JPS6090900A - Method for diffusing impurity into compound semiconductor - Google Patents

Method for diffusing impurity into compound semiconductor

Info

Publication number
JPS6090900A
JPS6090900A JP58201751A JP20175183A JPS6090900A JP S6090900 A JPS6090900 A JP S6090900A JP 58201751 A JP58201751 A JP 58201751A JP 20175183 A JP20175183 A JP 20175183A JP S6090900 A JPS6090900 A JP S6090900A
Authority
JP
Japan
Prior art keywords
compound semiconductor
furnace
diffusion
substrate
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58201751A
Other languages
Japanese (ja)
Other versions
JPH0232240B2 (en
Inventor
Kazuhisa Takahashi
和久 高橋
Kenji Ikeda
健志 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58201751A priority Critical patent/JPS6090900A/en
Publication of JPS6090900A publication Critical patent/JPS6090900A/en
Publication of JPH0232240B2 publication Critical patent/JPH0232240B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B31/00Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor
    • C30B31/06Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor by contacting with diffusion material in the gaseous state
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/42Gallium arsenide

Abstract

PURPOSE:To diffuse an impurity on the surface of a substrate by elevating the temp. of a compd. semiconductor substrate in a furnace, and introducing the vapor of an activated impurity element combined with hydrocarbon along with an ambient gas. CONSTITUTION:A GaAs substrate 13 is placed on a graphite susceptor 11a, and inserted into a diffusion furnace 11. After the atmosphere in the furnace is replaced with an inert gas, hydrogen is supplied from an introducing port 14. After the susceptor 11a is heated to about 500 deg.C by impressing a high-frequency power to a coil 12, AsH3 is supplied from a vessel 15 through a mass flowmeter 18. When the temp. of the susceptor 11a is further increased to a specified diffusion temp., H2 is supplied into a bubbler 16 to vaporize Zn(C2H5)2 17 which is supplied into the diffusion furnace 11. The Zn can be easily diffused on the surface of the GaAs substrate 13 in this way.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明はガリウム・ヒ素 (GaAs)、インジウム
・リン(工nP) 、インジウム自ガリウム・ヒ素(I
nGaAs)等の化合物半導体基板表面に亜鉛(zn)
、カドミウム(Ca)等の不純物を拡散させる方法に関
するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to gallium arsenide (GaAs), indium phosphide (NP), indium autologous gallium arsenide (I
Zinc (zn) on the surface of a compound semiconductor substrate such as nGaAs)
, relates to a method of diffusing impurities such as cadmium (Ca).

〔従来技術〕[Prior art]

GaAs 、■nP等で代表される+U −V族化合物
半導体基板表面にZn、Cd等の不純物を拡散させる方
法としては、従来以下に示す方法があった0 即ち、GaAsにZnを拡散する方法を例として示すと
、第1図に示すように、まず、石英製アンプル0)にG
aAs基板(21およびZ n (31およびA s 
+41を挿入し、アンプル+11内を高真空にした後、
アンプル[11の開口部を融着し、次にこのアンプル(
1)をヒータ(5)によって高温に設定された拡散炉(
61中に所定の時間挿入する事によりznをGaAs基
板(2)表面に拡散させていた。
Conventionally, the following methods have been used to diffuse impurities such as Zn and Cd onto the surface of +U-V group compound semiconductor substrates represented by GaAs and ■nP. As an example, as shown in Figure 1, first, G
aAs substrate (21 and Z n (31 and As
After inserting +41 and creating a high vacuum inside ampoule +11,
The opening of the ampoule [11 is fused, and then this ampoule (
1) in a diffusion furnace (
61 for a predetermined period of time, zn was diffused onto the surface of the GaAs substrate (2).

高温の炉(6)の中に挿入されたアンプル(1)内では
、Z n 131が気化し、その一部がGaAs基板(
2)の表面に吸着し、基板+21内に拡散する。ここで
アンプル(り内に封入されたA8 +41は、高温によ
ってGaAs基板(2)の表面が分解するのを防ぐ働き
をする。
In the ampoule (1) inserted into the high-temperature furnace (6), Z n 131 is vaporized and a part of it is deposited on the GaAs substrate (
2) and diffuses into the substrate +21. Here, the A8+41 sealed in the ampoule serves to prevent the surface of the GaAs substrate (2) from decomposing due to high temperatures.

このように、従、米の不純物拡散法では、石、英製アン
プル+i+内にGaAs基板(2)とZn [:llお
よびAs+41とを入れて、アンプルflj内を高真空
内にした後、アンプルi11の開口部を融着する必要が
あった。アンプル(1)の開口部の大きさは、GaAl
1基板(2)等を挿入後融着する際の作業性から、たか
だか、直径20〜30mm程度にしか出来ず、拡散する
GaAs基板(2)として、上記アンプルf11の開口
部の大きさよりも大きいものは用いることが出来なかっ
た。
In this way, in the conventional impurity diffusion method, the GaAs substrate (2), Zn[:ll and As+41 are placed in an ampoule made of stone or English, the ampoule flj is placed in a high vacuum, and then the ampoule is removed. It was necessary to fuse the i11 opening. The size of the opening of the ampoule (1) is GaAl
1 Due to the workability of inserting and fusing the substrate (2), etc., it is possible to make the diameter only about 20 to 30 mm at most, which is larger than the opening of the ampoule f11 as the GaAs substrate (2) to be diffused. I couldn't use anything.

また従来の不純物拡散法においては、さらに、拡散する
GaAs基板(2)とともに封入するZnf31および
As(41を精度よく秤量する・必要があった。
Furthermore, in the conventional impurity diffusion method, it was necessary to accurately weigh Znf 31 and As (41) to be sealed together with the GaAs substrate (2) to be diffused.

〔発明の概賛〕[Overview of the invention]

この発明は以上のような点に鑑みてなされたもので、拡
散させるべき不純物の材料として常温での蒸気圧が高く
、その分量の制御可能な不純物元素の炭化水素化物を用
い、拡散炉内には不純物拡散の対象となる化合物半導体
基板のみを収容し、密封することなく開放状態で所要雰
囲気の下で拡散を行わせることによって、半導体基板の
大きさ、枚数に制約のない簡便な不純物拡散方法を提供
するものである。
This invention was made in view of the above points, and uses hydrocarbons of impurity elements that have a high vapor pressure at room temperature and whose amount can be controlled as impurity materials to be diffused, and uses them in a diffusion furnace. This is a simple impurity diffusion method that does not have any restrictions on the size or number of semiconductor substrates by accommodating only the compound semiconductor substrate that is the target of impurity diffusion and allowing the diffusion to occur under the required atmosphere in an open state without sealing it. It provides:

〔発明の実施例〕[Embodiments of the invention]

第2図はこの発明の一実施例の集流状況を示す模式断面
図で、(11)は石英製拡散炉、(lla )はその中
に設けられたグラファイトサセプタ、(121はグラフ
ァイトサセプタ(’1la)を高周波加熱するためのコ
イル、03)はグラファイトサセプタ(121の上に載
置された化合物半導体であるGaAθ基板、(14)は
雰囲気ガスである水素(N2)の導入口、(+51はG
aAs基板(131の熱分解を防止するためのアルシン
(AθH3)を収容した容器、0@はバプラ、0ηはバ
プラ(II内に収容され不純物としてのZnの炭化水素
化物であるディエチル亜鉛(zn(C2H5)2〕、(
18+はそれぞれのガス流量を自動的に制御するマスフ
ローコントローラ、Hは拡散炉(11)の排気口である
FIG. 2 is a schematic sectional view showing a flow collecting situation in an embodiment of the present invention, in which (11) is a quartz diffusion furnace, (lla) is a graphite susceptor installed therein, and (121 is a graphite susceptor ('). 1la) is a coil for high-frequency heating, 03) is a GaAθ substrate which is a compound semiconductor placed on a graphite susceptor (121), (14) is an inlet for hydrogen (N2) which is an atmospheric gas, and (+51 is G
A container containing arsine (AθH3) to prevent thermal decomposition of the aAs substrate (131), 0@ is Bapla, 0η is Bapla (II) containing diethyl zinc (Zn (Zn), which is a hydrocarbonate of Zn as an impurity). C2H5)2], (
18+ is a mass flow controller that automatically controls each gas flow rate, and H is an exhaust port of the diffusion furnace (11).

zn(C2H5)2(I7)は液体であるので、バッジ
fII内に収容されN2によって気化させて用いる。こ
のようこの実施例の不純物拡散方法は以下に示す手順で
実施される。
Since zn(C2H5)2(I7) is a liquid, it is stored in badge fII and used by being vaporized with N2. The impurity diffusion method of this embodiment is carried out in the following steps.

まず、不純物拡散を施すべきGaAs基板(I濁をグラ
ファイトサセプタ(lla)上に載置する。次←、この
グラファイトサセプタ(lla)を、拡散炉(11)に
挿、人、炉内雰囲気を窯素(N2)等の不活性ガスに置
換後、N2を供給する。次にコイル(121に高周波電
力を印加してサセプタ(lla)を加熱する。サセプタ
(lla)が一定温度(例えば500℃)まで上昇した
ら、容器(15)からAsH3をマス70−コントロー
ラ端を通じて供給する。さらにサセプタ(lla)の温
度を上昇させ所定の拡散温度になったらバプラ0瞬にN
2を通じてzn(C2H5)2(Iηを気化させ拡散炉
(++lに供給する。所定の時間経過後、Zn(02H
s)207)の供給を停止し、コイルθカへの高周波電
力の印加を停止する。
First, a GaAs substrate (I) to be subjected to impurity diffusion is placed on a graphite susceptor (lla).Next, this graphite susceptor (lla) is inserted into a diffusion furnace (11), and a person and the furnace atmosphere are heated. After replacing the gas with an inert gas such as nitrogen (N2), N2 is supplied.Next, high frequency power is applied to the coil (121) to heat the susceptor (lla). When the temperature rises to 0, AsH3 is supplied from the container (15) through the mass 70-controller end.Furthermore, the temperature of the susceptor (lla) is raised, and when the predetermined diffusion temperature is reached, the bubbler is immediately turned off with N.
2 to vaporize Zn(C2H5)2(Iη and supply it to a diffusion furnace (++l).
s) The supply of 207) is stopped, and the application of high frequency power to the coil θ is stopped.

サセプタ(lla)の温度が500℃以下になったら、
容器+15]からのAsH3の供給を停止し、室温にな
ったら、拡散炉(Ill内を不活性ガスで置換した後、
サセプタ(lla)を取出し、GaA B基板03)を
取出す。
When the temperature of the susceptor (lla) falls below 500℃,
Stop the supply of AsH3 from the container +15], and when it reaches room temperature, replace the inside of the diffusion furnace (Ill with inert gas,
Take out the susceptor (lla) and take out the GaA B substrate 03).

これで、この実施例の拡散工程は完了する。This completes the diffusion process of this example.

上記の例ではGaA a基板にZnを拡散する場合につ
いて示したが、基板として工nPその他のl1l−V族
化合物半導体やn−■族化合物半導体でも良い。
Although the above example shows the case where Zn is diffused into a GaA a substrate, the substrate may also be an 111-V group compound semiconductor or an n-2 group compound semiconductor such as nP.

また、不純物としてはティメチルカドミウム[Ca(C
H3)2]テイエチルテルル〔Te(C2H6)2〕等
であっても良い。
In addition, as an impurity, trimethylcadmium [Ca(C
H3)2] Teethyltellurium [Te(C2H6)2] or the like may be used.

上記の例では基板の加熱方法として、グラファイトサセ
プタに高周波電力を印加する事によったが、抵抗加熱の
拡散炉を用いても良い。
In the above example, the substrate was heated by applying high frequency power to the graphite susceptor, but a resistance heating diffusion furnace may also be used.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば化合物半導体への活性
不純物の拡散方法において、不純物源として常温で蒸気
圧の画い不純物元素の炭化水素化物を用いているので、
供給創の制御が容易で連続供給が可能である。従って、
従来の方法のように、拡散の都度、半導体基板とともに
、秤量した拡散不純物物質を石英製アンプルに封じ込め
る必要がなく、拡散炉へは半導体基板のみを収容し、密
封することなく、上記不純物源を外部から供給しつづけ
ることによって拡散ができる。このように、従来の方法
に比して極めて簡便であり、しかも、半導体基板の大き
さ、枚数に制約なく不純物の拡散が可能である。
As described above, according to the present invention, in the method for diffusing active impurities into a compound semiconductor, a hydrocarbon of an impurity element having a vapor pressure at room temperature is used as an impurity source.
The feeding wound is easy to control and continuous feeding is possible. Therefore,
Unlike conventional methods, there is no need to confine the weighed diffusion impurity substance together with the semiconductor substrate in a quartz ampoule each time diffusion is performed. Only the semiconductor substrate is placed in the diffusion furnace, and the impurity source is Diffusion is possible by continuing to supply it from the outside. As described above, this method is extremely simple compared to conventional methods, and impurities can be diffused without restrictions on the size or number of semiconductor substrates.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の化合物半導体への不純物の拡散の実施状
況を示す模式断面図、第2図はこの発明の一実施例の実
施状況を示す模式断面図である。 図において、(川は炉(拡散’fp ) 、(+21は
高周波加熱用コイル、(131は化合物半導体基板、θ
4)は雰囲気ガス(H2)導入口、痢は熱分解抑止用物
質容器、(16+はバッジ、θガは不純物元素の炭化水
素化物、である。 代理人 大岩増雄
FIG. 1 is a schematic cross-sectional view showing the state of implementation of conventional diffusion of impurities into a compound semiconductor, and FIG. 2 is a schematic cross-sectional view showing the state of implementation of one embodiment of the present invention. In the figure, (the river is the furnace (diffusion 'fp), (+21 is the high-frequency heating coil, (131 is the compound semiconductor substrate, θ
4) is an atmospheric gas (H2) inlet, diarrhea is a container for a material to inhibit thermal decomposition, (16+ is a badge, and θ is a hydrocarbon impurity element. Agent: Masuo Oiwa)

Claims (1)

【特許請求の範囲】 +11 化合物半導体基板を炉内に収容し昇温させ、上
記炉内へ上記化合物半導体基板へ拡散させるべき活性不
純物元素の炭化水素化物の蒸気を雰囲気ガスとともに導
入することによって、上記化合物半導体基板に上記活性
不純物を拡散させることを特徴とする化合物半導様への
不純物拡散方法0 (2)化合物半導体基板へ拡散させるべき活性不純物元
素の炭化−水素化物の蒸気を、高温において上記化合物
半導体基板が分解するのを抑止する物質の蒸気が混入さ
れた雰囲気ガスとともに導入することを特徴とする特許
請求の範囲第1項記載の化合物半導体への不純物拡散方
法。
[Claims] +11 A compound semiconductor substrate is housed in a furnace and heated, and a vapor of a hydrocarbon of an active impurity element to be diffused into the compound semiconductor substrate is introduced into the furnace together with an atmospheric gas, Method 0 of impurity diffusion into a compound semiconductor characterized by diffusing the active impurity into the compound semiconductor substrate (2) A carbide-hydride vapor of the active impurity element to be diffused into the compound semiconductor substrate is heated at a high temperature. 2. The method of diffusing impurities into a compound semiconductor according to claim 1, wherein said compound semiconductor substrate is introduced together with an atmospheric gas containing vapor of a substance that inhibits decomposition.
JP58201751A 1983-10-25 1983-10-25 Method for diffusing impurity into compound semiconductor Granted JPS6090900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58201751A JPS6090900A (en) 1983-10-25 1983-10-25 Method for diffusing impurity into compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58201751A JPS6090900A (en) 1983-10-25 1983-10-25 Method for diffusing impurity into compound semiconductor

Publications (2)

Publication Number Publication Date
JPS6090900A true JPS6090900A (en) 1985-05-22
JPH0232240B2 JPH0232240B2 (en) 1990-07-19

Family

ID=16446329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58201751A Granted JPS6090900A (en) 1983-10-25 1983-10-25 Method for diffusing impurity into compound semiconductor

Country Status (1)

Country Link
JP (1) JPS6090900A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01158725A (en) * 1987-12-15 1989-06-21 Tel Sagami Ltd Heat treatment apparatus
JPH02241030A (en) * 1989-03-15 1990-09-25 Hikari Keisoku Gijutsu Kaihatsu Kk Zinc diffusion method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6071596A (en) * 1983-09-27 1985-04-23 Matsushita Electric Ind Co Ltd Vapor-phase growth apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6071596A (en) * 1983-09-27 1985-04-23 Matsushita Electric Ind Co Ltd Vapor-phase growth apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01158725A (en) * 1987-12-15 1989-06-21 Tel Sagami Ltd Heat treatment apparatus
JPH02241030A (en) * 1989-03-15 1990-09-25 Hikari Keisoku Gijutsu Kaihatsu Kk Zinc diffusion method

Also Published As

Publication number Publication date
JPH0232240B2 (en) 1990-07-19

Similar Documents

Publication Publication Date Title
JPS60245218A (en) Method and apparatus for producing semiconductor element
JPS6090900A (en) Method for diffusing impurity into compound semiconductor
US4135952A (en) Process for annealing semiconductor materials
JPS6251919B2 (en)
US5037674A (en) Method of chemically vapor depositing a thin film of GaAs
JPS6153197A (en) Crystal growth device
JP2581093Y2 (en) Semiconductor heat treatment equipment
JPS62162324A (en) Reactive gas heating and introducing apparatus for ultra-high vacuum
JPS5858317B2 (en) Vapor phase growth method
JPS62165318A (en) Device for molecular beam crystal growth
KR940012531A (en) Method for manufacturing dielectric thin film having high dielectric constant and apparatus therefor
JPS6369219A (en) Molecular beam source cell
JPS6343333A (en) Vapor-phase epitaxial growth process
JPS62182195A (en) Method for growing iii-v compound semiconductor
JPS5946096B2 (en) Liquid phase epitaxial growth equipment
JPH0397692A (en) Gasifying and supplying device for organic metallic compound
JPH02241030A (en) Zinc diffusion method
JPS61263119A (en) Producing equipment of semiconductor by vapor growth
JPS63266816A (en) Growing method for iii-v compound semiconductor crystal
JPS6379315A (en) Growth of iii-v compound single crystal
JPH03233943A (en) Vapor epitaxial growth apparatus
JPS63228713A (en) Vapor growth method
JPH069191B2 (en) Semiconductor manufacturing equipment by vapor phase growth method
JPS63215592A (en) Production of compound semiconductor
JPH02166723A (en) Growth of compound semiconductor