JPS6228362B2 - - Google Patents

Info

Publication number
JPS6228362B2
JPS6228362B2 JP13847981A JP13847981A JPS6228362B2 JP S6228362 B2 JPS6228362 B2 JP S6228362B2 JP 13847981 A JP13847981 A JP 13847981A JP 13847981 A JP13847981 A JP 13847981A JP S6228362 B2 JPS6228362 B2 JP S6228362B2
Authority
JP
Japan
Prior art keywords
water level
valve
drain
signal
valve opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13847981A
Other languages
English (en)
Other versions
JPS5840405A (ja
Inventor
Tokunori Matsushima
Shozo Nakamura
Tatsuo Imaizumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13847981A priority Critical patent/JPS5840405A/ja
Publication of JPS5840405A publication Critical patent/JPS5840405A/ja
Publication of JPS6228362B2 publication Critical patent/JPS6228362B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Non-Electrical Variables (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

【発明の詳細な説明】 本発明は、火力または原子力発電プラントにお
ける給水加熱器のドレン水位制御方法及び装置に
関する。
一般に、火力または原子力発電プラントにおい
ては、プラントの熱効率を高めるために複数個の
給水加熱器を配し、この給水加熱器をもつて蒸気
発生装置に送られる給水を予熱するようにしてい
る。給水加熱器はその熱源をタービンからの抽気
蒸気としており、この抽気蒸気は給水との熱交換
により凝縮してドレンとなり、高圧給水加熱器側
から脱気器あるいは低圧給水加熱器へ排出されて
いる。この高圧給水加熱器では、ドレン逆流など
によるタービン損傷を防止するためや熱交換率低
下を防止するためなどの理由によつて、ドレン水
位を一定とするような制御が行なわれている。
従来の給水加熱器のドレン水位制御装置を第1
図に示す。この図に示されるように、加熱される
べき給水は、給水配管1内を給水ポンプ2によつ
て送られるものであるが、この給水配管1は上流
側から順次第1高圧給水加熱器3、第2高圧給水
加熱4に接続されている。この第1、第2高圧給
水加熱器3,4にはそれぞれ蒸気タービン(図示
せず)から蒸気を抽出するための第1,第2抽気
管5,6が接続され、給水と熱交換するための蒸
気を第1,第2高圧給水加熱器3,4に供給する
ようにしている。この抽気管5,6はタービンと
の位置関係において、給水下流側に至るにしたが
つて高圧蒸気を抽気するようにされているため、
第1高圧給水加熱器3よりもその給水上流側の第
2高圧給水加熱器4の方が高圧となつている。こ
のような高圧給水加熱器3,4では、抽出蒸気は
給水との熱交換によつて凝縮してドレンとなるた
め、各給水加熱器3,4にはドレン配管が設けら
れている。給水下流側の第2高圧給水加熱器4に
は、更にその前段高圧給水加熱器(図示せず)か
らのドレン配管7が接続され、前段高圧給水加熱
器のドレンと当該第2高圧給水加熱器4において
発生したドレンとが合流して、第1高圧給水加熱
器3に排出するための主ドレン配管8が接続され
ている。一方、最終段の第1高圧給水加熱器3に
は前記主ドレン配管8が接続されるとともに、こ
の第1高圧給水加熱器3で発生したドレンと前段
の第2高圧給水加熱器4で発生したドレンとの合
流ドレンを排出するための第1ドレン配管9が接
続されている。この第1ドレン配管9は第1高圧
給水加熱器3よりも数10m高位置に配設された脱
気器10に接続され、脱気器10を経てドレンは
再度給水用に供されるようになつている。
このような系統において、運転が定常の高圧負
荷状態下でなされず、タービン負荷が著しく変動
して低負荷となつた場合には、第1高圧給水加熱
器3から脱気器10にドレン排出ができなくな
り、この結果、第1,第2高圧給水加熱器3,4
でドレン水位が上昇し、前述したような問題が生
じる。したがつて、斯かる装置にはドレン水位を
制御する手段が講じられている。即ち、第1高圧
給水加熱器3のドレン排出能力が低下した場合に
当該給水加熱器3より低位に位置する低圧給水加
熱器11にドレンを排出できるように第1ドレン
配管9から分岐する第2ドレン配管12を設け、
第1,第2ドレン配管9,12にはそれぞれ第
1,第2水位制御弁13,14が配設されてい
る。一方、第2高圧給水加熱器4の主ドレン配管
8には直接脱気器10に接続される副ドレン配管
15が分岐され、主、副ドレン配管8,15には
それぞれ、主水位制御弁16,副水位制御弁17
が配設されている。これらの水位制御弁13,1
4,16,17によつて、低負荷時に第1高圧給
水加熱器3の水位上昇が生じた場合、第2高圧給
水加熱器4の排出ドレンを脱気器10に、また、
第1高圧給水加熱器3の排出ドレンを低圧給水加
熱器11に流出させるようにして、水位の制御を
行わせている。具体的には、第1高圧給水加熱器
3の水位制御は、この第1高圧給水加熱器3に設
けられた水位検出器18の信号と標準水位
(NWL)の偏差信号を出力する第1水位設定器1
9及びこの偏差信号によつて作動される第1水位
調節器20により第1水位制御弁17を操作し、
あるいは、水位検出器18の信号と高位水位
(HNWL)の偏差信号を出力する第2水位設定器
21及びこの偏差信号によつて作動される第2水
位調節器22により第2水位制御弁14を操作す
ることによつて行われる。一方、第2高圧給水加
熱器4の水位制御は、この第2高圧給水加熱器4
に設けられた水位検出器23の信号と標準水位
(NWL)の偏差信号を出力する主水位設定器24
及びこの偏差信号によつて作動される主水位調節
器25により主水位制御弁16を操作し、あるい
は、水位検出器23の信号と高位水位
(HNWL)の偏差信号を出力する副水位設定器2
6及びこの偏差信号によつて作動される副水位調
節器27により副水位制御弁17を操作すること
により行われる。
したがつて、タービンの負荷が定格負荷(高負
荷)である場合には、第2高圧給水加熱器4のド
レンG2は、主ドレン配管8を経て第1高圧給水
加熱器3に至り、更に、合流された第1高圧給水
加熱器3からのドレンG1は第1ドレン配管9を
経て脱気器10に至るドレン流路にしたがつて流
出され、各水位は主水位制御弁16及び第1水位
制御弁13によつて標準水位(NWL)となるよ
うに制御される。この際、副水位制御弁17、第
2水位制御弁14は全閉とされている。
他方、低負荷の場合には、第2図に示されるよ
うに、第1高圧給水加熱器3の内部圧力と脱気器
10との差圧Eがこれらの機器の静水頭Fよりも
小さいかまたは略等しくなるため、排出能力が失
なわれる。この場合には、第2高圧給水加熱器4
からの排出ドレンG2は副ドレン配管15を経て
直接脱気器10に流出され、第1高圧給水加熱器
3からの排出ドレンG1は第2ドレン配管12を
経て独立に低位の低圧給水加熱器11に流出され
る。この際の水位は副水位制御弁17、第2水位
制御弁によつて高位水位(HNWL)を維持する
ように制御される。この際には他の水位制御弁1
6,13は全閉とされている。
このようなドレン流路の切り替えは、第2図に
示したように、予め定められた一定の負荷Xを境
にして行なわれる。即ち、低負荷から高負荷に移
行するときは、このドレン切替点Xで、主水位調
節器25及び第1水位調節器20からの制御弁強
制閉止信号を解除させ、各水位制御弁16,13
による水位制御操作が行われるようにし、他方、
高負荷から低負荷に移行するときは、逆に、水位
調節器25,20から制御弁閉止信号を送り、各
高圧給水加熱器4,3の水位を副水位制御弁1
7、第2水位制御弁14により制御されるもので
ある。
次に、上記従来の水位制御装置による水位制御
特性について第3図を用いて詳細に説明する。
定格負荷(高負荷)においては、第1高圧給水
加熱器3のドレン水位(曲線B)は第1水位制御
弁13により標準水位(NWL)に制御され、高
位水位(HNWL)に設定された第2水位制御弁
14はその水位設定置(HNWL)と水位検出器
18による実水位検出信号との偏差信号によつて
全閉されている。斯かる状況下から、負荷を徐々
に低下させると(曲線A)、各給水加熱器3,4
のドレン流量が減少するため、第1水位制御弁1
3の開度(曲線C)は小さくなるように制御され
る。更に、負荷を減少させると、第1水位制御弁
13の前圧がドレンの蒸気圧力より低くなり、第
1ドレン配管9内でドレンが減圧沸騰して弁前フ
ラツシユが発生する。この現象により、ドレンは
気液二相流となり、容積流量が増大してしまう。
つまり、同じ弁開度であれば実重量流量が減少す
る。この結果、第1給水加熱器3のドレン水位
(曲線B)を標準水位(NWL)に保持するように
開くが(t1)、弁制御用空気信号の遅れや、制御
弁ダイヤフラムの応答遅れのためにドレン水位検
出信号に基づくフイードバツク制御信号のみでは
その水位の上昇を十分に抑えることはできない。
また負荷降下率が大きくなると、この水位制御弁
13が全開してもこのドレン水位を標準水位に保
持することができずこのドレン水位は異常上昇す
る。ところで、このドレン水位が高位水位
(HNWL)を超えると、前記第2ドレン配管12
に設けられた第2水位制御弁14は曲線Dの如く
開き始め、ドレン水位の異常上昇を抑制する働き
をする(t2)。しかしながら、先に述べた如く、
制御用空気信号及び制御弁ダイヤフラムの応答遅
れや第4図に示すような制御弁操作空気圧力と弁
開度との特性に不感帯領域Hがあるため、第2水
位制御弁14の応答が悪く、第3図におけるt2
時点で大きな水位上昇が生じる。この現象は負荷
降下率が大きい程著しい。
このような状態で先に述べた各水位制御弁操作
によるドレン切替が開始されると、前記水位制御
弁16の徐閉操作により前記第1高圧給水加熱器
3への流入ドレン量が少なくなり、該加熱器3内
のドレン水位は低下してくる。これに加え前述の
如く、弁前フラツシユによる水位上昇のため、前
記水位制御弁13が全開となつているので、ドレ
ン水位が水位設定値を下回つても該水位制御弁1
3は前述した弁特性不感帯のためすぐには閉止せ
ず過渡的には流入ドレン量と排出ドレン量の不釣
合いが更に進行し、急激な水位低下を招く。この
流入ドレン量と排出ドレン量との不釣合いによる
水位変動は、水位制御面積の小さい立形給水加熱
器程大きくなる。
その後、各制御弁が全閉の状態がしばらく続く
と、水位は回復し、ドレン切替完了の時点では前
配水位制御弁14によつて高位水位(HNWL)
に制御されるが、第3図に示した特性曲線からも
分かるように、前記弁前フラツシユ及びドレン切
替時における制御弁の応答を早くするために各調
節器の比例ゲインを上げたり、積分時間を短かく
したりすると、低流量域で不安定となる。
一般の各給水加熱器においては、ドレン水位が
標準水位から数百mm上下すると警報を発するが、
上昇側に変化した場合は、警報水位を越えてある
水位に到達すると、抽気管5,6に設置されてい
る電動弁28,29をも強制的に全閉してしま
う。これは、各給水加熱器ドレンが逆流し、蒸気
タービンに重大事故が起きるのを防止するためで
ある。したがつて、第1高圧給水加熱器3のドレ
ン水位が異常に上昇すると、抽気電動弁28が全
閉し、熱源が供給されないため、器内圧力は低下
し、益益ドレンの流出ができなくなる。加えて、
第2高圧給水加熱器4のドレンも第1高圧給水加
熱器3へ流入できなくなるので、連鎖的に高圧給
水加熱器ドレン水位は異常上昇することになる。
本発明の目的は、ドレン切替或いは、急速負荷
変化の場合においても、高圧給水加熱器のドレン
水位が異常に変動しないように、適確に水位制御
弁を操作させて安定した水位制御を行い得る給水
加熱器のドレン水位制御方法及び装置を提供する
ことにある。
本発明の特徴は、ドレン水位に基づく制御信号
を各水位制御弁に伝達して作動させるとともに、
弁前フラツシユ発生時の制御弁Cv値修正係数を
定量的に演算処理し、その信号に基づく不足分弁
開度操作信号と流入ドレン量と流出ドレン量の偏
差値に基づく変化分弁開度操作信号とを各制御弁
に伝達して作動させ、高圧給水加熱器のドレン水
位を制御するところにあり、この構成によりドレ
ン切替及び急速負荷変化の場合にも、給水加熱器
の異常水位変動を防止し得る給水加熱器のドレン
水位制御方法にある。
また、本発明の特徴は、給水加熱器への流入ド
レン配管に設けられた流入側制御弁の弁開度検出
器と、給水加熱器のドレン水位を検出する水位検
出器と、給水加熱出口のドレン温度を検出する温
度検出器と、タービン負荷信号に相当する抽気点
圧力を検出する圧力検出器と、これら各検出器か
らの信号を受け入れ各制御弁へ適確な弁操作信号
を送るフイードフオワード水位調節器とを備えて
いるところにあり、この構成により前記発明を適
確に実施し得る給水加熱器のドレン水位制御装置
にある。
以下に本発明に係る給水加熱器のドレン水位制
御方法及び装置につき、第5図以下の図面を参照
して詳細に説明する。なお、前記従来装置と同一
構成部材には同一番号を付し、その説明を省略し
てある。
第5図に本実施例に係る給水加熱器のドレン水
位制御装置を示す。この図に示されるように、加
熱されるべき給水は、給水配管1内を給水ポンプ
によつて蒸気発生装置(図示せず)に送られる
が、斯かる給水はまず第1高圧給水加熱器3に供
給されるように構成されている。この第1高圧給
水加熱器3にはタービンから蒸気を抽出する第1
抽気管5が電動弁28を介して接続されるととも
に、前段の第2高圧給水加熱器(図示せず)から
の排出ドレンを流入させる主ドレン配管8が主水
位制御弁16(以下2N弁という)を介して接続
されている。また、この第1高圧給水加熱器3に
は、主ドレン配管8から流入するドレンと、抽気
管5から流入する蒸気が該加熱器3内で熱交換に
より凝縮して発生したドレンとの合流ドレンを排
出するための第1ドレン配管9が接続されてい
る。この第1ドレン配管9は第1高圧給水加熱器
3より高位の脱気器10に第1水位制御弁13
(以下N弁という)を介して接続され、常態で排
出ドレンを脱気器10に流出し得るものとしてい
る。第1ドレン配管9には、分岐管としての第2
ドレン配管12が設けられ、この第2ドレン配管
12は第1高圧給水加熱器3より低位の低圧給水
加熱器11に第2水位制御弁(以下X弁という)
14を介して接続されている。
このような装置において、第1高圧給水加熱器
3には水位検出器18が取り付けられている。こ
の水位検出器18は該加熱器3の現水位を検出し
てその検出信号を出力するものである。また、第
1高圧給水加熱器3のドレン出口部における第1
ドレン配管9にはドレン温度検出器30が取り付
けられている。他方、この第1ドレン配管9のN
弁(第1水位制御弁)13の弁前部には、この弁
前部におけるドレン圧力を検出する弁前圧力検出
器32が取り付けられている。また、主ドレン配
管8に配設された2N弁16には弁開度検出器3
4が取り付けられている。更に前記抽出管5には
抽気圧力検出器31が取り付けられている。斯か
る各検出器18,30,31,32,34はフイ
ードフオワード水位調節器(以下F.F水位調節器
という)37に接続され、このF.F水位調節器3
7は各検出器18〜34からの検出信号に基づき
演算された的確な制御信号38,39を前記N弁
13及び前記X弁14へ電空変換器35,36を
介して出力するものである。
このF.F水位調節器37は、前記加熱器3にお
ける流入ドレン量と排出ドレン量の不釣合いを先
行的に制御弁へ伝達する流入ドレン予測先行信号
演算機構と、第1ドレン配管9内のドレン流動遅
れを考慮してN弁13の弁前部におけるボイド率
を予測し、該ボイド率より求まる制御弁Cv値係
正係数とN弁の弁開度からフラツシユによる不足
分弁開度を演算する弁前フラツシユ予測先行信号
演算機構と、水位検出器と水位設定値との偏差信
号に基づくフイードバツク制御信号演算機構と、
前記流入ドレン予測先行信号演算機構からの信
号、前記弁前フラツシユ予測先行信号演算機構か
らの信号及び前記フイードバツク制御信号演算機
構からの信号をそれぞれ加えその信号を制御弁へ
出力する加算器49とを主たる構成としている。
このF.F水位調節器37の全体構成を第6図に示
す。
流入ドレン予測先行信号演算機構は、前記抽気
圧力検出器31及び前記弁開度検出器34からの
信号により、流入ドレン量とタービン負荷によつ
て関係づけられた前記N弁13の流入ドレン予測
弁開度、即ち、前記加熱器3から見た流入ドレン
である前記2N弁16の弁通過ドレン量を排出し
得る前記N弁13の弁開度を算出する流入ドレン
予測弁開度演算器50と、該流入ドレン予測弁開
度演算器50からの信号とN弁13の弁開度信号
53とによつて流入ドレン量と排出ドレン量の不
釣合いによる水位変動を先行的に捕え、かつ、定
量的にその変化分を演算し制御弁へ伝達する変化
分弁開度制御器51とを有している。このとき、
N弁13の弁開度信号53は、前記制御信号38
からN弁の実弁開度の応答と同じになるように模
擬する弁開度演算器52を用いて演算したもので
あるが、新たに、前記N弁13に設けた弁開度検
出器(図示せず)からの信号或いは、それに相当
する信号であつてもよい。
弁前フラツシユ予測先行信号演算機構は、前記
ドレン温度検出器30、前記抽気圧力検出器3
1、及び前記弁前圧力検出器32からの信号によ
り、、前記弁前圧力に対応する飽和温度と前記ド
レン配管9の流動遅れを考慮した予測弁前温度と
の見掛け温度差ΔTを演算する見掛け温度差演算
器40と、この温度差演算器40からの信号によ
つて制御弁Cv(弁形状と弁開度から求まる弁流
量係数)修正係数Fnを演算する関数近似演算器
41と、該関数近似演算器41からの出力信号F
nと前記弁開度信号53とにより弁前フラツシユ
による実流量低下を補つた必要弁開度を演算する
必要弁開度演算器43と、この演算器43からの
信号55と前記N弁制御信号38とにより弁前フ
ラツシユに対応し得る不足分弁開度信号を演算す
る不足分弁開度先行制御器44とを有している。
前記フイードバツク制御信号演算機構は、前記
水位検出器18からの信号と水位設定器45から
の信号との偏差信号を比例、積分し、その出力を
前記X弁14へ制御信号39として伝達するX弁
フイードバツク制御器46と、前記水位検出器1
8からの信号と水位設定器からの信号との偏差信
号を比例、積分演算し、その出力を前記N弁13
へ制御信号38として伝達するN弁フイードバツ
ク制御器48とを有している。
次に、各演算器の構成及び動作を第7図〜第1
0図を用いて詳細に説明する。
前記流入ドレン予測弁開度演算器50は、第7
図に示す如く前記弁開度検出器34からの信号に
よつて2N弁のCv値を算出する制御弁Cv値演算器
54と、前記抽気圧力検出器31からの信号(タ
ービン負荷信号、高圧加熱器出口圧力でもよい)
により、定常状態における前記流入ドレン量と前
記排出ドレン量の関係を前記2N弁16の弁開度
と前記N弁13の弁開度との関係に置換した場合
の前記N弁Cv値CVNと前記2N弁Cv値CV2Nとの
比(KQ=CVN/CV2N)を算出する弁Cv値変換
定数演算器55と、前記制御弁Cv値演算器54
からの信号と前記弁Cv値変換演算器55からの
信号58によつて、前記2N弁16を通過する流
入ドレン量と前記N弁13を通過する排出ドレン
とが等しくなるような前記N弁13の弁Cv値を
演算する相当Cv値変換演算器57と、この演算
器57からの信号によつて、ドレン量の収支に関
して前記2N弁13の弁開度と等価な弁開度を算
出し、この流入ドレン予測弁開度信号60を前記
変化分弁開度制御器51へ伝送する逆Cv値演算
器59とによつて構成されている。このように、
本発明においては、各制御弁を通過するドレン量
を弁Cv値のみによつて定義し、弁前後の差圧及
び流体の物性値はタービン負荷によつて一義的に
決定するものとしたために、ドレン量の算出方法
が非常に簡略化され、演算時間、容量などが一般
的な流量算出方に比べ大巾に低減でき、しかも、
入力データが弁開度信号のみとなり、一般的な流
量計測法に比べ、弁前圧力、弁前後差圧及び弁前
温度などの測定が省略でき非常に安価であるなど
の利点がある。特に、本発明の対象となる給水加
熱器系統は、タービン負荷により、プラント全体
の熱バランスが決定されるため、タービン負荷と
ほぼ比例する抽気圧力によつても弁Cv値変換定
数が算出でき、しかも、ドレン量変化が弁開度に
よつて求まる弁Cv値変化とほぼ等価であること
などから、本発明の利点を最大限に発揮できる。
しかし、本発明は給水加熱器系統のみならずこの
ように、弁通過流量がほぼ、弁開度に比例し、し
かも、流体の物性値及び各状態量が一つの運転フ
アクターによつて一義的に決定できるプラントに
はすべて適用できる。
前記変化分弁開度制御器51は、第8図に示す
如く前記弁開度信号53から実弁開度の応答より
非常に遅い信号を作り出す1次遅れ演算器61
と、この演算器61から出力される基本弁開度信
号62と前記流入ドレン予測弁開度信号60とを
減算して流入ドレン量変化による変化分弁開度偏
差を演算する減算器63と、この減算器63から
の出力信号64を調節して最適な先行信号を前記
加算器49へ変化分弁開度信号68として出力す
る先行値ゲイン設定器67及び1次遅れ演算器6
4と減算器65からなる不完全微分演算器66と
によつて構成される。
このように、前記弁開度信号53に非常に遅い
1次遅れを持たせた基本弁開度信号62を作るこ
とによつて、流入ドレン量変化に伴うドレン予測
弁開度信号60のみが非常に早い応答で先行信号
として働きかけ、制御弁開度である基本弁開度信
号62はゆつくりと修正機能のみをもつこととな
り、後述する弁前フラツシユ先行信号或いは、水
位偏差によるフイードバツク信号による制御弁の
急激な応答を阻止または抑制することを防止する
作用をもち、各制御信号による干渉を防止し、流
入ドレン量の変化のみを早急に伝達し、かつ、安
定した制御特性を得る効果がある。また、前記変
化分弁開度偏差信号64を不完全微分の信号に変
換することによつて、定常状態においては前記変
化分弁開度信号68の出力は常に0となるように
し、各演算器の設定値または演算誤差を吸収する
効果を出している。
前記見掛け温度差演算器40は、第9図に示す
如く、前記ドレン温度検出器30からのヒータド
レン温度信号THと前記抽気圧力検出器31から
の圧力信号Pxとによつて、前記N弁13の弁前
エンタルピーとほぼ等価な弁前温度T1を予測演
算する弁前等価温度予測演算器70と、前記弁前
圧力検出器32からの圧力信号P1により、飽和温
度曲線などを用いてこの圧力信号P1に対応する飽
和温度Tvを算出する飽和温度演算器71と、該
演算器71からの信号72を前記等価温度予測演
算器71からの信号73により減算し、弁前フラ
ツシユ状態を示す見掛け温度差ΔTを算出する減
算器74と、この見掛け温度差ΔTの演算誤差を
修正する修正演算器75とによつて構成されてい
る。この時前記弁前等価温度予測演算器70は、
前記抽気圧力信号Pxが負荷にほぼ比例すること
に着目し、更に、この負荷が定常状態における前
記第1ドレン配管9内のドレン流量とほぼ比例す
るものとして取り扱い、前記ドレン配管9の長さ
とこのドレン予測流速とによつてドレン流動遅れ
時間を流動遅れ演算器53で演算し、このドレン
流動遅れ時間tDと前記ヒータドレン温度THから
次式を用いて算出するようになつている。
Ti=TH・e-tD

Claims (1)

  1. 【特許請求の範囲】 1 タービンからの抽気蒸気により給水を加熱す
    る給水加熱器のドレン水位制御方法において、前
    記給水加熱器への流入ドレン配管に設けられた流
    入側制御弁の弁開度信号とタービン負荷に見合つ
    た状態量の信号とに基づいて給水加熱器のドレン
    を導出する配管上に設置されたドレン水位制御弁
    の予測弁開度を求め、この予測弁開度とドレン水
    位制御弁の実測弁開度との偏差信号を流入ドレン
    と排出ドレンとの不釣合による水位変動を先行的
    に捕える変化分弁開度信号とし、給水加熱器にお
    けるドレン水位の検出信号と水位設定値との偏差
    に基づきドレン水位制御弁を調節するフイードバ
    ツク制御信号にこの変化分弁開度信号を付加せし
    め、前記ドレン水位制御弁を操作するようにした
    ことを特徴とする給水加熱器のドレン水位制御方
    法。 2 特許請求の範囲第1項記載の水位制御方法に
    おいて、前記水位制御弁の弁前部にフラツシユ現
    象が生じた際に低下する弁容量不足の割合を示す
    前記水位制御弁のCv値修正係数と、該水位制御
    弁の弁開度によつて求められる弁前フラツユによ
    る不足分弁開度指令及び前記変化分弁開度指令を
    先行信号として、前記フイードバツク制御信号へ
    付加せしめ、これによつて前記ドレン水位制御弁
    を操作するようにしたことを特徴とする給水加熱
    器のドレン水位制御方法。 3 特許請求の範囲第1項において、前記ドレン
    水位制御弁の予測弁開度は、前記流入側制御弁の
    弁開度信号から得られる弁Cv値と前記タービン
    負荷に見合つた状態量である抽気蒸気の圧力信号
    によつて求められる弁Cv値変換定数とによつて
    算出される等価弁開度としたことを特徴とする給
    水加熱器のドレン水位制御方法。 4 特許請求の範囲第2項において、前記水位制
    御弁のCv値修正係数を、前記給水加熱器の出口
    ドレン温度と前記水位制御弁前の弁前圧力から求
    めた該弁前圧力に対する飽和温度との見掛け温度
    差によつて算出するようにしたことを特徴とする
    給水加熱器のドレン水位制御方法。 5 給水加熱器へドレンを導入する流入ドレン配
    管に設けられた流入側制御弁並びにその弁開度検
    出器と、給水加熱器内のドレン水位を検出する水
    位検出器と、タービン負荷に相当する状態量の検
    出器と、給水加熱器のドレンを導出する配管上に
    設置されたドレン水位制御弁並びにその弁開度検
    出器と、前記流入側制御弁の弁開度信号とタービ
    ン負荷に見合つた状態量の信号に基づいてドレン
    水位制御弁の予測弁開度を演算する第1の演算装
    置と、この予測弁開度とドレン水位制御弁の実測
    弁開度との偏差信号を演算する第2の演算装置
    と、検出された給水加熱器のドレン水位とその設
    定値との偏差に基づき前記ドレン水位制御弁をフ
    イードバツク制御する弁開度制御装置と、前記第
    2の演算装置の出力である偏差信号を弁開度制御
    装置のフイードバツク信号に加算させる第3の演
    算装置とを備えたものから構成されることを特徴
    とする給水加熱器のドレン水位制御装置。
JP13847981A 1981-09-04 1981-09-04 給水加熱器のドレン水位制御方法及びその装置 Granted JPS5840405A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13847981A JPS5840405A (ja) 1981-09-04 1981-09-04 給水加熱器のドレン水位制御方法及びその装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13847981A JPS5840405A (ja) 1981-09-04 1981-09-04 給水加熱器のドレン水位制御方法及びその装置

Publications (2)

Publication Number Publication Date
JPS5840405A JPS5840405A (ja) 1983-03-09
JPS6228362B2 true JPS6228362B2 (ja) 1987-06-19

Family

ID=15223028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13847981A Granted JPS5840405A (ja) 1981-09-04 1981-09-04 給水加熱器のドレン水位制御方法及びその装置

Country Status (1)

Country Link
JP (1) JPS5840405A (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7039403B2 (ja) * 2018-07-02 2022-03-22 株式会社東芝 火力発電プラント

Also Published As

Publication number Publication date
JPS5840405A (ja) 1983-03-09

Similar Documents

Publication Publication Date Title
KR20130115281A (ko) 가스 및 증기 터빈 복합 발전 설비의 작동 방법과, 이 방법을 실행하기 위해 제공된 가스 및 증기 터빈 복합 발전 설비와, 상응하는 조절 장치
JPS6228362B2 (ja)
JPS6225921B2 (ja)
JP2758250B2 (ja) 給水加熱器ドレン水位制御装置
JP2923040B2 (ja) 発電プラントと水位制御方法及びその装置
JPS6027883B2 (ja) ボイラ昇温制御方式
JP2003269702A (ja) 脱気器水位制御装置
JP3112579B2 (ja) 圧力制御装置
JPS6138763B2 (ja)
JPH0368278B2 (ja)
JPS6218803B2 (ja)
JP2763178B2 (ja) 給水加熱器ドレン水位制御装置
JPS6032082B2 (ja) 給水温度制御装置
JPS61289203A (ja) 水位制御方法および水位制御装置
JP2799046B2 (ja) 給水加熱器のドレン水位制御装置
JP2501347B2 (ja) 原子力発電用タ―ビンの制御装置
JPH0337084B2 (ja)
JPH10111392A (ja) ドレンポンプアップシステム制御装置
JP2504939Y2 (ja) ボイラのレベル制御装置
JPH0861605A (ja) タービンバイパス蒸気温度制御装置
JP2523153B2 (ja) 給水加熱器ドレン水位制御装置
JPH09145004A (ja) 加圧流動層ボイラの緊急停止時制御装置
JP4402467B2 (ja) 複合発電プラントおよびその制御方法
JPH0423286B2 (ja)
JPH0759883B2 (ja) 低圧タービンバイパス弁制御装置