JPS62282464A - Buried channel type thin-film transistor - Google Patents

Buried channel type thin-film transistor

Info

Publication number
JPS62282464A
JPS62282464A JP12643386A JP12643386A JPS62282464A JP S62282464 A JPS62282464 A JP S62282464A JP 12643386 A JP12643386 A JP 12643386A JP 12643386 A JP12643386 A JP 12643386A JP S62282464 A JPS62282464 A JP S62282464A
Authority
JP
Japan
Prior art keywords
insulating film
gate insulating
region
film
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12643386A
Other languages
Japanese (ja)
Inventor
Masahiko Oota
昌彦 太田
Masafumi Shinpo
新保 雅文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP12643386A priority Critical patent/JPS62282464A/en
Publication of JPS62282464A publication Critical patent/JPS62282464A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78684Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising semiconductor materials of Group IV not being silicon, or alloys including an element of the group IV, e.g. Ge, SiN alloys, SiC alloys
    • H01L29/78687Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising semiconductor materials of Group IV not being silicon, or alloys including an element of the group IV, e.g. Ge, SiN alloys, SiC alloys with a multilayer structure or superlattice structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/432Heterojunction gate for field effect devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To decelerate the entrapment of charges in a trapping-level layer in a gate insulating film especially in the vicinity of its surface, which is regarded as the main cause for performance degradation with time, by a method wherein a very thin blocking region is sandwiched between a virtual channel region and a gate insulating film. CONSTITUTION:A gate region 2 is formed selectively on an insulating substrate 1, and then a gate insulating film 3 is deposited on the entire surface. A plurality of thin films is then successively deposited. First, a very thin a-Si:C:H film 7, not thicker than 300Angstrom , is deposited directly on the gate insulating film 3. Then, a buried channel layer 4 and a impurity-doped amorphous semiconductor layer 5 are formed. Mext, selective removal is accomplished. A process follows wherein source.drain regions 6 are selectively formed and the source.drain regions 6 serve as masks for the local, selective removal of the impurity-doped amorphous semiconductor layer 5. When an a-Si:C:H film is inserted along the interface of a gate insulating film and an a-Si:H film, carriers generated in the a-Si:H near the interface are so accelerated as to serve as a blocking region preventing easy entrapment of charges in the trapping level layer in the gate insulating film.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (産業上の利用分野) アクティブマトリクス型液晶表示装置などに用いられる
非晶質半導体を使った薄膜トランジスタにおいて、その
使用時の経時特性劣化を軽減しデバイスの信頼性を向上
させる構造に関する。
[Detailed description of the invention] 3. Detailed description of the invention (industrial application field) Reducing deterioration of characteristics over time during use in thin film transistors using amorphous semiconductors used in active matrix liquid crystal display devices, etc. and structures that improve device reliability.

(発明の概要) この発明は、経時特性劣化の土原因と目されるゲート絶
縁膜内特に表面近傍にあるトラップ単位への電荷のトラ
ップげ現象を軽減する目的で、実質的なチャンネル領域
とゲート絶縁膜との間にごく薄いブロッキング領域(本
発明の場合チャンネル領域へa−3i:Hを使用するこ
とを仮定し、ブロッキング領域にa−8i:Hよりバン
ドギャップの広いa−3L:C:Hを用いた)を挟み込
んだ形にすることにより、実質的なチャンネルを埋込み
型とした。
(Summary of the Invention) This invention aims to reduce the phenomenon of charge trapping in trap units in the gate insulating film, especially near the surface, which is thought to be the cause of deterioration of characteristics over time. A very thin blocking region between the insulating film (in the case of the present invention, it is assumed that a-3i:H is used for the channel region, and the blocking region is a-3L:C: which has a wider band gap than a-8i:H). By sandwiching the channels (using H), the substantial channel was made into a buried type.

(従来の技術) 液晶表示装置の分野などでは、非晶質半導体(例えばア
モルファスシリコン)を用いた薄膜トランジスタ(以下
TPTと称す)を画素ごとのスイッヂング素子として用
い、幾分か1駆動、高コントラスト比の期待できる液晶
パネルを実現する目的で開発が進められている。前記ア
モルファスシリコンTPTの基本的な構造としては、第
2図に示される様に、絶縁基板11の上にゲート領域1
2を選択的に形成した後ゲート絶縁膜13を全面に堆積
させ、ざらにその上に選択的にアモルファスシリコンI
!114と不純物添加されたアモルファスシリコン15
を連続して形成した後、ソース・ドレイン領域16を選
択的に形成しその領域をマスクとして前記不純物添加さ
れたアモルファスシリコン15の一部を選択除去して出
来る構造が一般的である。
(Prior Art) In the field of liquid crystal display devices, thin film transistors (hereinafter referred to as TPTs) using amorphous semiconductors (e.g. amorphous silicon) are used as switching elements for each pixel, and have a somewhat single drive and high contrast ratio. Development is progressing with the aim of realizing a liquid crystal panel that can provide promising results. The basic structure of the amorphous silicon TPT is as shown in FIG.
2 is selectively formed, a gate insulating film 13 is deposited on the entire surface, and amorphous silicon I is selectively deposited roughly on top of the gate insulating film 13.
! 114 and impurity-doped amorphous silicon 15
A typical structure is obtained by sequentially forming amorphous silicon 15, selectively forming source/drain regions 16, and selectively removing a portion of the impurity-doped amorphous silicon 15 using the regions as a mask.

但しこのようにして作成されたTPTにおいて、基板に
は一般的にガラスが用いられるため工程温度は比較的低
温(300℃程度)に押さえられていることが多い、こ
の際前記ゲート絶縁IFJ13内及びアモルファスシリ
コン14との界面には多くの固定電荷とともにトラップ
準位が存在することは良く知られており、前記トラップ
準位への電荷のトラップが原因と考えられる電流能力の
劣化現象が観察される。
However, in the TPT created in this way, since glass is generally used for the substrate, the process temperature is often kept at a relatively low temperature (about 300°C). It is well known that a trap level exists along with many fixed charges at the interface with the amorphous silicon 14, and a phenomenon in which the current capacity deteriorates is observed, which is thought to be caused by the trapping of charges in the trap level. .

(発明が解決しようとする問題点) 非晶質半導体層FTは、前述のごとく原則的に400℃
以下の低温プロセスにおいて作成される場合がほとんど
で、その際前記ゲート絶縁II!!13(例えば窒化シ
リコン)は多層の表面固定電荷(例えば1012個/平
方センチメートル程度)と同時に寿命の比較的長い(例
えば常温で104秒以上)トラップ準位をもまた多口に
含んでる。このTPTを動作させておくと、チャンネル
領域14特にゲート絶縁膜との接触境界に近いところに
誘起されたキャリアが、ゲート領域に印加されている電
界に容易に加速され前記ゲート絶縁膜13内のトラップ
単位にトラップされる。ゲート絶縁膜13内にトラップ
された電荷はゲート領域に印加されている電界をチャン
ネル領域から克て相対的に減少させ、能力低下をもたら
す。この現象は、駆動トランジスタとしては決定的な短
所で、連続動作に用いるデバイスとしては使用できない
場合がある、液晶パネルなどに内蔵される駆動回路には
現状のまま使用することはできない。
(Problems to be solved by the invention) As mentioned above, the temperature of the amorphous semiconductor layer FT is basically 400°C.
In most cases, the gate insulation II! ! No. 13 (for example, silicon nitride) contains multiple layers of surface fixed charges (for example, about 1012 charges/cm2) and a large number of trap levels with relatively long lifetimes (for example, 104 seconds or more at room temperature). When this TPT is operated, carriers induced in the channel region 14, especially near the contact boundary with the gate insulating film, are easily accelerated by the electric field applied to the gate region, and the carriers in the gate insulating film 13 are easily accelerated by the electric field applied to the gate region. Trapped in units of traps. The charges trapped in the gate insulating film 13 overcome the electric field applied to the gate region from the channel region and relatively decrease, resulting in a reduction in performance. This phenomenon is a decisive disadvantage as a drive transistor, and it may not be possible to use it as a device for continuous operation, and it cannot be used as it is in a drive circuit built into a liquid crystal panel or the like.

(問題点を解決するための手段) 本発明は、前述の問題点を解決するために、非晶質半導
体を用いたTPTのチャンネル領域をゲート絶縁膜と接
触している面に300Å以下のa−3i:C:H,その
上に実質的なチャンネル領域として一層以上の非晶質半
導体(例えばa−&:H)を積層させ、実質的なチャン
ネル領域を埋込みチャンネル型とすることによって、ゲ
ート絶縁膜内及び界面への電荷のトラップを軽減しデバ
イスの経時特性劣化を防止する。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention provides a channel region of a TPT using an amorphous semiconductor with an a -3i:C:H, on which one or more amorphous semiconductors (for example, a-&:H) are stacked as a substantial channel region, and the substantial channel region is made into a buried channel type. This reduces charge trapping within the insulating film and at the interface, and prevents deterioration of device characteristics over time.

(作用) a−3i二C:Hは、a−3i:’Hに比べて充分広い
バンドギャップを有するためゲート絶縁膜とa−シ二1
1の界面に挿入すれば、a −Sr : Hの界面付近
に5吊に誘起されたキャリアが加速されゲート絶縁膜内
のトラップ準位に容易にトラップされるのを防ぐための
ブロッキング′Xr414として働く、またSi 02
のように8−34:Hと極端にバンドギャップが異なる
ということはなく窒化シリコンとa−81の中間に位置
するためa −8L: Hとの境界に歪を生じることは
少なく、新たなトラップ学位の増大にはつながらない。
(Function) Since a-3i2C:H has a sufficiently wide bandgap compared to a-3i:'H, it is difficult to connect the gate insulating film with a-3i2C:H.
If it is inserted into the interface of Working again Si 02
The band gap is not extremely different from that of 8-34:H, and it is located between silicon nitride and a-81, so strain is unlikely to occur at the boundary with a-8L:H, creating new traps. It does not lead to increased degrees.

(実施例) 以下にこの発明の実施例を図面にもとづいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

第1図において、絶縁基板1の上にゲート領域2を選択
的に形成した後ゲート絶縁膜3を全面に堆積させるまで
の工程は従来の構造に準じ、その上に連続形成により複
数の薄膜を堆積するわけだが、その際前記ゲート絶縁膜
3と直接接触する面に300Å以下の極薄いa−3i:
C:H7をまず堆積させてから、従来のチャンネル領域
にあたる埋込みチャンネル領域4、不純物添加された非
晶質半導体層5を形成し選択的に除去する、その後ソー
ス・ドレイン領域6を選択的に形成しその領域をマスク
として前記不純物添加された非晶質半導体層5の一部を
選択除去してできる構造になっている。次に第3図は本
発明のTPTにおけるゲート領域−ゲート絶縁膜−チャ
ンネル領域(ブロッキング領域と埋込みチャンネル領域
の多層構造)のエネルギーバンド図で、それぞれゲート
領taa、ゲート絶縁膜b、ブロッキング領1iIC1
埋込みチャンネル領域dで成り立っている、ゲート領[
aとブロッキング領域C及び埋込みチャンネル領域dの
仕事関数の差及びゲート絶縁膜内の固定電荷10の影響
で、ゲート領[aに電界を印加しない場合でもゲート領
域aと埋込みチャンネル領域dとの間には電位差が生じ
ている。埋込みチャンネル領域dの一部に誘起されたキ
ャリア8はブロッキング領[Cのエネルギーポテンシャ
ル障壁のために容易にゲート絶縁膜す内のトラップ準位
9にトラップされることはない。
In FIG. 1, the process from selectively forming a gate region 2 on an insulating substrate 1 to depositing a gate insulating film 3 on the entire surface is similar to the conventional structure, and a plurality of thin films are sequentially formed thereon. At that time, an extremely thin layer of a-3i of 300 Å or less is deposited on the surface that is in direct contact with the gate insulating film 3:
C: H7 is first deposited, then a buried channel region 4 corresponding to a conventional channel region, an amorphous semiconductor layer 5 doped with impurities are formed and selectively removed, and then source/drain regions 6 are selectively formed. The structure is formed by selectively removing a portion of the impurity-doped amorphous semiconductor layer 5 using that region as a mask. Next, FIG. 3 is an energy band diagram of gate region-gate insulating film-channel region (multilayer structure of blocking region and buried channel region) in TPT of the present invention, and shows gate region taa, gate insulating film b, and blocking region 1iIC1, respectively.
The gate region [
Due to the difference in work function between a, the blocking region C, and the buried channel region d, and the influence of the fixed charge 10 in the gate insulating film, the difference between the gate region a and the buried channel region d occurs even when no electric field is applied to the gate region [a]. There is a potential difference between the two. The carriers 8 induced in a part of the buried channel region d are not easily trapped in the trap level 9 in the gate insulating film because of the energy potential barrier of the blocking region [C].

(発明の効果) この発明は以上説明したように、実質的なブヤンネル領
域を埋込みチャンネルとしゲート絶縁膜との間に、キャ
リアのトラップを防止するブロッキング領域としてa−
3i:C:Hを挟む形にすることによってゲート絶縁膜
内及び界面への電荷のトラップを軽減し、デバイスの経
時特性劣化を改善することができる。またチャンネル領
域の連続薄膜形成は、同一チャンバ内で行なわれるため
ガスの切り換えだけで対応できコストアップになる要因
はない。また本発明の実施例はスタガ型の構造で説明し
たが、ゲート絶縁膜とチャンネル領域の間にブロッキン
グ領域を挿入することが主旨であるので、逆スタガ型や
コブラナー型でも同様の効果が得られることは言うまで
・もない。
(Effects of the Invention) As described above, the present invention uses a substantial Bouyannel region as a buried channel and a blocking region between the gate insulating film and the gate insulating film to prevent trapping of carriers.
By sandwiching 3i:C:H, charge trapping within the gate insulating film and at the interface can be reduced, and deterioration of characteristics over time of the device can be improved. Furthermore, since the continuous thin film formation in the channel region is performed in the same chamber, it can be handled by simply switching the gas, and there is no cause for increased costs. Furthermore, although the embodiments of the present invention have been explained using a staggered structure, the main idea is to insert a blocking region between the gate insulating film and the channel region, so the same effect can be obtained with an inverted staggered structure or a cobraner structure. Needless to say.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明にかかるTPTの縦断面図、第2図は
、従来のTPTの縦断面図、第3図は本発明のTPTに
おけるゲート領域−ゲート絶縁膜−チャンネル領域のエ
ネルギーバンド図である。 1・11・・・絶縁基板 2・12・・・ゲート領域 3・13・・・ゲート絶縁膜 4・・・埋込みチャンネル領域 5・15・・・不純物添加された非晶質薄膜層6・16
・・・ソース・ドレイン領域 7 ・a −8L: C: 1−1 8・・・誘起されたキャリア 9・・・ゲート絶縁膜内のトラップ準位10・・・ゲー
ト絶縁膜内の固定電荷 14・・・チャンネル領域 a・・・ゲート領域 b−・・ゲート絶縁膜 C・・・ブロッキング領域 d・・・埋込みチャンネル領域 33図
FIG. 1 is a vertical cross-sectional view of the TPT according to the present invention, FIG. 2 is a vertical cross-sectional view of a conventional TPT, and FIG. 3 is an energy band diagram of the gate region-gate insulating film-channel region in the TPT of the present invention. It is. 1.11... Insulating substrate 2.12... Gate region 3.13... Gate insulating film 4... Buried channel region 5.15... Impurity-doped amorphous thin film layer 6.16
... Source/drain region 7 ・a -8L: C: 1-1 8 ... Induced carriers 9 ... Trap levels in the gate insulating film 10 ... Fixed charges in the gate insulating film 14 ...Channel region a...Gate region b...Gate insulating film C...Blocking region d...Buried channel region 33 diagram

Claims (1)

【特許請求の範囲】[Claims] 1)絶縁基板上に設けられたゲート領域とその上に堆積
したゲート絶縁膜、さらにその上に選択的に設けられた
非晶質半導体層を含むチャンネル領域と不純物添加され
た非晶質半導体膜を介してその上に形成されたソース・
ドレイン領域を有する薄膜トランジスタにおいて、該チ
ャンネル領域はゲート絶縁膜と接触する面に300Å以
下のa−Si:C:Hを挟んだ形の2層以上の薄膜によ
って構成されていることを特徴とする埋込みチャンネル
型薄膜トランジスタ。
1) A gate region provided on an insulating substrate, a gate insulating film deposited thereon, a channel region including an amorphous semiconductor layer selectively provided thereon, and an amorphous semiconductor film doped with impurities. The source formed on it through
In a thin film transistor having a drain region, the channel region is composed of two or more thin films sandwiching a-Si:C:H of 300 Å or less on the surface in contact with the gate insulating film. Channel type thin film transistor.
JP12643386A 1986-05-30 1986-05-30 Buried channel type thin-film transistor Pending JPS62282464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12643386A JPS62282464A (en) 1986-05-30 1986-05-30 Buried channel type thin-film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12643386A JPS62282464A (en) 1986-05-30 1986-05-30 Buried channel type thin-film transistor

Publications (1)

Publication Number Publication Date
JPS62282464A true JPS62282464A (en) 1987-12-08

Family

ID=14935072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12643386A Pending JPS62282464A (en) 1986-05-30 1986-05-30 Buried channel type thin-film transistor

Country Status (1)

Country Link
JP (1) JPS62282464A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02218166A (en) * 1989-02-17 1990-08-30 Toshiba Corp Thin film transistor
JPH02284472A (en) * 1989-04-25 1990-11-21 Nec Corp Thin film transistor
JPH0334457A (en) * 1989-06-30 1991-02-14 Semiconductor Energy Lab Co Ltd Field effect semiconductor device
US5821559A (en) * 1991-02-16 1998-10-13 Semiconductor Energy Laboratory Co., Ltd. Electric device, matrix device, electro-optical display device, and semiconductor memory having thin-film transistors
US5894151A (en) * 1992-02-25 1999-04-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having reduced leakage current
US6028333A (en) * 1991-02-16 2000-02-22 Semiconductor Energy Laboratory Co., Ltd. Electric device, matrix device, electro-optical display device, and semiconductor memory having thin-film transistors
US6709907B1 (en) 1992-02-25 2004-03-23 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a thin film transistor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02218166A (en) * 1989-02-17 1990-08-30 Toshiba Corp Thin film transistor
JPH02284472A (en) * 1989-04-25 1990-11-21 Nec Corp Thin film transistor
JPH0334457A (en) * 1989-06-30 1991-02-14 Semiconductor Energy Lab Co Ltd Field effect semiconductor device
US5821559A (en) * 1991-02-16 1998-10-13 Semiconductor Energy Laboratory Co., Ltd. Electric device, matrix device, electro-optical display device, and semiconductor memory having thin-film transistors
US6028333A (en) * 1991-02-16 2000-02-22 Semiconductor Energy Laboratory Co., Ltd. Electric device, matrix device, electro-optical display device, and semiconductor memory having thin-film transistors
US5894151A (en) * 1992-02-25 1999-04-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having reduced leakage current
US6709907B1 (en) 1992-02-25 2004-03-23 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a thin film transistor
US7148542B2 (en) 1992-02-25 2006-12-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of forming the same
US7649227B2 (en) 1992-02-25 2010-01-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of forming the same

Similar Documents

Publication Publication Date Title
JP4372993B2 (en) Manufacturing method of active matrix liquid crystal display device
JPH06148685A (en) Liquid crystal display device
US5658808A (en) Method of fabricating polycrystalline silicon thin-film transistor having symmetrical lateral resistors
JPS62282464A (en) Buried channel type thin-film transistor
WO2019051864A1 (en) Method for manufacturing active array switch
WO2021041060A1 (en) Hydrogen trap layer for display device and the same
JPH06196703A (en) Thin film transistor and manufacture thereof
JPS62200767A (en) Mos-type semiconductor device
JPH01218070A (en) Mos transistor
CN100373633C (en) Asymmetric thin-film transistor structure
JPS61224360A (en) Manufacture of field effect transistor
KR0179066B1 (en) Thin film transistor and manufacturing method of the same
JPH04240733A (en) Manufacture of thin film transistor
JP2638685B2 (en) Semiconductor device and manufacturing method thereof
JPS6344769A (en) Field effect transistor and manufacture of the same
JP2856603B2 (en) Method for manufacturing semiconductor device
JP3075799B2 (en) Method for manufacturing semiconductor device
KR960014460B1 (en) Manufacturing method for a semiconductor device
JPH06132535A (en) Film transistor and its manufacture
KR100338090B1 (en) Method for manufacturing semiconductor device
KR100222898B1 (en) Thin film transistor and method for manufacturing the same
KR100399965B1 (en) Method for forming storage node contact of semiconductor device
JP2746500B2 (en) MOS transistor
JPH11186557A (en) Semiconductor device and manufacture thereof
JP2709214B2 (en) Method for manufacturing thin film transistor