JPS62165318A - Device for molecular beam crystal growth - Google Patents

Device for molecular beam crystal growth

Info

Publication number
JPS62165318A
JPS62165318A JP626286A JP626286A JPS62165318A JP S62165318 A JPS62165318 A JP S62165318A JP 626286 A JP626286 A JP 626286A JP 626286 A JP626286 A JP 626286A JP S62165318 A JPS62165318 A JP S62165318A
Authority
JP
Japan
Prior art keywords
molecular beam
raw material
beam source
source cell
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP626286A
Other languages
Japanese (ja)
Other versions
JPH0152891B2 (en
Inventor
Tatsu Yamamoto
達 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP626286A priority Critical patent/JPS62165318A/en
Publication of JPS62165318A publication Critical patent/JPS62165318A/en
Publication of JPH0152891B2 publication Critical patent/JPH0152891B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To enable an excellent crystalline film with a specified thickness and composition ratio to grow by a method wherein the material in a first molecular beam source cell 2 is supplied from a second molecular beam cell 4. CONSTITUTION:Crystalline films are grown by heating material M up to specified temperature before operating a shutter 3. Proper quantity of material M reduced moderately is grown to the extent of molecular beams with inconspiculous fluctuation in intensity to be supplied from the second molecular beam source cell 4 to the first molecular beam source 2. This material M is supplied at the temperature not transmitting molecular beams B e.g. around 700 deg.C while the other material M1 is supplied at the temperature sufficient for discharging molecular beams B1 e.g. around 1,100 deg.C by opening shutters 3 and 5. When the quantity of material M is restored to the quantity at the starting time of growing process, the shutters 3 and 5 are closed to restore the temperature of materials M and M1 to the temperatures in growing process for starting the growing process again.

Description

【発明の詳細な説明】 〔概要〕 分子線源セル内の原料から放出させた分子線を用いて結
晶を成長させる分子線結晶成長装置において、 該分子線源セル番こ原料を分子線の形態で補給する第二
の分子線源セルを設けることにより、結晶を成長させる
分子線の強度を長期に渡り安定化さることを可能にした
ものである。
[Detailed Description of the Invention] [Summary] In a molecular beam crystal growth apparatus that grows a crystal using a molecular beam emitted from a raw material in a molecular beam source cell, the raw material in the molecular beam source cell is grown in the form of a molecular beam. By providing a second molecular beam source cell for replenishment, it is possible to stabilize the intensity of the molecular beam for growing crystals over a long period of time.

〔産業上の利用分野〕[Industrial application field]

本発明は、分子線結晶成長装置に係り、特に、分子線の
強度を安定化させる構成に関す。
The present invention relates to a molecular beam crystal growth apparatus, and particularly to a configuration for stabilizing the intensity of molecular beams.

分子線結晶成長(MBE)装置は、基板上に形成される
成長膜に対して例えば10人程度の膜厚制御が可能であ
り、然も多層構成の膜成長を連続して行うことが出来る
と言う際立った特徴を有している。
Molecular beam crystal growth (MBE) equipment is capable of controlling the thickness of a grown film formed on a substrate by, for example, about 10 people, and is capable of continuously growing a multilayered film. It has the following distinctive characteristics.

このため、近年、半導体素子の形成に使用される化合物
半導体や混晶半導体の結晶成長に賞月されるようになっ
てきたが、多数の結晶膜成長に対する膜厚制御や成長膜
組成の安定化のため、結晶を成長させる分子線の強度の
長期に渡る安定性維持が望まれる。
For this reason, in recent years, attention has been focused on the crystal growth of compound semiconductors and mixed crystal semiconductors used in the formation of semiconductor devices. Therefore, it is desirable to maintain the stability of the molecular beam intensity for crystal growth over a long period of time.

〔従来の技術〕[Conventional technology]

第3図は従来のMBE装置の要部構成を示す側断面図、
第4図はその装置における分子線源セル部の側断面図、
である。
FIG. 3 is a side sectional view showing the main part configuration of a conventional MBE device;
Figure 4 is a side sectional view of the molecular beam source cell section in the device;
It is.

第3図において、1は成長時に超高真空にする成長室、
2は複数個あり成長膜を構成する異なった元素の原料M
(第4図図示)を入れ加熱して原料Mから放出する分子
線Bを基板ホールダ6に保持された成長用基板Sに照射
させる分子線源セル、3は分子線Bが基板Sを照射する
のを開閉するシャッタである。
In Fig. 3, 1 is a growth chamber that is under ultra-high vacuum during growth;
2 is a plurality of raw materials M of different elements constituting the grown film;
A molecular beam source cell 3 is a cell in which a growth substrate S held in a substrate holder 6 is irradiated with a molecular beam B emitted from a raw material M by heating (as shown in FIG. 4); It is a shutter that opens and closes the

また第4図において、2は上記分子線源セル、2aはセ
ル2の開口部、2bはセル2を加熱するヒータ、2cは
熱遮蔽のための液体窒素シュラウド、3は上記シャッタ
、である。
Further, in FIG. 4, 2 is the molecular beam source cell, 2a is the opening of the cell 2, 2b is a heater for heating the cell 2, 2c is a liquid nitrogen shroud for heat shielding, and 3 is the shutter.

セル2に入れられヒータ2bで加熱された原料Mから放
出される分子線Bは、基板Sに向けられた開口部2aを
通り、シャッタ3の解放時に基板Sを照射して結晶膜を
成長させる。
Molecular beams B emitted from the raw material M placed in the cell 2 and heated by the heater 2b pass through the opening 2a directed toward the substrate S, and when the shutter 3 is released, the substrate S is irradiated to grow a crystal film. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記構成の装置は、分子線Bの放出によりセル2内の原
料Mが逐次減少し、これに伴い、原料Mの残量に依存す
る分子線Bの強度が変化する。
In the apparatus configured as described above, the raw material M in the cell 2 is gradually reduced by emitting the molecular beam B, and the intensity of the molecular beam B, which depends on the remaining amount of the raw material M, changes accordingly.

そしてこの分子線Bの強度は、結晶膜の成長に供給する
元素の量を支配する。
The intensity of this molecular beam B controls the amount of elements supplied to the growth of the crystal film.

このため、化合物半導体や混晶半導体例えばガリウム砒
素(GaAs)やアルミニウムガリウム砒素(A]Ga
As)などの結晶膜を成長させた場合、成長処理数が増
加すると分子線Bの強度の変化が目立ち、成長膜の膜厚
や組成比を制御するのが困難になる問題がある。
For this reason, compound semiconductors and mixed crystal semiconductors such as gallium arsenide (GaAs) and aluminum gallium arsenide (A]Ga
When growing a crystalline film such as As), as the number of growth processes increases, the change in the intensity of the molecular beam B becomes noticeable, and there is a problem that it becomes difficult to control the thickness and composition ratio of the grown film.

また、成長室1を超高真空にした後の初期の間は、分子
線源セル2に吸着したガスや原料Mに含まれる不純物が
放出されて、良質の結晶膜が成長出来ない。このため、
成長に先立ちセル2を高温にして原料Mの10〜30%
を飛ばし、原料Mの高純度化をはかる。然も超高真空中
における原料Mの補給が出来ないため、本装置は、成長
に使用出来る原料Mが少ないものとなる。
Further, during the initial period after the growth chamber 1 is made into an ultra-high vacuum, impurities contained in the gas adsorbed in the molecular beam source cell 2 and the raw material M are released, making it impossible to grow a high-quality crystal film. For this reason,
Prior to growth, the cell 2 is heated to 10-30% of the raw material M.
is skipped to improve the purity of raw material M. However, since it is not possible to replenish the raw material M in an ultra-high vacuum, this apparatus has a small amount of raw material M that can be used for growth.

〔問題点を解決するための手段〕[Means for solving problems]

第1図は本発明によるMBE装置実施例の要部構成を示
す側断面図である。
FIG. 1 is a side cross-sectional view showing the main structure of an embodiment of an MBE apparatus according to the present invention.

上記問題点は、第1図に示される如く、基板Sを保持す
る基板ホールダ6と、分子線の原料を収容し基板ホール
ダ6に向けた第一の開口部を有する第一の分子線源セル
2と、第一の分子線源セル2と同し原料を収容し第一の
開口部とは互いに斜めに向かい合う第二の開口部を有す
る第二の分子線源セル4とを備え、第一の分子線源セル
2は、収容した原料をヒータで加熱し第一の開口部から
分子線を基板ホールダ6に向けて照射して基板S上に結
晶を成長させ、第二の分子線源セル4は、収容した原料
をヒータで加熱し第二の開口部から分子線を第一の開口
部に向けて注入して第一の分子線源セル2内の原料を補
給する本発明のMBE装置によって解決される。
The above problem is as shown in FIG. 2, and a second molecular beam source cell 4 which accommodates the same raw material as the first molecular beam source cell 2 and has a second opening diagonally opposite to the first opening; The molecular beam source cell 2 heats the contained raw material with a heater and irradiates molecular beams from the first opening toward the substrate holder 6 to grow crystals on the substrate S. 4 is an MBE apparatus of the present invention that replenishes the raw material in the first molecular beam source cell 2 by heating the stored raw material with a heater and injecting the molecular beam from the second opening toward the first opening. solved by.

〔作用〕[Effect]

問題となる分子線Bの強度が依存する原料の残量は、第
一の分子線源セル2における残量である。
The remaining amount of the raw material on which the intensity of the molecular beam B in question depends is the remaining amount in the first molecular beam source cell 2.

従って第二の分子線源セル4から原料を第一の分子線源
セル2に補給することによって、第一の分子線源セル2
における原料の残量の変化を少なくし、上記分子線Bの
強度の変化を低減させることが出来る。
Therefore, by replenishing the raw material from the second molecular beam source cell 4 to the first molecular beam source cell 2, the first molecular beam source cell 2
It is possible to reduce the change in the remaining amount of the raw material in , and reduce the change in the intensity of the molecular beam B.

また上記補給は、分子線の形態で行うので成長室1の超
高真空を解除することなしに可能であり、第二の分子線
源セル4内の原料が無くなるまで強度変化を低減させた
分子線Bを得ることが出来る。
Furthermore, since the above replenishment is carried out in the form of molecular beams, it is possible without releasing the ultra-high vacuum in the growth chamber 1, and the supply of molecules with reduced intensity changes is possible until the raw material in the second molecular beam source cell 4 is exhausted. Line B can be obtained.

かくして本装置を使用することにより、成長室1の超高
真空を解除することなしに、所望した膜厚や組成比を有
する多数の良質な結晶膜を成長させることが可能になる
Thus, by using this apparatus, it is possible to grow a large number of high-quality crystal films having desired film thicknesses and composition ratios without releasing the ultra-high vacuum in the growth chamber 1.

〔実施例〕〔Example〕

以下、第1図およびその実施例における分子線源セル部
を示した第2図の側断面図を用い、実施例について説明
する。
Hereinafter, an example will be described using FIG. 1 and a side sectional view of FIG. 2 showing a molecular beam source cell section in the example.

第1図および第2図は従来装置を示した第3図および第
4図に対応する図である。
FIGS. 1 and 2 are views corresponding to FIGS. 3 and 4 showing conventional devices.

第1図に示すMBE装置は、第3図図示従来装置の分子
線源セル2を第一の分子線源セルとなし、その傍らに第
二の分子線源セル4およびシャ・7り5などを付加した
ものである。第二の分子線源セル4は、第一の分子線源
セル2に原料を補給するだけの目的を持つもので、結晶
膜の成長は、従来装置と同様に第一の分子線源セル2か
らの分子線Bによって行う。
The MBE apparatus shown in FIG. 1 uses the molecular beam source cell 2 of the conventional apparatus shown in FIG. is added. The second molecular beam source cell 4 has the sole purpose of replenishing raw materials to the first molecular beam source cell 2, and the crystal film is grown in the first molecular beam source cell 2 in the same way as in the conventional device. This is done with molecular beam B from .

従って従来装置と異なる処は、第2図に示す分子線源セ
ル部である。
Therefore, the difference from the conventional device is the molecular beam source cell section shown in FIG.

第2図において、第一の分子線源セル2、開口部2a、
ヒータ2b、液体窒素シュラウド2C、シャッタ3、は
従来のままでである。そして、4は第二の分子線源セル
、4aはセル4の開口部、4bはセル4を加熱するヒー
タ、4Cはセル4に対する熱遮蔽のための液体窒素シュ
ラウド、5はセル4に対するシャッタ、Mlはセル4内
の原料(セル2内の原料Mと同じもの)、B1は原料旧
からの分子線、である。
In FIG. 2, a first molecular beam source cell 2, an opening 2a,
The heater 2b, liquid nitrogen shroud 2C, and shutter 3 remain the same as before. 4 is a second molecular beam source cell, 4a is an opening of the cell 4, 4b is a heater for heating the cell 4, 4C is a liquid nitrogen shroud for heat shielding the cell 4, 5 is a shutter for the cell 4, Ml is the raw material in the cell 4 (same as the raw material M in the cell 2), and B1 is the molecular beam from the old raw material.

分子線B1の通路となる開口部4aは、開口部2aに斜
めに対向し分子線B1が開口部2aに指向性を持って当
たるように筒状をなしている。
The opening 4a, which serves as a passage for the molecular beam B1, has a cylindrical shape that faces diagonally to the opening 2a so that the molecular beam B1 hits the opening 2a with directionality.

ヒータ4bは、セル4における原料旧収容部のみならず
開口部4aをもその先端部分まで加熱するように配置さ
れている。
The heater 4b is arranged so as to heat not only the raw material storage part in the cell 4 but also the opening 4a up to its tip.

シャッタ5は、分子線B1が開口部2aに進むのを開閉
する。
The shutter 5 opens and closes the molecular beam B1 to advance to the opening 2a.

以下、ガリウム(Ga)を原料MおよびMlとした場合
を例にとり操作について説明する。
The operation will be described below, taking as an example the case where gallium (Ga) is used as the raw material M and Ml.

結晶膜の成長は、従来と同様に原料Mを1000℃程度
の所定の温度に加熱し、シャッタ3を開いて行う。言う
までもなく先に述べた原料Mの高純度化は済ましておく
。そしてこの際は、原料M1の加熱を100℃程度にし
ておき、シャッタ5を閉じておく。従って第二の分子線
源セル4の存在は結晶膜の成長に何等影響を与えない。
The crystal film is grown by heating the raw material M to a predetermined temperature of about 1000° C. and opening the shutter 3, as in the conventional method. Needless to say, the aforementioned raw material M has already been purified. At this time, the raw material M1 is heated to about 100° C. and the shutter 5 is closed. Therefore, the presence of the second molecular beam source cell 4 has no effect on the growth of the crystal film.

原料Mの減少が過大にならず分子線Bの強度変化が目立
たない程度に適宜数量の成長を行った後、第二の分子線
源セル4から第一の分子線源セル2への原料補給(原料
旧の一部を原料Mの処へ移送する)を行う。
After growing the raw material M to an appropriate amount to the extent that the decrease in the raw material M is not excessive and the change in the intensity of the molecular beam B is not noticeable, the raw material is supplied from the second molecular beam source cell 4 to the first molecular beam source cell 2. (Transfer part of raw material old to raw material M).

この原料補給は、原料Mを分子線Bが発生しない程度の
温度例えば約700℃にすると共に原料旧を分子線B1
の放出に十分な温度例えば約1100℃程度にし、シャ
ッタ3と5の両方を開いて行う。この際、開口部4aも
先端部分まで加熱されているため、分子線B1が開口部
4aに液体状になって付着することはない。また、原料
M1に含まれる不純物は主としてセル2外に放散するの
で、原料Mが該不純物で汚染されることは殆ど無い。
This raw material replenishment is carried out by bringing the raw material M to a temperature such as about 700°C that does not generate the molecular beam B, and at the same time bringing the old raw material to the molecular beam B1.
The temperature is set to a temperature sufficient to release the gas, for example, about 1100° C., and both shutters 3 and 5 are opened. At this time, since the opening 4a is also heated up to its tip, the molecular beam B1 does not adhere to the opening 4a in a liquid state. Moreover, since the impurities contained in the raw material M1 are mainly diffused outside the cell 2, the raw material M is hardly contaminated with the impurities.

そして、原料Mの量が成長開始時の量に戻ったところで
シャッタ5と3を閉じ、原料Mと旧との温度を上記成長
時の温度に戻して、再び成長を開始する。
Then, when the amount of the raw material M returns to the amount at the start of growth, the shutters 5 and 3 are closed, the temperature of the raw material M and the old material is returned to the temperature at the time of growth, and growth is started again.

このサイクルは、原料旧が無くなるまで継続することが
出来、その間は分子線Bの強度の変化を従来より低減さ
せた範囲に維持することが出来る。
This cycle can be continued until the raw material is used up, and during that time the change in the intensity of the molecular beam B can be maintained within a range that is lower than before.

なお1、第二の分子線源セル4による上記原料補給は、
可動部分がシャッタ3と5のみであることから、トラブ
ルの少ない特徴を有する。
1. The above raw material supply by the second molecular beam source cell 4 is as follows:
Since the only movable parts are the shutters 3 and 5, it is characterized by less trouble.

また、第二の分子線源セル4の設置は、消費量の多い原
料Mを入れる第一の分子線源セル2に対応させるのみで
あっても、所望した膜厚や組成比を有する多数の良質な
結晶膜の成長するのに十分な効果が得られる。
In addition, even if the second molecular beam source cell 4 is only installed to correspond to the first molecular beam source cell 2 that contains the raw material M that consumes a large amount, it is possible to install a large number of cells having a desired film thickness and composition ratio. A sufficient effect for growing a high-quality crystal film can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の構成によれば、分子線源セ
ル内の原料から放出させた分子線を用いて結晶を成長さ
せるMBE装置において、結晶を成長させる分子線の強
度を長期に渡り安定化させることが出来て、所望した膜
厚や組成比を有する多数の良質な結晶膜の成長を可能に
させる効果がある。
As explained above, according to the configuration of the present invention, in an MBE apparatus that grows a crystal using a molecular beam emitted from a raw material in a molecular beam source cell, the intensity of the molecular beam for growing a crystal is stabilized over a long period of time. This has the effect of making it possible to grow a large number of high-quality crystal films having desired film thicknesses and composition ratios.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例の要部構成を示す側断面図、 第2図はその実施例における分子線源セル部の側断面図
、 第3図は従来のMBE装置の要部構成を示す側断面図、 第4図はその装置における分子線源セル部の側断面図、 である。 図において、 1は成長室、 2は第一の分子線源セル、 4は第二の分子線源セル、 2aは開口部(第一の開口部)、 4aは開口部(第二の開口部)、 2b、 4bはヒータ、 2c、 4cは液体窒素シュラウド、 3.5はシャッタ、 6は基板ホールダ、 B、、Blは分子線、 M、、Mlは原料、 Sは成長用基板、 である。
FIG. 1 is a side sectional view showing the main part configuration of an embodiment of the present invention, FIG. 2 is a side sectional view of the molecular beam source cell section in the embodiment, and FIG. 3 is a side sectional view showing the main part structure of a conventional MBE apparatus. FIG. 4 is a side sectional view of the molecular beam source cell section in the device. In the figure, 1 is a growth chamber, 2 is a first molecular beam source cell, 4 is a second molecular beam source cell, 2a is an opening (first opening), 4a is an opening (second opening) ), 2b and 4b are heaters, 2c and 4c are liquid nitrogen shrouds, 3.5 is a shutter, 6 is a substrate holder, B, , Bl are molecular beams, M, and Ml are raw materials, S is a growth substrate, .

Claims (1)

【特許請求の範囲】 1)成長用基板(S)を保持する基板ホールダ(6)と
、分子線の原料を収容し該基板ホールダ(6)に向けた
第一の開口部を有する第一の分子線源セル(2)と、該
第一の分子線源セル(2)と同じ原料を収容し該第一の
開口部とは互いに斜めに向かい合う第二の開口部を有す
る第二の分子線源セル(4)とを備え、該第一の分子線
源セル(2)は、収容した原料をヒータで加熱し該第一
の開口部から分子線を該基板ホールダ(6)に向けて照
射して該基板(S)上に結晶を成長させ、該第二の分子
線源セル(4)は、収容した原料をヒータで加熱し該第
二の開口部から分子線を該第一の開口部に向けて注入し
て該第一の分子線源セル(2)内の原料を補給すること
を特徴とする分子線結晶成長装置。 2)上記第二の開口部は、筒状をなしその筒状の先端部
分までヒータで加熱されるようになっていることを特徴
とする特許請求の範囲第1項記載の分子線結晶成長装置
[Scope of Claims] 1) A substrate holder (6) holding a growth substrate (S), and a first substrate holder (6) containing a molecular beam raw material and having a first opening facing the substrate holder (6). a second molecular beam source cell (2) and a second molecular beam cell containing the same raw material as the first molecular beam source cell (2) and having a second opening diagonally opposite to the first opening; The first molecular beam source cell (2) heats the contained raw material with a heater and irradiates the molecular beam from the first opening toward the substrate holder (6). The second molecular beam source cell (4) heats the contained raw material with a heater and directs the molecular beam from the second opening to the first opening. A molecular beam crystal growth apparatus characterized in that the raw material in the first molecular beam source cell (2) is replenished by injecting the raw material into the first molecular beam source cell (2). 2) The molecular beam crystal growth apparatus according to claim 1, wherein the second opening has a cylindrical shape and is heated up to the tip of the cylindrical portion by a heater. .
JP626286A 1986-01-17 1986-01-17 Device for molecular beam crystal growth Granted JPS62165318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP626286A JPS62165318A (en) 1986-01-17 1986-01-17 Device for molecular beam crystal growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP626286A JPS62165318A (en) 1986-01-17 1986-01-17 Device for molecular beam crystal growth

Publications (2)

Publication Number Publication Date
JPS62165318A true JPS62165318A (en) 1987-07-21
JPH0152891B2 JPH0152891B2 (en) 1989-11-10

Family

ID=11633542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP626286A Granted JPS62165318A (en) 1986-01-17 1986-01-17 Device for molecular beam crystal growth

Country Status (1)

Country Link
JP (1) JPS62165318A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01177277U (en) * 1988-06-02 1989-12-18

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01177277U (en) * 1988-06-02 1989-12-18

Also Published As

Publication number Publication date
JPH0152891B2 (en) 1989-11-10

Similar Documents

Publication Publication Date Title
US3941647A (en) Method of producing epitaxially semiconductor layers
EP0609886B1 (en) Method and apparatus for preparing crystalline thin-films for solid-state lasers
JPS62165318A (en) Device for molecular beam crystal growth
US4869776A (en) Method for the growth of a compound semiconductor crystal
JPS59148325A (en) Method and device for growing single crystal thin film of compound semiconductor
JP2753009B2 (en) Compound semiconductor growth method
JPS6272113A (en) Molecular beam crystal growth device
JPS6090900A (en) Method for diffusing impurity into compound semiconductor
JPS59164697A (en) Vapor growth method
JPS6226568B2 (en)
JP2815068B2 (en) Vapor phase growth method and apparatus
Kaverina et al. The influence of the structure of amorphous silicon deposited in ultrahigh vacuum on the solid phase epitaxial growth rate
JPH0774433B2 (en) Vapor deposition equipment for thin film growth
JPH04274316A (en) Cell for molecular beam epitaxy
RU1575856C (en) Method of producing films of superconductive oxide materials
JPS62138390A (en) Molecular beam epitaxy
JPH03119721A (en) Crystal growth
JPS61261294A (en) Method of molecular beam epitaxial growth and molecular beam source
JP3448695B2 (en) Vapor growth method
JPH0462916A (en) Growth method of semiconductor crystal
JPS6377112A (en) Vapor growth method
JPS6379315A (en) Growth of iii-v compound single crystal
JPH0532360B2 (en)
JPS63266816A (en) Growing method for iii-v compound semiconductor crystal
JPH11228298A (en) Growth of compound semiconductor crystal

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term