急激に減少し、かわり
にアモルファス成分が増加する。このため、減圧CVD
法によるPo1y −Siは約600℃以上の温度で堆
積しなければならなず、従って、通常、実質的な歪温度
が約600℃以下でし、7!11ないガラス板を基板と
して用いることはできない1石英基板は600’C以上
の温度に十分耐えるが、コストが高いという欠点がある
。また、石英基板を用いて640℃で堆積したPo1y
 −S i11中にも体積比にして約10%のアモルフ
ァス成分が含まれている。このため、この膜のキャリア
の移動度は、電子、正孔いずれの場合も約10aJ /
 v 、 sという単結晶シリコンの値と比べるとはる
かに低い値であり、この膜を用いてTPTを製作しても
、ディスプレイとして応答速度が小さく。
In recent years, in displays using liquid crystal for display, an active matrix method is used in which a TPT (thin film transistor) is formed for each pixel in order to drive the liquid crystal of each pixel. This TPT is usually made from Poly-Si (polycrystalline silicon) grown on a quartz substrate.
(crystalline silicon) or in amorphous silicon grown on a glass substrate. Po1y-Si is usually monosilane (SiHi
) as a raw material, it is formed at a temperature of 640°C by a low pressure CVD method. When the deposition temperature is lower than about 600'C, the crystalline component of Po1y-Si rapidly decreases, and the amorphous component increases instead. For this reason, low pressure CVD
Poly-Si by the method must be deposited at a temperature of about 600°C or above, and therefore it is usually not possible to use a glass plate with a substantial strain temperature of about 600°C or below and a 7!11 temperature as a substrate. Although quartz substrates can withstand temperatures above 600'C, they have the drawback of high cost. In addition, Po1y deposited at 640 °C using a quartz substrate
-Si11 also contains an amorphous component of about 10% by volume. Therefore, the carrier mobility of this film is approximately 10aJ/for both electrons and holes.
These values are much lower than the values of v and s for single crystal silicon, and even if a TPT is manufactured using this film, the response speed as a display will be low.

鮮明な表示を得るにはまだ十分とはいえない。It is still not enough to obtain a clear display.

(″多結晶5iTFTとその応用”と題する日本学術振
興会アモルファス材料 第147委員会第7回研究会資
料 P24  記載の論文参照)アモルファスSiは1
通常350℃以下のプラズマCVD法により堆積される
。素子は逆スタガー構造をとる場合が多い、この膜のキ
ャリア移動度はlad/v、s以下であり、上記Po1
y−S iよりさらに小さい。この場合、ガラス基板を
使用できる利点はあるが、表示素子としての応用がPo
1y −8i以上に限定される0例えばディスプレイを
駆動するための周辺回路を一体化することは無理であり
、またカラーテレビ表示はできず、せいぜいモノクロテ
レビに利用できるにすぎない。
(Refer to the paper entitled “Polycrystalline 5iTFT and its Applications” on page 24 of the 147th Committee on Amorphous Materials of the Japan Society for the Promotion of Science, 7th Research Meeting Materials) Amorphous Si is 1
It is usually deposited by plasma CVD at 350° C. or lower. The device often has an inverted staggered structure.The carrier mobility of this film is less than lad/v,s, and the above Po1
Even smaller than y-S i. In this case, there is an advantage that a glass substrate can be used, but the application as a display element is difficult.
For example, it is impossible to integrate peripheral circuits for driving a display, and color television display is not possible, and at most it can be used for monochrome televisions.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

多結晶シリコンTPTのキャリア移動度は約10aj/
v、sであり、トランジスタの応答速度は十分であると
はいえない。また、絶縁基板としての石英のコストが大
であり、今後一層のディスプレイの大面積化の大きな障
害となっている。アモルファスシリコンTPTはガラス
基板を使用しているためコスト的には問題はない、しか
しながら、キャリアの移動度が通常1a#/v、s以下
であり、トランジスタの応答が非常に小さく、表示が不
鮮明になるという問題がある。また、キャリアの移動度
が小さいために、ディスプレイを駆動するための周辺回
路を一体化できない、このためディスプレイ全体のコス
トを低減できないという開運かある。(“フルカラー表
示の4〜フインチ液晶ディスプレイが続々登場″と題す
るNIKKEI HLECT−RONIC51984,
11,19P 209 記載の論文参照) 本発明の目的は、安価でこのために歪温度の低いガラス
基板を用いて低温プロセスにより、キャリアの移動度が
大きく、TPTの応答速度も太きく、また周辺回路の一
体化が可能が半導体膜を得ることである。
The carrier mobility of polycrystalline silicon TPT is approximately 10aj/
v, s, and the response speed of the transistor cannot be said to be sufficient. Furthermore, the cost of quartz as an insulating substrate is high, which is a major obstacle to further increasing the area of displays in the future. Since amorphous silicon TPT uses a glass substrate, there is no problem in terms of cost. However, the carrier mobility is usually less than 1a#/v,s, and the response of the transistor is very small, making the display unclear. There is a problem with becoming. Furthermore, due to the low carrier mobility, it is not possible to integrate peripheral circuits for driving the display, which makes it impossible to reduce the cost of the entire display. (NIKKEI HLECT-RONIC51984 titled “Full-color 4-inch LCD displays are coming one after another”)
11, 19P 209) The purpose of the present invention is to use a low-cost glass substrate with a low strain temperature and a low-temperature process to achieve high carrier mobility, high response speed of TPT, and high It is possible to integrate circuits by obtaining a semiconductor film.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、はじめプラズマCVD法により微結晶成分を
多く含む層とアモルファス成分を多く含む層との多層膜
を形成し1次に、この膜をガラス基板などの歪点以下の
低い温度で熱処理することによって、微結晶成分を核と
してアモルファス成分を結晶成分に変えることを特徴と
する。
The present invention first forms a multilayer film of a layer containing many microcrystalline components and a layer containing many amorphous components using a plasma CVD method, and then heat-treats this film at a low temperature below the strain point of a glass substrate or the like. It is characterized by converting an amorphous component into a crystalline component using the microcrystalline component as a core.

本発明は以下の点を見出すことによって成し遂げられた
。まず、アモルファス成分の“秩序度”なる概念を定義
する。これはアモルファス成分中のシリコン原子間の平
均結合数に相当するもので、完全な単結晶シリコンの結
合数4の場合は秩序度1、シリコン原子1コを含む分子
から成るガス(例えば5iH4)の場合は秩序度0とし
て、アモルファス成分の秩序度TはO<T<1とする。
The present invention was achieved by discovering the following points. First, we define the concept of "degree of order" of the amorphous component. This corresponds to the average number of bonds between silicon atoms in the amorphous component, and in the case of perfect single crystal silicon with 4 bonds, the degree of order is 1, and in a gas (for example, 5iH4) consisting of molecules containing 1 silicon atom, the number of bonds is 4. In this case, the degree of order is 0, and the degree of order T of the amorphous component is O<T<1.

(1)微結晶成分を多く含むプラズマCVDl!中のア
モルファス成分の秩序度は高い(大である)。
(1) Plasma CVDl containing many microcrystalline components! The degree of order of the amorphous components inside is high (large).

(2)アモルファス成分を多く含むプラズマCVD膜中
のアモルファス成分の秩序度は低く(小に)なる場合が
ある。
(2) The degree of order of the amorphous components in a plasma CVD film containing a large amount of amorphous components may be low (small).

(3)微結晶成分とアモルファス成分の両方を含む混合
系を熱処理する場合、アモルファス成分ノ秩序度が低い
(小さい)はど結晶成分に変りやすい。
(3) When heat-treating a mixed system containing both microcrystalline components and amorphous components, the amorphous components with a low degree of order tend to change into crystalline components.

本発明を具体的に述べれば次のようになる。ガラス基板
上に温度400℃、プラズマパワー0.4W/a#の条
件で微結晶成分を多く含む半導体層を形成する0次に、
温度300℃、プラズマパワー0,2 W/c!IIの
条件でアモルファス成分を多く含む半導体層を形成する
。この過程を繰り返して多層膜を形成する1次に、この
層状の半導体膜を580℃の温度で4時間熱処理し、ア
モルファス成分を結晶成分に変えて全体として結晶成分
の多い半導体膜を得る。
The present invention will be specifically described as follows. The zero-order process involves forming a semiconductor layer containing a large amount of microcrystalline components on a glass substrate at a temperature of 400°C and a plasma power of 0.4 W/a#.
Temperature 300℃, plasma power 0.2 W/c! A semiconductor layer containing a large amount of amorphous component is formed under the conditions II. This process is repeated to form a multilayer film. First, this layered semiconductor film is heat treated at a temperature of 580° C. for 4 hours to change the amorphous component to a crystalline component, thereby obtaining a semiconductor film with a high crystalline component as a whole.

本発明を更に具体的に述べれば、次のようになる。温度
400℃、パワー0.4W/jの条件で堆積した膜をラ
マン法や薄膜X線回折法によって調べると多量の結晶成
分を含む。また、この膜を走査型電顕(SEM)や透過
型電顕(TEM)によって観察すると結晶成分がモザイ
ク状に散りばめられていることがわかる。従って、この
膜の断面構造は模式的に示すと第1図(a)の2のよう
になる。2−aは結晶成分を示し、2−bは秩序度の高
いアモルファス成分を示す。次に、温度300℃、パワ
ー0.2W/aJの条件で堆積した膜をラマン法やX線
回折法によって調べると、はとんどアモルファス成分で
結晶成分は含まれていない、この膜を前と同様に、SE
MJ?:ITEMによってa察すると膜質は均一である
ことがわかる。
The present invention will be described more specifically as follows. When a film deposited at a temperature of 400° C. and a power of 0.4 W/j is examined by Raman method or thin film X-ray diffraction method, it contains a large amount of crystalline components. Furthermore, when this film is observed using a scanning electron microscope (SEM) or a transmission electron microscope (TEM), it can be seen that crystal components are scattered in a mosaic pattern. Therefore, the cross-sectional structure of this film is schematically shown as 2 in FIG. 1(a). 2-a represents a crystal component, and 2-b represents an amorphous component with a high degree of order. Next, when we examine the film deposited at a temperature of 300°C and a power of 0.2 W/aJ using Raman or X-ray diffraction, we find that it contains mostly amorphous components and no crystalline components. Similarly, SE
MJ? : It can be seen that the film quality is uniform when observed by ITEM.

従って、この膜の断面構造は模式的に示すと第1図(a
)の3のようになる。次に、この層状の半導体膜を58
0”Cの温度で4時間熱処理すると、結晶成分2−aが
秩序度の低いアモルファス領域3に拡大していく。この
とき、結晶成分2−aは秩序度の高いアモルファス領域
2−bにはわずかじか拡大していかない。従って、熱処
理後は第1図(b)に示すように、結晶成分は2−aと
4で示した領域になる。
Therefore, the cross-sectional structure of this film is schematically shown in Figure 1 (a
). Next, this layered semiconductor film is
After heat treatment at a temperature of 0''C for 4 hours, the crystal component 2-a expands into the amorphous region 3 with a low degree of order.At this time, the crystal component 2-a expands into the amorphous region 2-b with a high degree of order. It expands only slightly.Therefore, after the heat treatment, the crystalline components become the regions 2-a and 4, as shown in FIG. 1(b).

次に、単層のプラズマCVD膜を熱処理しても  ゛結
晶成分を増加させることには限界があることを示す、第
2図はパワーを一定にして堆積温度を変えたとき、熱処
理前後で結晶成分(結晶含有率)がどのように変化する
かを示す、堆積後の膜では。
Next, even if a single-layer plasma CVD film is heat-treated, there is a limit to increasing the crystalline component. In the film after deposition, showing how the composition (crystalline content) changes.

温度の上昇と共に結晶含有率は増加し、400℃で最大
となってから減少する。熱処理後の結晶含有率の増加に
着目すると、300’Cのものと600℃のものが小さ
い、これは、300℃で堆積した膜には核となる結晶成
分がないため、また600℃で堆積した膜には、秩序度
の高いアモルファス成分しかないためであると考えられ
る。以上から、いずれの温度で堆積した単層膜も熱処理
によって十分な結晶成分の増加が期待できないことがわ
かる。
The crystal content increases with increasing temperature, reaches a maximum at 400°C, and then decreases. Focusing on the increase in crystal content after heat treatment, the one at 300'C and the one at 600'C are smaller. This is because the film deposited at 300'C does not have a crystalline component that serves as a nucleus, and the film deposited at 600'C This is thought to be due to the fact that the film contains only amorphous components with a high degree of order. From the above, it can be seen that a single layer film deposited at any temperature cannot be expected to have a sufficient increase in crystalline components by heat treatment.

〔作用〕[Effect]

本発明では、温度とプラズマパワーを制御することによ
り、微結晶を含む層と秩序度の低いアモルファス成分を
含む層を隣接して形成するために続く熱処理過程で、微
結晶成分を核としてアモルファス成分が結晶成分に変換
する。これは、秩序度の低いアモルファス成分はシリコ
ン原子間の結合数が少なく、原子配列が乱雑であるため
に低い熱処理過程における小さな熱エネルギーにより。
In the present invention, by controlling the temperature and plasma power, the amorphous component is formed using the microcrystalline component as a nucleus in the heat treatment process that continues to form a layer containing microcrystals and a layer containing an amorphous component with a low degree of order adjacent to each other. is converted into crystalline components. This is because the amorphous component, which has a low degree of order, has a small number of bonds between silicon atoms and a disordered atomic arrangement, resulting in low thermal energy during the heat treatment process.

シリコン原子間の結合を作り変えて結晶成分と同じ原子
配列をとるようになるからである。もし。
This is because the bonds between silicon atoms are rearranged so that the atomic arrangement is the same as that of the crystalline components. if.

微結晶成分を含む半導体層のみを形成すると、ここに含
まれているアモルファス成分は、膜堆積中に大きな熱エ
ネルギーとプラズマエネルギーを受けるために秩序度が
進んでしまう。このため、この層だけを低温(580”
C)熱処理しても、アモルファス成分中の結合を作り変
えて微結晶成分と同じ原子配列をとらせることはできな
い。従って、結晶成分の大きな増加は期待できない。
If only a semiconductor layer containing a microcrystalline component is formed, the amorphous component contained therein receives large thermal energy and plasma energy during film deposition, resulting in an increased degree of order. For this reason, only this layer is kept at a low temperature (580”
C) Even with heat treatment, the bonds in the amorphous component cannot be changed to have the same atomic arrangement as the microcrystalline component. Therefore, a large increase in crystalline components cannot be expected.

次に、結晶成分の量(含有率)とキャリアの移動度との
関係について述べる。結晶成分とアモルファス成分とか
らなる半導体では、キャリアは前者領域の自由電子的振
舞いと、後者の領域のホッピング的振舞いの両方により
移動していく、アモルファス成分を減らし結晶成分を増
加させることは2つの効果でキャリアの移動度を大きく
する。
Next, the relationship between the amount (content) of crystal components and carrier mobility will be described. In a semiconductor consisting of a crystalline component and an amorphous component, carriers move due to both free electron behavior in the former region and hopping behavior in the latter region.Reducing the amorphous component and increasing the crystalline component is a two-fold process. Effect increases carrier mobility.

1つは、移動度そのものが小さいホッピング領域を減少
させること、他の1つは、トラップ密度が減少するため
に、結晶成分内のキャリアのポテンシャル障壁が小さく
なることである。半導体膜の結晶含有率を9o%から9
5%に増加させると、キャリアの移動度は約Load/
v、sから50cd/v、s以上に増加する。
One is that the hopping region where the mobility itself is small is reduced, and the other is that the potential barrier for carriers within the crystal component becomes smaller because the trap density is reduced. The crystal content of the semiconductor film is increased from 90% to 9%.
When increased to 5%, the carrier mobility becomes approximately Load/
v,s to 50 cd/v,s or more.

〔実施例〕〔Example〕

以下、本発明の一実施例を説明する。第3図は本発明を
用いたTPT全体の断面構造を示す。基板は歪温度58
0’Cのガラス板である。基板を400’Cに保ち、水
素で5%に希釈したモノシランガスを原料として、圧力
を約I Torrとする。高周波電力を0.4W/cd
として、プラズマCVD法により微結晶成分とアモルフ
ァス成分を含む層を100人堆積させる。ラマンスペク
トル法によると、この層中の結晶有率は約60%である
。次に、反応炉内に水素のみを導入して、基板温度を3
00℃まで冷却する。プラズマパワーを0.2W/a#
として、再び5%モノシランガスを流してアモルファス
成分のみの層を100人堆積させる。
An embodiment of the present invention will be described below. FIG. 3 shows the cross-sectional structure of the entire TPT using the present invention. The substrate has a strain temperature of 58
It is a glass plate at 0'C. The substrate is kept at 400'C and the pressure is about I Torr using monosilane gas diluted to 5% with hydrogen as a raw material. High frequency power 0.4W/cd
100 layers containing microcrystalline components and amorphous components are deposited by plasma CVD. According to Raman spectroscopy, the crystal content in this layer is about 60%. Next, only hydrogen was introduced into the reactor to lower the substrate temperature by 3.
Cool to 00°C. Plasma power 0.2W/a#
Then, 5% monosilane gas was flowed again to deposit 100 layers of only amorphous components.

この操作を3回繰り返して全体で600人の半導体膜を
形成する。次に反応炉を窒素で1気圧にし。
This operation is repeated three times to form a total of 600 semiconductor films. The reactor was then brought to 1 atmosphere with nitrogen.

基板温度を580℃として4時間保つ、このとき三層の
アモルファス層は結晶成分に変換する。この膜をアイラ
ンドホトした後、常圧CVD法によりゲート絶縁膜用の
5iOz膜を堆積させる。次に、プラズマCVD法によ
りホスフィンをドープさせながら、300℃でゲート電
極用n十層を0.15μm堆積させる6次にホトエツチ
ングの後、リン(P)を50KeVのエネルギーで5X
10” ’ (!11− ”のドーズ量で打込みソース
とドレイン領域を形成する。続いて、580℃、4時間
の熱処理でイオン打込み層のリンを活性化する。次に、
P S G (Phospho 5ilicate G
lass)とAQを蒸着する。また、透明電極であるI
TOをスパッタ法により堆積させる。ITOを堆積した
もう一枚のガラス基板との間にT N (Twiste
d Nematic)型の液晶を封入して表示装置が完
成する0本実施例のTPTのチャネル幅、チャネル長は
それぞれ20μm、10μmである1本実施例のI−V
カブのgmからもとめた電界効果移動度は約50cd/
v、sである。また、TPTの作動時、停止時における
電流比Io−/Ioz□は約I X 10’となる。
The substrate temperature is maintained at 580° C. for 4 hours, at which time the three amorphous layers are converted into crystalline components. After this film is island-photographed, a 5iOz film for a gate insulating film is deposited by atmospheric pressure CVD. Next, while doping with phosphine using the plasma CVD method, an n layer for the gate electrode is deposited to a thickness of 0.15 μm at 300°C. After photoetching, phosphorus (P) is added 5X at an energy of 50 KeV.
The implanted source and drain regions are formed at a dose of 10''(!11-''). Next, the phosphorus in the ion implanted layer is activated by heat treatment at 580° C. for 4 hours. Next,
P S G (Phospho 5ilicate G
lass) and AQ are deposited. In addition, the transparent electrode I
TO is deposited by sputtering. T N (Twist
The channel width and channel length of the TPT of this embodiment are 20 μm and 10 μm, respectively.1 The I-V of this embodiment
The field effect mobility obtained from the turnip's gm is approximately 50 cd/
v, s. Further, the current ratio Io-/Ioz□ when the TPT is activated and when it is stopped is about I x 10'.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、歪温度の低いガラス基板上に結晶成分
のアモルファス成分に対する比が大きくこのためキャリ
アの移動度が大きく、ひいてはTPTを作製したときに
トランジスタの応答速度が大きい半導体層を得ることが
できる。
According to the present invention, it is possible to obtain a semiconductor layer on a glass substrate with a low strain temperature, in which the ratio of crystalline components to amorphous components is large, and therefore the mobility of carriers is large, and the response speed of a transistor is high when a TPT is manufactured. Can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1@は本発明の一実施例による多層膜を模式的に表し
た断面図、第2図はプラズマCVD法による単層膜にお
ける結晶含有率の堆積温度依存性の線図、第3図は本発
明によるTPTの例を示す構図である。 1・・・絶縁基板、2a・・・結晶成分、2b・・・ア
モルファス成分、5・・・チャネル領域、6・・・ソー
ス、8・・・ゲート絶縁膜、9・・・ゲート電極、10
・・・酸化膜、12・・・パシベーション膜、13・・
・透明電極。
Figure 1 is a cross-sectional view schematically showing a multilayer film according to an embodiment of the present invention, Figure 2 is a graph showing the dependence of crystal content on deposition temperature in a single layer film produced by plasma CVD, and Figure 3 is a diagram showing the dependence of crystal content on deposition temperature. It is a composition showing an example of TPT according to the present invention. DESCRIPTION OF SYMBOLS 1... Insulating substrate, 2a... Crystal component, 2b... Amorphous component, 5... Channel region, 6... Source, 8... Gate insulating film, 9... Gate electrode, 10
...Oxide film, 12...Passivation film, 13...
・Transparent electrode.

Claims (1)

【特許請求の範囲】[Claims] 1、絶縁性基板と、該基板上に形成された半導体層とを
有する薄膜半導体装置において、プラズマCVD法によ
り半導体層を形成する際、堆積温度とプラズマパワーの
一方か両方を変化させることにより、結晶成分の含有率
およびアモルファス成分の秩序度が異なる多層膜を形成
し、続く熱処理により、アモルファス成分を結晶成分に
本えることを特徴とした薄膜半導体装置の製造方法。
1. In a thin film semiconductor device having an insulating substrate and a semiconductor layer formed on the substrate, by changing one or both of the deposition temperature and plasma power when forming the semiconductor layer by plasma CVD method, 1. A method for manufacturing a thin film semiconductor device, comprising forming a multilayer film having a different content of crystalline components and a degree of order of amorphous components, and by subsequent heat treatment, the amorphous component is added to the crystalline component.
JP12575486A 1986-06-02 1986-06-02 Manufacture of thin film semiconductor device Pending JPS62283664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12575486A JPS62283664A (en) 1986-06-02 1986-06-02 Manufacture of thin film semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12575486A JPS62283664A (en) 1986-06-02 1986-06-02 Manufacture of thin film semiconductor device

Publications (1)

Publication Number Publication Date
JPS62283664A true JPS62283664A (en) 1987-12-09

Family

ID=14917984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12575486A Pending JPS62283664A (en) 1986-06-02 1986-06-02 Manufacture of thin film semiconductor device

Country Status (1)

Country Link
JP (1) JPS62283664A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7420628B1 (en) * 1991-02-16 2008-09-02 Semiconductor Energy Laboratory Co., Ltd. Method of making an active-type LCD with digitally graded display

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7420628B1 (en) * 1991-02-16 2008-09-02 Semiconductor Energy Laboratory Co., Ltd. Method of making an active-type LCD with digitally graded display

Similar Documents

Publication Publication Date Title
EP0598409B1 (en) A method of manufacturing a semiconductor device
KR100325493B1 (en) High-performance poly-silicon germanium thin film transistors and manufacturing method
JPS6310573A (en) Manufacture of semiconductor device
JP2006518935A (en) Active matrix display transistor and manufacturing method thereof
JPH0422120A (en) Thin film semiconductor device
KR19980036973A (en) Method of manufacturing polycrystalline thin film using microwave
KR100480367B1 (en) How to crystallize amorphous film
JPS62283664A (en) Manufacture of thin film semiconductor device
KR100469503B1 (en) How to crystallize amorphous film
JP4489201B2 (en) Method for manufacturing semiconductor device
JP3203652B2 (en) Semiconductor thin film manufacturing method
JPS63119576A (en) Thin film transistor
JP3535465B2 (en) Method for manufacturing semiconductor device
JPH06120499A (en) Thin film transistor, liquid crystal display device and manufacture of same transistor
JP2000353706A (en) Production of semiconductor device
KR0155304B1 (en) Poly crystalline thin film transistor and fabrication method thereof
JP3266185B2 (en) Method for manufacturing polycrystalline semiconductor thin film
JP2794833B2 (en) Method for manufacturing thin film transistor
JPH0393273A (en) Manufacture of thin film semiconductor device
JPH0319340A (en) Manufacture of semiconductor device
JPS62124736A (en) Silicon thin-film and manufacture thereof
JPH03257818A (en) Manufacture of semiconductor device
JPH05259458A (en) Manufacture of semiconductor device
JPH07263342A (en) Manufacture of semiconductor device
JPS63307776A (en) Thin-film semiconductor device and manufacture thereof