JPH0740794B2 - Thermoelectric generator - Google Patents

Thermoelectric generator

Info

Publication number
JPH0740794B2
JPH0740794B2 JP61122929A JP12292986A JPH0740794B2 JP H0740794 B2 JPH0740794 B2 JP H0740794B2 JP 61122929 A JP61122929 A JP 61122929A JP 12292986 A JP12292986 A JP 12292986A JP H0740794 B2 JPH0740794 B2 JP H0740794B2
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion element
pipe
type
thermoelectric generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61122929A
Other languages
Japanese (ja)
Other versions
JPS62281776A (en
Inventor
茂樹 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP61122929A priority Critical patent/JPH0740794B2/en
Publication of JPS62281776A publication Critical patent/JPS62281776A/en
Publication of JPH0740794B2 publication Critical patent/JPH0740794B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、排熱、冷熱等の熱エネルギーを電気エネルギ
ーに変するための熱発電装置に関する。
Description: TECHNICAL FIELD The present invention relates to a thermoelectric generator for converting thermal energy such as exhaust heat and cold energy into electric energy.

従来技術とその問題点 温度の異なる2種の流体を使用して、ゼーベツク効果に
より熱エネルギーを電気エネルギーに変換する方法は、
公知である。例えば第2図に模式的に示すように温度
(T)の温水の流路(1)を設けたアルミニウム製管
(3)と温度(TC)の冷水の流路(5)を設けたアルミ
ニウム製管(7)とを、銅板(9)及び(11)並びに熱
電変換素子(13)を介して対向配置した熱発電装置が提
案されている。この装置においては、管(3)及び
(7)には高い熱伝導性が要求されるが、熱電変換素子
(13)が配置されている面以外の三側面には断熱性が要
求されるので、断熱材層(15)及び(17)が必要とな
り、装置が高価となる。又、第3図に示す温度プロフイ
ルから明らかな如く、熱電変換素子(13)にかかる有効
温度幅(ΔT)が小さく、このことは、管(3)と管
(7)間での温度差が有効に電気エネルギーに変換され
ず、エネルギーロスが大きいことを示している。
Prior art and its problems The method of converting thermal energy into electric energy by the Seebeck effect using two kinds of fluids having different temperatures is
It is known. Aluminum, for example, provided an aluminum pipe having a hot water flow path (1) of the schematically shown so that the temperature (T H) in FIG. 2 and (3) cold water flow path of the temperature (TC) and (5) There has been proposed a thermoelectric generator in which the pipe (7) and the copper plate (9) and (11) and the thermoelectric conversion element (13) are arranged to face each other. In this device, the tubes (3) and (7) are required to have high thermal conductivity, but the three side surfaces other than the surface on which the thermoelectric conversion element (13) is arranged are required to be heat insulating. , The heat insulating material layers (15) and (17) are required, and the apparatus becomes expensive. Further, as is apparent from the temperature profile shown in FIG. 3, the effective temperature range (ΔT) applied to the thermoelectric conversion element (13) is small, which means that the temperature difference between the tube (3) and the tube (7) is small. This indicates that the energy is not effectively converted into electric energy and the energy loss is large.

問題点を解決するための手段 本発明者は、システムコストの低減及び熱電変換効率の
向上を図るべく種々研究を重ねた結果、熱電変換素子自
体により管路を形成し、管壁をへだてて温度の異なる2
種の流体を流動させる場合には、その目的を達し得るこ
とを見出した。即ち、本発明は、P型素子とn型素子に
より構成されるパイプ状の熱電変換素子を備え、該P型
素子とn型素子とが長手方向において絶縁されており、
かつこれ等両素子がパイプ内面の一ケ所において結線さ
れていることを特徴とする熱発電装置に係る。
Means for Solving the Problems The present inventor has conducted various studies to reduce the system cost and improve the thermoelectric conversion efficiency, and as a result, forms a pipe path by the thermoelectric conversion element itself and extends the temperature by tapping the pipe wall. Different 2
It has been found that the purpose can be achieved if a seed fluid is flowed. That is, the present invention includes a pipe-shaped thermoelectric conversion element composed of a P-type element and an n-type element, and the P-type element and the n-type element are insulated in the longitudinal direction,
Further, the present invention relates to a thermoelectric generator in which both of these elements are connected at one place on the inner surface of the pipe.

実施例 以下、図面に示す実施態様を参照しつつ、本発明をより
一層詳細に説明する。
Examples Hereinafter, the present invention will be described in more detail with reference to the embodiments shown in the drawings.

第1図において、パイプ状の熱電変換素子(21)は、P
型熱電変換素子(23)とn型熱電変換素子(25)とによ
り構成されている。素子(23)と(27)とは、絶縁体
(27)及び絶縁体(29)により長さ方向に絶縁されてい
る。パイプ状の熱電変換素子(21)の内部に非導電性の
高温流体を流動させ、その外部で非導電性の低温流体を
流動させる場合には、導電体層(31)及び導電体層(3
3)を素子(21)の内壁及び外壁上に形成させる。これ
らの導電体層は、円周方向のジユール熱損失を抑制す
る。高温流体及び/又は低温流体が導電性である場合に
は、導電体層(31)及び/又は導電体層(33)上に絶縁
体層(図示せず)を形成する。
In FIG. 1, the pipe-shaped thermoelectric conversion element (21) is P
The thermoelectric conversion element (23) and the n-type thermoelectric conversion element (25). The elements (23) and (27) are insulated in the length direction by the insulator (27) and the insulator (29). When a non-conductive high-temperature fluid is caused to flow inside the pipe-shaped thermoelectric conversion element (21) and a non-conductive low-temperature fluid is caused to flow outside thereof, the conductor layer (31) and the conductor layer (3
3) is formed on the inner and outer walls of the element (21). These conductor layers suppress circumferential heat dissipation. When the hot fluid and / or the cold fluid are conductive, an insulator layer (not shown) is formed on the conductor layer (31) and / or the conductor layer (33).

図示の装置において、熱電変換素子(21)の内部で高温
流体を流動させ、その外部で低温流体を流動させると、
P型熱電変換素子(23)とn型熱電変換素子(25)とが
導電体層(31)により接続されているので、電子がn型
熱電変換素子(25)からP型熱電変換素子(23)に移動
して、正電極(35)と負電極(7)との間に電位差を生
じ、直流が発生する。
In the illustrated apparatus, when a high temperature fluid is made to flow inside the thermoelectric conversion element (21) and a low temperature fluid is made to flow outside thereof,
Since the P-type thermoelectric conversion element (23) and the n-type thermoelectric conversion element (25) are connected by the conductor layer (31), electrons are transferred from the n-type thermoelectric conversion element (25) to the P-type thermoelectric conversion element (23). ), A potential difference is generated between the positive electrode (35) and the negative electrode (7), and direct current is generated.

なお、電極の位置は、低温流体側であれば、特に限定さ
れない。
The position of the electrode is not particularly limited as long as it is on the low temperature fluid side.

また、熱電変換素子の厚さ(d)と管径(D)との比、
d/Dが充分大きい場合には、管の内外面上に導電体層を
形成する必要はない。
Further, the ratio of the thickness (d) of the thermoelectric conversion element to the tube diameter (D),
If the d / D is large enough, it is not necessary to form a conductor layer on the inner and outer surfaces of the tube.

発明の効果 本発明によれば、熱電変換素子自体により管路を形成し
たので、システムコストが大巾に低減される。又、高温
流体と低温流体間の温度差がそのまま熱電変換素子に付
与されるので、発電効率が著しく高くなる。
EFFECTS OF THE INVENTION According to the present invention, since the pipe is formed by the thermoelectric conversion element itself, the system cost is greatly reduced. Moreover, since the temperature difference between the high temperature fluid and the low temperature fluid is directly applied to the thermoelectric conversion element, the power generation efficiency is significantly increased.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の一実施例態様の概略を示す断面図、
第2図は、従来技術装置を示す断面図、第3図は第2図
装置の温度プロフイルを示す断面図である。 (21)……パイプ状の熱電変換素子 (23)……P型熱電変換素子 (25)……n型熱電変換素子 (27)、(29)……絶縁体 (31)、(33)……導電体層 (35)……正電極 (37)……負電極
FIG. 1 is a sectional view showing the outline of an embodiment of the present invention,
FIG. 2 is a sectional view showing a prior art device, and FIG. 3 is a sectional view showing a temperature profile of the device shown in FIG. (21) …… Pipe-shaped thermoelectric conversion element (23) …… P-type thermoelectric conversion element (25) …… N-type thermoelectric conversion element (27), (29) …… Insulator (31), (33)… … Conductive layer (35) …… Positive electrode (37) …… Negative electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】P型素子とn型素子により構成されるパイ
プ状の熱電変換素子を備え、該P型素子とn型素子とが
長手方向において絶縁されており、かつこれ等両素子が
パイプ内面の一ケ所において結線されていることを特徴
とする熱発電装置。
1. A pipe-shaped thermoelectric conversion element comprising a P-type element and an n-type element, wherein the P-type element and the n-type element are insulated in the longitudinal direction, and both of these elements are pipes. A thermoelectric generator characterized by being connected in one place on the inner surface.
JP61122929A 1986-05-28 1986-05-28 Thermoelectric generator Expired - Lifetime JPH0740794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61122929A JPH0740794B2 (en) 1986-05-28 1986-05-28 Thermoelectric generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61122929A JPH0740794B2 (en) 1986-05-28 1986-05-28 Thermoelectric generator

Publications (2)

Publication Number Publication Date
JPS62281776A JPS62281776A (en) 1987-12-07
JPH0740794B2 true JPH0740794B2 (en) 1995-05-01

Family

ID=14848104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61122929A Expired - Lifetime JPH0740794B2 (en) 1986-05-28 1986-05-28 Thermoelectric generator

Country Status (1)

Country Link
JP (1) JPH0740794B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030064292A (en) 2002-01-25 2003-07-31 가부시키가이샤 고마쓰 세이사쿠쇼 Thermoelectric module
JP5662490B2 (en) 2012-03-07 2015-01-28 パナソニックIpマネジメント株式会社 Thermoelectric converter

Also Published As

Publication number Publication date
JPS62281776A (en) 1987-12-07

Similar Documents

Publication Publication Date Title
US8575467B2 (en) Generator of electric energy based on the thermoelectric effect
US6385976B1 (en) Thermoelectric module with integrated heat exchanger and method of use
US2992538A (en) Thermoelectric system
JP2775410B2 (en) Thermoelectric module
CN108493322B (en) Thermocouple unit of annular thermoelectric material generator and annular thermoelectric material generator
CN102891248B (en) Flexible thermoelectric conversion system and manufacturing method thereof
JP3442862B2 (en) Thermoelectric generation unit
JPH0740794B2 (en) Thermoelectric generator
JP2996305B2 (en) High thermal resistance thermoelectric generator
KR101724847B1 (en) Thermoelectric Generation Device for vehicle
RU2563305C1 (en) Thermoelectric automotive alternator
CN208078022U (en) The thermocouple unit of annular thermoelectric material electric organ and annular thermoelectric material electric organ
US11785849B2 (en) Thermoelectric power generator
KR101365850B1 (en) Device for generating electric energy from a heat-conducting material
US4284838A (en) Thermoelectric converter and method
JP2003348867A (en) Waste heat power generator
JP2000073754A (en) Waste heat recovery device for vehicle
CN208690302U (en) A kind of organic/inorganic composite material thermoelectric generating device
RU2767595C1 (en) Thermoelectric generator
JPH09199764A (en) Thermoelectric generator module
JP2566330B2 (en) Thermoelectric power generation method and apparatus
JP2003273412A (en) Thermoelectric conversion device
RU189447U1 (en) Thermoelectric module
TWI744717B (en) Thermoelectric power generating device and manufacturing method thereof
JPH11261117A (en) Thermoelectric conversion module and waste heat power generating device