JPS62279862A - Apparatus for forming membrane - Google Patents

Apparatus for forming membrane

Info

Publication number
JPS62279862A
JPS62279862A JP12294486A JP12294486A JPS62279862A JP S62279862 A JPS62279862 A JP S62279862A JP 12294486 A JP12294486 A JP 12294486A JP 12294486 A JP12294486 A JP 12294486A JP S62279862 A JPS62279862 A JP S62279862A
Authority
JP
Japan
Prior art keywords
gas
thin film
substrate
forming apparatus
molecular beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12294486A
Other languages
Japanese (ja)
Inventor
Shunichi Murakami
俊一 村上
Sumio Sakai
酒井 純朗
Tetsuo Ishida
哲夫 石田
Akira Nadaguchi
灘口 明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anelva Corp filed Critical Anelva Corp
Priority to JP12294486A priority Critical patent/JPS62279862A/en
Publication of JPS62279862A publication Critical patent/JPS62279862A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating Apparatus (AREA)

Abstract

PURPOSE:To uniformize a film thickness by freely controlling the collision quality of air to the surface of a substrate while dispensing with the rotational driving of a substrate holding member, by making the jet direction of air from an air jet device movable. CONSTITUTION:For example, in a molecular beam epitaxial growth monocrystal membrane forming apparatus, the center axis of a molecular beam cell takes the motion shown by two-dotted chain lines 201, 202 around a ball 24 while keeping a constant angle theta around a shaft 200 and an air jet direction is moved along a conical surface of a vertical angle 2theta. Therefore, if the molecular beam cell main body 10 is allowed to position at the central part of the bottom wall 21 of a vacuum container directing to the front surface of a substrate, the control of a film thickness can be performed ideally without rotating a substrate holding member.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (産業上の利用分野) 未発M1は3、−二減圧された真空容器内に気一体を導
入、または真空容器内で気体を生成し、その気体を原料
として、基板表面に薄膜を形成する薄膜形成装置の改良
に関する。
[Detailed description of the invention] 3. Detailed description of the invention (industrial application field) This invention relates to an improvement in a thin film forming apparatus that forms a thin film on a substrate surface using the gas as a raw material.

(従来の技術) 従来の薄膜形成装置では、第4図に示すように、真空容
器1内に気体を導入する気体噴射装置3a、または真空
容器内で気体を生成する気体噴射装置3bを、真空容器
側面若しくは真空容器底面に固定する構造をとっている
。4は排気孔である。
(Prior Art) In a conventional thin film forming apparatus, as shown in FIG. It has a structure that is fixed to the side of the container or the bottom of the vacuum container. 4 is an exhaust hole.

(発明が解決しようとする開題点) 上記の構成をとる従来の装置では、真空容器1内に噴射
された気体で基板2の表面に均一な膜厚の薄膜を形成す
るためには、基板2を所定軸例えば、2aの回りに回転
させる必要があった。この回転は加熱機構(図示しない
)を内臓する基板保持部材7を回転駆動することになる
ため、どうしても装置を大がかりなものにする欠点があ
った。
(Problem to be Solved by the Invention) In the conventional apparatus having the above configuration, in order to form a thin film with a uniform thickness on the surface of the substrate 2 with the gas injected into the vacuum container 1, it is necessary to It was necessary to rotate around a predetermined axis, for example, 2a. This rotation rotationally drives the substrate holding member 7 containing a heating mechanism (not shown), which has the disadvantage of inevitably making the apparatus bulky.

この欠点は、次記の装置の場合は一層著しいものになる
。即ち、通常の薄膜形成装置では気体噴射装置から、噴
射された気太の分子は、排−気孔から排気されるか、気
体捕捉機構に捕捉されかするまでに、どうしても多回数
に亙って真空容器の壁面と衝突を繰り返し、真空容器内
で漂う時間が長くなる。その漂う時間は、真空容器内圧
力と真空容器の構造特に基板部(基板及び基板保持部材
)の配置・構造と、排気孔の開口部若しくは気体捕捉機
構の構成およびその占める位置に強い影響を受ける。気
体の漂う時間の長いことは次の障害を生む。即ち、有機
金属ガスHIJえばトリメチルガリウム(以下、TMG
)、)リメチルアルミニウム(以下、TMA)、アルシ
ン(AH3)を用いて単結晶薄膜A1工Gat−エAs
/GaAsのへテロ構造を形成する場合に、このヘテロ
構造では、周知のように、A l x G a 1−X
A SとGaAsの組成比のX値および界面の構造の変
化の急峻性が特に重要であるが、気体噴射装置からTM
Gとアルシンを噴出させて先ずGaAsji’を作り、
次いでTMAを気体噴射させて所望のX値のAlGaA
s層を堆積させようとする際、はじめに一定流量のT 
MAを・噴射させ−て界面℃第11のA ’、 G a
 A sの組成比を希望通りのX値にすることが出来て
も、その後の層のAlGaAsの組成比のX値は、どう
しても大きい値の方へ流れて行ってしまうという不快な
現象を生ずる。
This disadvantage becomes even more pronounced in the following devices. That is, in a normal thin film forming apparatus, the air molecules injected from the gas injection device must be vacuumed many times before being exhausted from the exhaust hole or captured by the gas trapping mechanism. It repeatedly collides with the walls of the container, increasing the amount of time it spends floating inside the vacuum container. The drifting time is strongly influenced by the internal pressure of the vacuum chamber, the structure of the vacuum chamber, especially the arrangement and structure of the substrate section (substrate and substrate holding member), and the configuration and position of the exhaust hole opening or gas trapping mechanism. . The long time the gas floats around causes the following problems. That is, the organometallic gas HIJ is trimethyl gallium (hereinafter referred to as TMG).
),) Monocrystalline thin film A1 using remethylaluminum (hereinafter referred to as TMA) and arsine (AH3)
/GaAs heterostructure, in this heterostructure, as is well known, A l x Ga 1-X
The X value of the composition ratio of AS and GaAs and the steepness of the change in the structure of the interface are particularly important.
G and arsine are ejected to first make GaAsji',
Next, TMA is injected as a gas to form AlGaA with a desired X value.
When attempting to deposit the s layer, first a constant flow rate T
MA is injected to the interface °C 11th A', Ga
Even if the As composition ratio can be set to the desired X value, the X value of the AlGaAs composition ratio in subsequent layers inevitably tends to a larger value, which is an unpleasant phenomenon.

これは、TMAが真空容器の壁面等で前記した衝突を繰
り返して長時間真空容器内に漂い、排気によって所定の
定常分圧値に落着くまてζこ時間がかかり、その間しき
りに基板表面と衝突するため、どうしても組成比Xを偏
移させてしまうものである。
This is because the TMA repeatedly collides with the walls of the vacuum chamber as described above and floats in the vacuum chamber for a long time, and it takes a long time for the partial pressure to settle to a predetermined steady partial pressure value by evacuation, during which time the TMA repeatedly collides with the substrate surface. Therefore, the composition ratio X inevitably shifts.

同様の不都合は、TMAの供給を停止した場合にも生じ
、停止の時点以後に相当する界面で組成比のX値を緩慢
に変化させ、また界面の構造の変化の急峻性を失わせる
A similar problem occurs when the supply of TMA is stopped, and the X value of the composition ratio changes slowly at the corresponding interface after the time of stopping, and the sharpness of the change in the structure of the interface is lost.

これらの現象は上記以外の薄膜を形成する場合にも存在
するもので、組成比のX値や、界面の構造の変化の急峻
性を特に重視する種類の半導体デバイス(高移動度電子
デバイス、半導体レーザー等)では、所期の性能を発揮
できない大きい理由となって重大な問題どなる。
These phenomena also exist when forming thin films other than those mentioned above, and are used in types of semiconductor devices (high mobility electronic devices, semiconductor (lasers, etc.), this is a major reason why they are unable to achieve the desired performance, resulting in serious problems.

この問題の解決を目的にして、第3図に示すように、真
空容器1の排気孔の開口部(もしくは気体捕捉機構)4
を気体噴射装置3e、3f、3gの気体の噴射の方向5
に設けるとともに、気体が基板表面で反射して進む方向
5aが、これも排気孔の開口部(もしくは気体捕捉機構
)4へ向うように基板を配置することによって漂いを無
いものにし、しかも基板を多数(21〜26)登載して
これらを一挙に処理するよう、基板保持部材7を多角錐
形に構成した単結晶1膜形成装置が考えられているが、
この装置の場合、各基板を回転させ、かつ、基板保持部
材7を多角錐の軸40の回りに回転させようとすると、
回転駆動の機構は一層大がかりなものになる。
In order to solve this problem, as shown in FIG.
The direction 5 of the gas injection of the gas injection devices 3e, 3f, 3g
By arranging the substrate so that the direction 5a in which the gas reflects on the substrate surface and moves toward the opening of the exhaust hole (or the gas trapping mechanism) 4, drift is eliminated, and the substrate is A single crystal single film forming apparatus in which the substrate holding member 7 is configured in the shape of a polygonal pyramid has been considered so that a large number (21 to 26) of substrates can be loaded and processed at once.
In the case of this device, when attempting to rotate each substrate and rotate the substrate holding member 7 around the polygonal pyramid axis 40,
The rotational drive mechanism becomes even more extensive.

(発明の目的) 本発明は、上記の問題を解決し、基板保持部材の回転駆
動を不要若しくは大幅に簡略化できる薄膜形成装置の提
供を目的とする。
(Objective of the Invention) An object of the present invention is to provide a thin film forming apparatus that solves the above problems and can eliminate or greatly simplify rotational driving of a substrate holding member.

(問題を解決するための手段) 本−発明二は一1真−空、容器内に気体を導入、または
真空容器内で気体を生成して、該真空容器内で該気体を
原材料として、基板表面に薄膜を形成させる薄膜形成装
置において、 気体の噴射の方向を可動に構成した薄膜形成装置によっ
て、また簡便には、 気体の噴射の方向と所定軸とのなす角を一定に保ちつゝ
、該噴射の方向を該所定軸の回り:こ回転せしめる如く
構成した薄膜形成装置によって、前記目的を達成したも
のである。
(Means for Solving the Problems) The present invention 2 is 11 Vacuum, introducing a gas into a container, or generating a gas in a vacuum container, and using the gas as a raw material in the vacuum container to produce a substrate. In a thin film forming device that forms a thin film on a surface, the thin film forming device is configured such that the direction of gas jetting is movable, or simply, the angle between the gas jetting direction and a predetermined axis is kept constant. The above object has been achieved by a thin film forming apparatus configured to rotate the direction of the jet around the predetermined axis.

(作用) 本発明では、気体噴射装置の気体の噴射の方向が可動で
あるため、基板表面に対する気体の衝突を、所定のプロ
グラム通りにすることで、膜厚の制御を理想的に行うこ
とが出来る。また薄膜形成装置の構造を工夫するときは
、気体の噴射の方向と所定軸とのなす角を一定に保ちつ
騙、該方向を該所定軸の回りに回転せしめる如き単純(
ヒした構成を採用することで、基板保持部材を回転させ
たのと同等の効果を挙げることが出来る。
(Function) In the present invention, since the direction of the gas jet from the gas jet device is movable, the film thickness can be ideally controlled by making the gas collide with the substrate surface according to a predetermined program. I can do it. In addition, when devising the structure of a thin film forming apparatus, it is necessary to keep the angle between the direction of gas injection and a predetermined axis constant, and to rotate the direction around the predetermined axis.
By adopting this advanced configuration, it is possible to achieve the same effect as rotating the substrate holding member.

(実施例) 第1図は、本発明の実施例の分子線エピタキシー成長単
結晶薄膜形成装置に用いられる、気体噴射装置(分子線
セル)部分の断面図を示す。真空容器内で気体を生成し
噴射するタイプのものである。10は例えばPBN製の
分子線セル本体で溶融したソース物質12を収容する。
(Example) FIG. 1 shows a cross-sectional view of a gas injection device (molecular beam cell) used in an apparatus for forming a single crystal thin film grown by molecular beam epitaxy according to an example of the present invention. This type generates gas in a vacuum container and injects it. Reference numeral 10 is a molecular beam cell body made of, for example, PBN, which accommodates a melted source material 12.

13はその液面である。分子線セル本体10は、リフレ
クタ−15,16の中に案内環18を便りで固定されて
おり、その周囲を、リード線29、絶縁碍管17を経由
して導入されたスパイラル状ヒータ線14が取り巻いて
いる。リフレクタ−ISの下部はセル固定板23に固定
されており、セル固定板23は真空容器1の底面の壁2
1にベローズ22て接続されている。そのセル固定板2
3にはまた、ボール24と操作棒25が取り付けられて
いて、ボール24と係合する軸受27は、真空容器〆に
固着されている。。そして操作棒25は、軸200の回
りに回転する操作用円盤26の穴260に挿入゛され−
ている。
13 is the liquid level. In the molecular beam cell main body 10, a guide ring 18 is fixed in reflectors 15 and 16 with paper, and a spiral heater wire 14 introduced via a lead wire 29 and an insulated tube 17 surrounds the guide ring 18. surrounding. The lower part of the reflector IS is fixed to a cell fixing plate 23, and the cell fixing plate 23 is attached to the bottom wall 2 of the vacuum container 1.
1 with a bellows 22. The cell fixing plate 2
3 is also attached with a ball 24 and an operating rod 25, and a bearing 27 that engages with the ball 24 is fixed to the vacuum container. . The operating rod 25 is inserted into the hole 260 of the operating disk 26 that rotates around the shaft 200.
ing.

上記の構成のため、この分子線セルの中心軸は、ボール
24を支点にして軸200の回りに一定角θを保って、
201.202の如く「みそすり運動」をし、気体噴射
の方向を頂角2θの円錐面に沿って移動させることにな
る。この分子線セルを第4図の基板2の正面の中央部3
Cの位置く一点鎖線で示す)に置けば、第4図の装置で
基板保持部材7の回転が省略できることは明らかである
Due to the above configuration, the central axis of this molecular beam cell maintains a constant angle θ around the axis 200 using the ball 24 as a fulcrum.
201 and 202, the direction of the gas jet is moved along a conical surface with an apex angle of 2θ. This molecular beam cell is placed at the center 3 on the front side of the substrate 2 in FIG.
It is clear that the rotation of the substrate holding member 7 can be omitted in the apparatus shown in FIG. 4 if the substrate holding member 7 is placed at the position C (indicated by a dashed line).

分子線セルを、中央部をそれた3dの位置に置く場合も
、回転軸200の方向を200dのように適当に傾ける
ことで、実用上の目的は達成できる。
Even when the molecular beam cell is placed at a position 3d away from the center, the practical purpose can be achieved by appropriately tilting the direction of the rotation axis 200 such as 200d.

第2図に示すものは、真空容器外から気体を導入し噴射
する場合の、本発明の薄膜形成装置の実施例の気体噴射
装置部の図であって、真空容器側壁31に固定された導
入管基部32には、ベローズ33を経由して噴射管36
が接続され、噴射管36には2つのボール34.44が
固着している。
What is shown in FIG. 2 is a diagram of the gas injection device section of the embodiment of the thin film forming apparatus of the present invention, in which gas is introduced from outside the vacuum container and is injected. An injection pipe 36 is connected to the pipe base 32 via a bellows 33.
is connected, and two balls 34 and 44 are fixed to the injection pipe 36.

各ボール34と44とはそれぞれ、操−作棒35に固定
された軸受37と側壁31に固定された軸受47とに係
合している。この構成によって、操作棒35を操作する
ことにより(操作の駆動装置は図示しない)噴射管36
の気体噴射の方向301を、導入管基部32の軸300
を中心にし、ボール44を支点にして所望の方向に向け
ることが可能となる。この気体噴射装置を第3図の薄膜
形成装置の3g、3e、3fの位置に置けは基板保持部
材70回転が不要になることは、前記同様で説明を要し
ない。
Each ball 34 and 44 engages a bearing 37 fixed to the operating rod 35 and a bearing 47 fixed to the side wall 31, respectively. With this configuration, by operating the operating rod 35 (the operating drive device is not shown), the injection pipe 36 is
The direction 301 of the gas jet is set to the axis 300 of the introduction pipe base 32.
It becomes possible to orient the ball 44 in a desired direction using the ball 44 as a fulcrum. If this gas injection device is placed in the positions 3g, 3e, and 3f of the thin film forming apparatus shown in FIG. 3, it is unnecessary to rotate the substrate holding member 70, as described above, and no explanation is required.

(発明の効果) 本発明によれば、基板表面に対する気体の衝突量を自由
に制御し、薄膜の膜厚、膜質の均−化等の制御に関し、
基板保持部材を回転させたのと同等の効果を挙げること
が出来る。
(Effects of the Invention) According to the present invention, the amount of gas colliding with the substrate surface can be freely controlled, and the thickness of the thin film, uniformity of the film quality, etc. can be controlled.
The same effect as rotating the substrate holding member can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1,2図は、本発明の薄膜形成装置の実施例の気体噴
射装置部の概略断面図。 第3,4′図は、本発明の一単結一晶一薄膜形成装置−
の実施−例の概−略図。 1・・・・・・真空容器、 2・・・・・・基板、 3
8〜3g・・・・・・気体噴射装置、 4・・・・・・
排気孔、 5,5a・・・・・・噴射された気体の進行
方向、 7・・・・・・基板保持部、 10・・・・・・分子線セル本体、 24.34’、4
4・・・・・・ボール、  25.35・・・・・・操
作棒、22.33・・・・・・ベローズ、  36・・
・・・・噴射管。
1 and 2 are schematic sectional views of the gas injection device section of the embodiment of the thin film forming apparatus of the present invention. Figures 3 and 4' show a single crystal single crystal thin film forming apparatus of the present invention.
1 is a schematic illustration of an example implementation. 1... Vacuum container, 2... Substrate, 3
8~3g... Gas injection device, 4...
Exhaust hole, 5, 5a...Advancing direction of the injected gas, 7...Substrate holder, 10...Molecular beam cell body, 24.34', 4
4... Ball, 25.35... Operating rod, 22.33... Bellows, 36...
...Injection pipe.

Claims (4)

【特許請求の範囲】[Claims] (1)真空容器内に気体を導入、または真空容器内で気
体を生成して、該真空容器内で該気体を原材料として、
基板表面に薄膜を形成させる薄膜形成装置において、 該気体の噴射の方向を可動に構成したことを特徴とする
薄膜形成装置
(1) Introducing a gas into a vacuum container or generating a gas in a vacuum container, and using the gas as a raw material in the vacuum container,
A thin film forming apparatus for forming a thin film on a substrate surface, characterized in that the direction of jetting the gas is configured to be movable.
(2)気体の噴射の方向と所定軸とのなす角を一定に保
ちつゝ、該噴射の方向を該所定軸の回りに回転せしめる
如く構成したことを特徴とする特許請求の範囲第1項記
載の薄膜形成装置。
(2) Claim 1 characterized in that the angle between the direction of gas injection and the predetermined axis is kept constant, and the direction of the injection is rotated around the predetermined axis. The thin film forming apparatus described above.
(3)気体噴射装置が、薄膜形成装置外から気体を導入
するものである特許請求の範囲第1または2項記載の薄
膜形成装置。
(3) The thin film forming apparatus according to claim 1 or 2, wherein the gas injection device introduces gas from outside the thin film forming apparatus.
(4)気体噴射装置が、薄膜形成装置内において気体を
生成し噴射するものである特許請求の範囲第1または2
項記載の薄膜形成装置。
(4) Claim 1 or 2, wherein the gas injection device generates and injects gas within the thin film forming device.
Thin film forming apparatus as described in .
JP12294486A 1986-05-28 1986-05-28 Apparatus for forming membrane Pending JPS62279862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12294486A JPS62279862A (en) 1986-05-28 1986-05-28 Apparatus for forming membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12294486A JPS62279862A (en) 1986-05-28 1986-05-28 Apparatus for forming membrane

Publications (1)

Publication Number Publication Date
JPS62279862A true JPS62279862A (en) 1987-12-04

Family

ID=14848481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12294486A Pending JPS62279862A (en) 1986-05-28 1986-05-28 Apparatus for forming membrane

Country Status (1)

Country Link
JP (1) JPS62279862A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5358761A (en) * 1976-11-08 1978-05-26 Sony Corp Vapor phase growth apparatus
JPS5533925B2 (en) * 1973-10-09 1980-09-03

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5533925B2 (en) * 1973-10-09 1980-09-03
JPS5358761A (en) * 1976-11-08 1978-05-26 Sony Corp Vapor phase growth apparatus

Similar Documents

Publication Publication Date Title
KR0173013B1 (en) Vapor growth apparatus and vapor growth method capable of growing a compound semiconductor layer having an evenness and an interfacial sharpness in units of atomic layers with good productivity
JPH08181076A (en) Thin film forming method and device
JPS62279862A (en) Apparatus for forming membrane
JP2017139263A (en) Semiconductor device manufacturing method
JPS62190831A (en) Molecular beam epitaxy apparatus
JP3501412B2 (en) Pulsed material introduction cell
JPS61271817A (en) Molecular beam epitaxy apparatus
KR100316272B1 (en) Laser annealing apparatus
JPH0138910Y2 (en)
JP2791444B2 (en) Vapor phase epitaxial growth method
JPS62270492A (en) Apparatus for forming single crystal thin film
JP2772533B2 (en) Thin film growth method
JPH06263587A (en) Molecular beam epitaxial growth apparatus
JPS6272113A (en) Molecular beam crystal growth device
JPS6134930A (en) Growing process of selective type crystal
JPS62265714A (en) Molecular beam epitaxially growing apparatus
JP2019057740A (en) Semiconductor device manufacturing method
JPS62165318A (en) Device for molecular beam crystal growth
JPH0613317A (en) Formation of vertical superlattice
JPH0657634B2 (en) Molecular beam epitaxial growth system
JPS61261295A (en) Thin film growing device
JPH02111692A (en) Molecular beam crystal growth apparatus
JPH0352435B2 (en)
JP2002121098A (en) Method for producing multiple oxide-based single crystal film, and multiple oxide-based single crystal film produced by the method
JPH04260692A (en) Cylinder container for vaporizing feeder of organometallic compound