JPS62283557A - Manufacture of lead storage battery - Google Patents

Manufacture of lead storage battery

Info

Publication number
JPS62283557A
JPS62283557A JP61125485A JP12548586A JPS62283557A JP S62283557 A JPS62283557 A JP S62283557A JP 61125485 A JP61125485 A JP 61125485A JP 12548586 A JP12548586 A JP 12548586A JP S62283557 A JPS62283557 A JP S62283557A
Authority
JP
Japan
Prior art keywords
negative electrode
potential
alloy
manufacture
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61125485A
Other languages
Japanese (ja)
Inventor
Osamu Maruyama
修 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP61125485A priority Critical patent/JPS62283557A/en
Publication of JPS62283557A publication Critical patent/JPS62283557A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • H01M10/128Processes for forming or storing electrodes in the battery container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • H01M4/16Processes of manufacture
    • H01M4/22Forming of electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To reduce the quantity of Sb deposited on a negative plate, at the end of a forming process, by applying a large current to obtain the specified potential of the negative electrode. CONSTITUTION:After a positive plate made of PbSb-alloy is anodized, a negative plate made of Pb-Ca alloy is kept to have a constant potential. With the scan ning in the positive electrode direction from the potential, it is observed that the oxidizing current flows. As the negative electrode is kept to have the poten tial less than -0.4 Vvs Cd/cd, it is possible to lower the oxidizing current resulting in reducing the quantity of the deposited Sb. Therefore, without remark ably changing the forming process, the MF performance of a hybrid HB battery can be exceedingly improved.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明は、正極格子にPb−Sb系合金を、負極格子に
Pb−Ca系合金を用いる、いわゆるハイブリッド電池
(以下rHB電池」という)に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention Industrial Field of Application The present invention relates to a so-called hybrid battery (rHB (battery)).

従来の技術 従来、鉛蓄電池用極板の化或は、定電流あるいは、水素
発生の開始(負極の充電完了)を待って電流を減少させ
るという方法が採られてきたー 発明が解決しようとする問題点 しかし、HB電池の場合、化成終了までに定電流であっ
たり、また、特に電流を減少させる通電方法による化成
を行なった極板では、正極格子から溶出したSbが、負
極板に析出したままの状態になるため、電解液注液後の
電池においては、負極板の水素過電圧を小さくするとい
う欠点(自己放電の増加、補水頻度の増加などの不具合
を招()があった。
Conventional technology Conventionally, methods have been adopted in which the electrode plates for lead-acid batteries are changed, the current is constant, or the current is reduced after waiting for the start of hydrogen generation (the completion of charging of the negative electrode) - the problem that the invention seeks to solve However, in the case of HB batteries, if the current is constant until the end of formation, or if the formation is carried out using a current flow method that reduces the current, the Sb eluted from the positive electrode lattice remains deposited on the negative electrode plate. As a result, the battery after electrolyte injection has the disadvantage of reducing the hydrogen overvoltage of the negative electrode plate (increased self-discharge, increased frequency of water replenishment, etc.).

本発明は上記欠点を除去することを目的とするものであ
る。
The present invention aims to eliminate the above-mentioned drawbacks.

問題を解決するための手段 本発明は、化成終期に、負極電位が一〇、4VvsCd
/cd”より卑となるような大電流通電を行なうことに
より、負極板へのSb析出を抑制することを特徴とする
ものである。
Means for Solving the Problem The present invention provides a negative electrode potential of 10.4V vs Cd at the final stage of chemical formation.
This is characterized by suppressing Sb precipitation on the negative electrode plate by applying a large current that is more base than /cd''.

作用 合金格子1枚からなる電池を構成し、Pb−Sb系合金
格子を陽極酸化した後、Pb−α系合金格子(負極)を
一定の電位に保持し、その電位からアノード方向に走査
すると、0.7〜0.8VvsCd/cd”°にSb種
の溶解に基づく酸化電流が観測される。そこで、負極を
種々の電位に保持し上記酸化電流を測定した結果、第1
図に示すように、−O,4V vs Cd / cd”
より卑な電位に保持すると、酸化電流は小さい(析出S
Jtが少ない)という傾向が認められた。
After constructing a battery consisting of one working alloy lattice and anodizing the Pb-Sb alloy lattice, holding the Pb-α alloy lattice (negative electrode) at a constant potential and scanning from that potential in the anode direction, An oxidation current based on the dissolution of Sb species is observed at 0.7 to 0.8V vs Cd/cd"°. Therefore, as a result of holding the negative electrode at various potentials and measuring the above oxidation current, the first
As shown in the figure, -O,4V vs Cd/cd”
When held at a more base potential, the oxidation current is small (precipitated S
There was a tendency for the Jt to be low).

この原因として、Sbの還元(Sb−4SbHυ、多量
の水素発生による析出Sbの脱落などが考えられる。
Possible causes of this include reduction of Sb (Sb-4SbHυ) and shedding of precipitated Sb due to generation of a large amount of hydrogen.

実施例 HB55D形電池について、各極板を第1表に示す化成
を行ない電池を組立てた。
EXAMPLE Regarding the HB55D type battery, each electrode plate was subjected to the chemical formation shown in Table 1, and a battery was assembled.

その後、電解液を注液後、その保存性能及び過充電減液
性能を評価した(保存性能は、40℃、28日間放置前
後の低温高率放電容量の比で、減液性能は、40℃、2
8日間、14.4V定電圧過充電前後の重量差で評価し
た)。その性能試験結果を第2表に示す。
After that, after injecting the electrolyte, its storage performance and overcharge reduction performance were evaluated (storage performance is the ratio of low temperature high rate discharge capacity before and after being left at 40℃ for 28 days; ,2
(Evaluation was made based on the weight difference before and after overcharging at a constant voltage of 14.4 V for 8 days). The performance test results are shown in Table 2.

第  1  表 第2表 第2表かられかるように、本発明により、保存性能及び
減液性能が太き(向上することがわかる。
As can be seen from Table 1, Table 2, and Table 2, it can be seen that the present invention greatly improves (improves) the storage performance and liquid reduction performance.

発明の効果 本発明により、これまでの製造工程における化成方法を
太き(変更することなく、HB電池、−のMF性能を大
きく向上することができる。
Effects of the Invention According to the present invention, the MF performance of HB batteries can be greatly improved without changing the chemical formation method in the conventional manufacturing process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は負極電位に対する酸化電流の変化を示す曲線図
である。 特許出願人 新神戸電機株式会社 代表取締役 櫻 井 泰 男:、2z、’、0・  5
゛/ 第1図
FIG. 1 is a curve diagram showing changes in oxidation current with respect to negative electrode potential. Patent applicant Yasuo Sakurai, representative director of Shin-Kobe Electric Machinery Co., Ltd.:,2z,',0・5
/ Figure 1

Claims (1)

【特許請求の範囲】[Claims] 正極格子にPb−Sb系合金、負極格子にPb−Ca系
合金を用いる鉛蓄電池用極板の化成終期に、負極電位が
−0.4Vvs、Cd/cd^2^+より卑となるよう
な通電を行なうことを特徴とする鉛蓄電池の製造方法。
At the end of formation of a lead-acid battery plate using a Pb-Sb alloy for the positive electrode lattice and a Pb-Ca alloy for the negative electrode lattice, the negative electrode potential becomes -0.4 Vvs, less base than Cd/cd^2^+. A method for manufacturing a lead-acid battery, which is characterized in that it is energized.
JP61125485A 1986-05-30 1986-05-30 Manufacture of lead storage battery Pending JPS62283557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61125485A JPS62283557A (en) 1986-05-30 1986-05-30 Manufacture of lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61125485A JPS62283557A (en) 1986-05-30 1986-05-30 Manufacture of lead storage battery

Publications (1)

Publication Number Publication Date
JPS62283557A true JPS62283557A (en) 1987-12-09

Family

ID=14911255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61125485A Pending JPS62283557A (en) 1986-05-30 1986-05-30 Manufacture of lead storage battery

Country Status (1)

Country Link
JP (1) JPS62283557A (en)

Similar Documents

Publication Publication Date Title
JPH11111267A (en) Manufacture of lithium ton secondary battery
JPS62283557A (en) Manufacture of lead storage battery
JP4081698B2 (en) Lead-acid battery charging method
JPS5916279A (en) Lead storage battery
JP2952680B2 (en) Sealed lead-acid battery
JP3111475B2 (en) Manufacturing method of sealed lead-acid battery
JP2536082B2 (en) Lead acid battery
JP3010691B2 (en) Battery forming method for sealed lead-acid batteries
JP2964555B2 (en) Battery storage method for lead-acid batteries
JPH01302661A (en) Lead acid battery and its manufacture
JP2762730B2 (en) Nickel-cadmium storage battery
JPH0850896A (en) Manufacture of lead-acid battery
JP2771584B2 (en) Manufacturing method of non-sintering type sealed alkaline storage battery
JP3018406B2 (en) Battery forming method for sealed lead-acid batteries
JPH01267965A (en) Sealed lead-acid battery
JPH079806B2 (en) Zinc electrode for alkaline storage battery
JPS63114059A (en) Initiai-charging method for lead acid battery
JP2553858B2 (en) Lead acid battery
JP2023098227A (en) Recovery processing method for lithium-ion battery, charge and discharge device, and program
KR20240104517A (en) Method for manufacturing a copper current collector having an ultra-thin tin-plated three-dimensional hierarchical structure and an anode for a lithium metal battery using the copper current collector
JPS62278752A (en) Container-formation method for lead-acid battery
JPS63187579A (en) Charging method for plate of lead storage cell
JPS6113578A (en) Lead storage battery
JPH079807B2 (en) Zinc electrode for alkaline storage battery
JPS6310463A (en) First charge control method for lead-acid battery