JPS62281776A - Thermal generating set - Google Patents

Thermal generating set

Info

Publication number
JPS62281776A
JPS62281776A JP61122929A JP12292986A JPS62281776A JP S62281776 A JPS62281776 A JP S62281776A JP 61122929 A JP61122929 A JP 61122929A JP 12292986 A JP12292986 A JP 12292986A JP S62281776 A JPS62281776 A JP S62281776A
Authority
JP
Japan
Prior art keywords
transducer
type
thermoelectric conversion
pipe
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61122929A
Other languages
Japanese (ja)
Other versions
JPH0740794B2 (en
Inventor
Shigeki Hirano
平野 茂樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP61122929A priority Critical patent/JPH0740794B2/en
Publication of JPS62281776A publication Critical patent/JPS62281776A/en
Publication of JPH0740794B2 publication Critical patent/JPH0740794B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

PURPOSE:To extremely reduce a system cost and enhance the efficiency of power generation, by forming a duct line with a thermoelectric transducer itself. CONSTITUTION:A pipe-formed thermoelectric transducer 21 is composed of a P-type thermoelectric transducer 23 and an n-type thermoelectric transducer 25, and both the transducers 23, 25 are longitudinally insulated by insulators 27, 29. Into the pipe-formed thermoelectric transducer 21, the non-conductive fluid of high temperature is permitted to flow, and when the non-conductive fluid of low temperature is permitted to flow outside the transducer, then conductor layers 31, 33 are formed on the internal wall and the external wall of the transducer 21. In this case, when the fluid of high or low temperature is permitted to flow inside or outside the transducer 21, then electron is shifted from the n-type transducer 25 to the p-type transducer 23, and potential difference is generated between a positive electrode 35 and a negative electrode 37, and direct current is generated.

Description

【発明の詳細な説明】 発明の詳細な説明 産業上の利用分野 本発明は、排熱、冷熱等の熱エネルギーを電気エネルギ
ーに変換するための熱発電装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a thermal power generation device for converting thermal energy such as waste heat or cold heat into electrical energy.

従来技術とその問題点 温度の異なる2種の流体を使用して、ゼーベック効果に
より熱エネルギーを電気エネルギーに変換する方法は、
公知である。例えば第2図に模式的に示すように温度(
T、、)の温水の流路(1)を設けたアルミニウム製管
(3)と温度(TC)の冷水の流路(5)を99けたア
ルミニウム製管(7)とを、銅板(9)及び(11)並
びに熱電変換素子(13)を介して対向配置した熱発電
装置が提案されている。この装置においては、管(3)
及び(7)には高い熱伝導性が要求されるが、熱電変換
素子(13)が配置されている面以外の三側面には断熱
性が要求されるので、断熱材層(15)及び(17)が
必要となり、装置か高価となる。又、第3図に示す温度
プロフィルから明らかな如く、熱電変換素子(13)に
かかる有効温度幅(△T)が小ざく、このことは、管(
3)と管(7)間での温度差が有効に電気エネルギーに
変換されず、エネルキーロスが大きいことを示している
Prior art and its problems A method of converting thermal energy into electrical energy by the Seebeck effect using two types of fluids with different temperatures is as follows.
It is publicly known. For example, as schematically shown in Figure 2, the temperature (
An aluminum pipe (3) with a hot water flow path (1) of temperature (TC) and an aluminum pipe (7) with a cold water flow path (5) of 99 digits are connected to a copper plate (9). and (11), and a thermoelectric power generation device arranged facing each other via a thermoelectric conversion element (13) has been proposed. In this device, the tube (3)
and (7) are required to have high thermal conductivity, but the three sides other than the one on which the thermoelectric conversion element (13) is arranged are required to have heat insulation properties, so the heat insulating material layer (15) and ( 17) is required and the equipment is expensive. Moreover, as is clear from the temperature profile shown in FIG. 3, the effective temperature range (ΔT) applied to the thermoelectric conversion element (13) is small, which means that the tube (
3) and the tube (7) is not effectively converted into electrical energy, indicating that energy loss is large.

問題点を解決するための手段 本発明者は、システムコストの低減及び熱電変換効率の
向上を図るべく種々研究を重ねた結果、熱電変換索子自
体により管路を形成し、管壁をへだてて温度の胃なる2
種の流体を流動させる場合には、その目的を達し得るこ
とを見出した。即ち、本発明は、P型素子とn型素子に
より構成されるパイプ状の熱電変換素子を備え、該P型
素子とn型索子とが長手方向において絶縁されてあり、
かつこれ等両素子がパイプ内面の一ケ所において結線さ
れていることを特徴とする熱発電装置に係る。
Means for Solving the Problems As a result of various studies aimed at reducing system costs and improving thermoelectric conversion efficiency, the inventor of the present invention formed a conduit using the thermoelectric conversion cord itself and separated the pipe wall. temperature stomach 2
It has been found that this objective can be achieved if the seed fluid is made to flow. That is, the present invention includes a pipe-shaped thermoelectric conversion element composed of a P-type element and an n-type element, and the P-type element and the n-type cord are insulated in the longitudinal direction,
The present invention also relates to a thermal power generation device characterized in that both of these elements are connected at one place on the inner surface of the pipe.

実施例 以下、図面に示す実施態様を参照しつつ、本発明をより
一層詳細に説明する。
EXAMPLES The present invention will be explained in more detail below with reference to embodiments shown in the drawings.

第1図において、パイプ状の熱電変換素子(21)は、
P型熱電変換素子(23)とn型熱電変換素子(25)
とにより構成されている。素子(23)と(27)とは
、絶縁体(27)及び絶縁体(2つ〉により長さ方向に
絶縁されている。
In FIG. 1, the pipe-shaped thermoelectric conversion element (21) is
P-type thermoelectric conversion element (23) and n-type thermoelectric conversion element (25)
It is composed of. The elements (23) and (27) are insulated in the length direction by an insulator (27) and two insulators.

パイプ状の熱電変換素子(21)の内部に非導電性の高
温流体を流動させ、その外部で非導電性の低温流体を流
動させる場合には、導電体層(31)及び導電体層(3
3)を素子(21)の内壁及び外!上に形成させる。こ
れらの導電体層は、円周方向のジュール熱損失を抑制す
る。高温流体及び/又は低温流体が導電性でおる場合に
は、S電体層(31)及び/又は導電体層(33)上に
絶縁体層(図示せず)を形成する。
When a non-conductive high-temperature fluid is made to flow inside the pipe-shaped thermoelectric conversion element (21) and a non-conductive low-temperature fluid is made to flow outside thereof, the conductor layer (31) and the conductor layer (3
3) on the inner and outer walls of the element (21)! Let it form on top. These conductor layers suppress circumferential Joule heat loss. If the high temperature fluid and/or the low temperature fluid is conductive, an insulator layer (not shown) is formed on the S conductor layer (31) and/or the conductor layer (33).

図示の装置において、熱電変換素子(21)の内部で高
温流体を流動させ、その外部で低温流体を流動させると
、P型熱電変換素子(23)とn型熱電変換素子(25
)とが導電体層(31)により接続されているので、電
子がn型熱電変換素子(25)からP型熱電変換素子(
23)に移動して、正電極(35)と負電極(7)との
間に電位差を生じ、直流が発生する。
In the illustrated device, when a high-temperature fluid is made to flow inside the thermoelectric conversion element (21) and a low-temperature fluid is made to flow outside thereof, the P-type thermoelectric conversion element (23) and the N-type thermoelectric conversion element (25
) are connected by the conductor layer (31), so electrons flow from the n-type thermoelectric conversion element (25) to the p-type thermoelectric conversion element (
23), a potential difference is created between the positive electrode (35) and the negative electrode (7), and a direct current is generated.

なあ、電極の位置は、低温流体側であれば、特に限定さ
れない。
Note that the position of the electrode is not particularly limited as long as it is on the low temperature fluid side.

また、熱電変換素子の厚さくd)と管径(D)との比、
d/Dが充分大きい場合には、管の内外面上に導電体層
を形成する必要はない。
In addition, the ratio between the thickness d) of the thermoelectric conversion element and the pipe diameter (D),
If d/D is large enough, there is no need to form conductor layers on the inner and outer surfaces of the tube.

発明の効果 本発明によれば、熱電変換素子自体により管路を形成し
たので、システムコス1−が大巾に低減される。又、高
温流体と低温流体間の温度差がそのまま熱電変換素子に
付与されるので、発電効率が著しく高くなる。
Effects of the Invention According to the present invention, since the conduit is formed by the thermoelectric conversion element itself, the system cost 1- is greatly reduced. Furthermore, since the temperature difference between the high-temperature fluid and the low-temperature fluid is directly applied to the thermoelectric conversion element, power generation efficiency is significantly increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例態様の概要を示す断面図、
第2図は、従来技術装置を示す断面図、第3図は第2図
装置の温度プロフィルを示す断面図でおる。 (21)・・・・・・パイプ状の熱電変換素子(23)
・・・・・・P型熱電変換素子(25)・・・・・・n
型熱電変換素子(27)、(29)・・・・・・絶縁体
(31)、(33)・・・・・・導電体層(35)・・
・・・・正電極 (37)・・・・・・負電極 (以 北) 代理人 井理士 二 硬 央 −−2−酪;’−,,,
/ 第1図 第2図       第3図
FIG. 1 is a sectional view showing an outline of an embodiment of the present invention;
FIG. 2 is a sectional view showing a prior art device, and FIG. 3 is a sectional view showing a temperature profile of the device shown in FIG. (21) Pipe-shaped thermoelectric conversion element (23)
...P-type thermoelectric conversion element (25)...n
type thermoelectric conversion elements (27), (29)...Insulators (31), (33)...Conductor layer (35)...
...Positive electrode (37) ...Negative electrode (northern) Agent: Iriji 2.
/ Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)P型素子とn型素子により構成されるパイプ状の
熱電変換素子を備え、該P型素子とn型素子とが長手方
向において絶縁されており、かつこれ等両素子がパイプ
内面の一ケ所において結線されていることを特徴とする
熱発電装置。
(1) A pipe-shaped thermoelectric conversion element composed of a P-type element and an n-type element is provided, the P-type element and the n-type element are insulated in the longitudinal direction, and both elements are arranged on the inner surface of the pipe. A thermal power generation device characterized in that the wires are connected at one place.
JP61122929A 1986-05-28 1986-05-28 Thermoelectric generator Expired - Lifetime JPH0740794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61122929A JPH0740794B2 (en) 1986-05-28 1986-05-28 Thermoelectric generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61122929A JPH0740794B2 (en) 1986-05-28 1986-05-28 Thermoelectric generator

Publications (2)

Publication Number Publication Date
JPS62281776A true JPS62281776A (en) 1987-12-07
JPH0740794B2 JPH0740794B2 (en) 1995-05-01

Family

ID=14848104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61122929A Expired - Lifetime JPH0740794B2 (en) 1986-05-28 1986-05-28 Thermoelectric generator

Country Status (1)

Country Link
JP (1) JPH0740794B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6894215B2 (en) 2002-01-25 2005-05-17 Komatsu Ltd. Thermoelectric module
US10032974B2 (en) 2012-03-07 2018-07-24 Panasonic Intellectual Property Management Co., Ltd. Thermoelectric conversion module and thermoelectric conversion apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6894215B2 (en) 2002-01-25 2005-05-17 Komatsu Ltd. Thermoelectric module
US10032974B2 (en) 2012-03-07 2018-07-24 Panasonic Intellectual Property Management Co., Ltd. Thermoelectric conversion module and thermoelectric conversion apparatus

Also Published As

Publication number Publication date
JPH0740794B2 (en) 1995-05-01

Similar Documents

Publication Publication Date Title
JP4781606B2 (en) Thermoelectric module, method of thermally changing material in thermoelectric module, and method of manufacturing thermoelectric module
US8575467B2 (en) Generator of electric energy based on the thermoelectric effect
US20050087222A1 (en) Device for producing electric energy
CN108493322B (en) Thermocouple unit of annular thermoelectric material generator and annular thermoelectric material generator
US2759112A (en) Electron tube thermoelectric generator
CN102903839A (en) Flexible thermoelectric generator and manufacturing method thereof
CN102891248B (en) Flexible thermoelectric conversion system and manufacturing method thereof
JP3442862B2 (en) Thermoelectric generation unit
JPS62281776A (en) Thermal generating set
JP2996305B2 (en) High thermal resistance thermoelectric generator
CN208078022U (en) The thermocouple unit of annular thermoelectric material electric organ and annular thermoelectric material electric organ
CN202855806U (en) Flexible thermoelectric generator
US3316474A (en) Thermoelectric transformer
CN110165941A (en) A kind of waterproof pressure type temperature difference electricity generation device
CN202855804U (en) Flexible thermoelectric conversion system
CN210723092U (en) Heat-insulating semiconductor thermoelectric/electrothermal conversion element
CN208690302U (en) A kind of organic/inorganic composite material thermoelectric generating device
RU2732821C2 (en) Tubular thermoelectric module
JP2003273412A (en) Thermoelectric conversion device
JP2566330B2 (en) Thermoelectric power generation method and apparatus
US1242499A (en) Thermo-electric generator.
RU2767595C1 (en) Thermoelectric generator
JPH02151087A (en) Thermoelectric energy direct conversion equipment
JP3448094B2 (en) Composite thermoelectric converter
TWI744717B (en) Thermoelectric power generating device and manufacturing method thereof