JPH11228298A - Growth of compound semiconductor crystal - Google Patents

Growth of compound semiconductor crystal

Info

Publication number
JPH11228298A
JPH11228298A JP2940198A JP2940198A JPH11228298A JP H11228298 A JPH11228298 A JP H11228298A JP 2940198 A JP2940198 A JP 2940198A JP 2940198 A JP2940198 A JP 2940198A JP H11228298 A JPH11228298 A JP H11228298A
Authority
JP
Japan
Prior art keywords
raw material
compound semiconductor
crystal
growing
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2940198A
Other languages
Japanese (ja)
Inventor
Shinsuke Fujiwara
伸介 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2940198A priority Critical patent/JPH11228298A/en
Publication of JPH11228298A publication Critical patent/JPH11228298A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a crystal-growing method for growing a bulk crystal by introducing a gaseous feedstock by which a bulk crystal of a compound semiconductor is enabled to be grown by preventing generation of a crystal nucleus and controlling the deterioration of homology of the growing interface. SOLUTION: This method growing a compound semiconductor crystal at a low temperature part of a growing room by a vapor phase method comprises forming an exterior room to be filled with a first gaseous feedstock including at least one of the constituent element of the compound semiconductor, connecting the exterior room to a growing room through a gaseous feedstock introducing hole, arranging a solid raw material or a liquid feedstock including the remaining elements of the constituent elements of the compound semiconductor in the growing room or the exterior room at the neighbor of the gaseous feedstock introdsucing hole, forming a second gaseous feedstock from the solid feedstock or the liquid feedstock, allowing the first gaseous feedstock and the second gaseous feedstock to diffuse to a low temperature part of the growing room by the difference of the partial pressure to crystallize the compound semiconductor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体原料又は液体
原料と、気体原料を使用して気相法で化合物半導体結晶
を成長する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for growing a compound semiconductor crystal by a gas phase method using a solid or liquid source and a gas source.

【0002】[0002]

【従来の技術】気相法による化合物半導体のバルク結晶
成長は、一般にアンプル中の高温部に多結晶原料を配置
し、該原料を昇華したり、輸送媒体と反応させて気体原
料を発生させ、アンプル中の低温部に拡散及び/又は対
流で輸送し、低温部で再凝固させて単結晶を得ようとす
るものである。ZnSe、CdTe、ZnS、CdS等
のII−VI族化合物半導体結晶は上記の方法で広く製造さ
れている。これらの方法ではアンプル中に配置した固体
原料から気体原料を生成して用いる。
2. Description of the Related Art Bulk crystal growth of a compound semiconductor by a vapor phase method generally involves disposing a polycrystalline raw material in a high-temperature portion of an ampoule and sublimating the raw material or reacting it with a transport medium to generate a gaseous raw material. It is intended to transport by diffusion and / or convection to a low-temperature portion in the ampoule and re-solidify in the low-temperature portion to obtain a single crystal. II-VI group compound semiconductor crystals such as ZnSe, CdTe, ZnS, and CdS are widely manufactured by the above method. In these methods, a gaseous raw material is generated from a solid raw material arranged in an ampoule and used.

【0003】上記の方法に対して、気体原料の一部を成
長室の外部から供給する結晶成長方法は、クロライドV
PE法、ハイドライドVPE法、MOVPE法などのよ
うに、化合物半導体薄膜を成長するのに広く採用されて
いる。これらの方法でバルク結晶を成長させると、例え
ば厚み1cm以上のバルク結晶を成長させようとする
と、種結晶を保持しているホルダーなどの表面に結晶核
が発生し、その部分から多結晶化が進行する。また、成
長界面のホモロジーが悪化し、マクロな段差が形成され
るため、結果として結晶中にボイドが発生してしまう。
それ故、気体原料の一部を外部から供給する結晶成長方
法は、これまでバルク結晶の成長に適用することができ
なかった。
In contrast to the above method, a crystal growth method in which a part of the gaseous raw material is supplied from outside the growth chamber is chloride V
It is widely used for growing a compound semiconductor thin film, such as a PE method, a hydride VPE method, and a MOVPE method. When a bulk crystal is grown by these methods, for example, when trying to grow a bulk crystal having a thickness of 1 cm or more, crystal nuclei are generated on the surface of a holder or the like holding a seed crystal, and polycrystallization is performed from that portion. proceed. In addition, the homogeneity of the growth interface is deteriorated, and a macro step is formed. As a result, voids are generated in the crystal.
Therefore, the crystal growth method in which a part of the gaseous raw material is supplied from the outside cannot be applied to the growth of the bulk crystal.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記の問題
点を解消し、気体原料を導入してバルク結晶を成長させ
る方法であって、結晶核の発生を防止し、成長界面のホ
モロジーの悪化を抑制することにより、化合物半導体の
バルク結晶の成長を可能にする結晶成長方法を提供しよ
うとするものである。
SUMMARY OF THE INVENTION The present invention is directed to a method for solving the above-mentioned problems and for growing a bulk crystal by introducing a gaseous raw material. An object of the present invention is to provide a crystal growth method capable of growing a compound semiconductor bulk crystal by suppressing deterioration.

【0005】[0005]

【課題を解決するための手段】本発明は、気体原料を導
入する気相成長方法において、成長室内の気体原料を成
長領域に移送するエネルギーを強制対流によらず、静圧
の下で拡散させることにより、前記の結晶核発生の防止
及び成長界面のホモロジー悪化の抑制を可能にし、バル
ク結晶の成長を可能にしたものである。
According to the present invention, in a vapor phase growth method for introducing a gaseous source, energy for transferring a gaseous source in a growth chamber to a growth region is diffused under static pressure without using forced convection. This makes it possible to prevent the above-mentioned generation of crystal nuclei and suppress the deterioration of homology at the growth interface, thereby enabling the growth of bulk crystals.

【0006】本発明の構成は次のとおりである。 (1) 気相法によって成長室の低温部に化合物半導体結晶
を成長させる方法において、前記化合物半導体の構成元
素の少なくとも1つを含む第1の気体原料を充満させる
外室を設け、前記外室と前記成長室とを気体原料導入孔
を介して接続し、前記成長室又は前記外室の内で前記気
体原料導入孔の近傍に、前記化合物半導体の構成元素の
残りの元素を含む固体原料又は液体原料を配置し、前記
固体原料又は液体原料から第2の気体原料を生成し、前
記成長室の低温部に第1の気体原料と第2の気体原料の
分圧差で拡散させ、化合物半導体を結晶化させることを
特徴とする化合物半導体結晶の成長方法。
The configuration of the present invention is as follows. (1) In a method for growing a compound semiconductor crystal in a low temperature part of a growth chamber by a vapor phase method, an outer chamber filled with a first gas source containing at least one of the constituent elements of the compound semiconductor is provided. And the growth chamber are connected via a gas source introduction hole, and in the growth chamber or the outer chamber, in the vicinity of the gas source introduction hole, a solid source containing the remaining element of the compound semiconductor or A liquid source is disposed, a second gas source is generated from the solid source or the liquid source, and is diffused in a low temperature part of the growth chamber by a partial pressure difference between the first gas source and the second gas source, and a compound semiconductor is formed. A method for growing a compound semiconductor crystal, characterized by crystallizing.

【0007】(2) 第1の気体原料を前記外室に導入し、
過剰の第1の気体原料を前記外室から排出することによ
り、前記外室内の第1の気体原料の濃度を常時一定に保
持することを特徴とする前記(1) 記載の化合物半導体結
晶の成長方法。
(2) A first gaseous raw material is introduced into the outer chamber,
The compound semiconductor crystal according to (1), wherein the concentration of the first gaseous material in the outer chamber is always kept constant by discharging excess first gaseous material from the outer chamber. Method.

【0008】[0008]

【発明の実施の形態】従来のクロライドVPE法などの
気相成長方法において、気体原料の一部を外部から供給
しながらバルク結晶を成長させるときには、気体原料が
強制対流によって種結晶側に供給されるため、種結晶近
傍に大きな過飽和が形成されたり、種結晶面内での気体
原料の供給速度の面内不均一が避けられない。その結
果、種結晶近傍の大きな過飽和が種結晶上以外の部分に
核生成を引き起こして多結晶を析出し、また、供給速度
の面内不均一が成長速度の面内不均一を招いて、1cm
以上に及ぶ成長を行えば成長界面にマクロな段差が形成
されてしまう。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In a conventional vapor phase growth method such as a chloride VPE method, when growing a bulk crystal while partially supplying a gaseous material from the outside, the gaseous material is supplied to the seed crystal side by forced convection. Therefore, large supersaturation is formed in the vicinity of the seed crystal, and in-plane unevenness in the supply rate of the gaseous raw material in the seed crystal plane is inevitable. As a result, large supersaturation in the vicinity of the seed crystal causes nucleation in portions other than on the seed crystal to precipitate polycrystals, and in-plane non-uniformity in the supply rate causes in-plane non-uniformity in the growth rate.
If the above growth is performed, a macro step is formed at the growth interface.

【0009】そこで、気相法によるバルク結晶の成長で
は、気体対流があれば安定に結晶成長を行うことができ
ないので、強制対流のみならず自然対流の抑制までが重
要な課題とされてきた。したがって、気体原料の一部を
外部から供給しながらバルク結晶を成長させる場合は、
強制対流及び自然対流を共に極力抑制しなければならな
い。自然対流の抑制には種々の方法が提案されている
が、簡便な方法として成長室の内径を小さくする、成長
室の内圧を小さくする等が一般的な方法である。
Therefore, in the growth of a bulk crystal by a vapor phase method, crystal growth cannot be performed stably if there is gas convection. Therefore, not only forced convection but also suppression of natural convection has been an important issue. Therefore, when growing a bulk crystal while supplying a part of the gaseous material from the outside,
Both forced convection and natural convection must be minimized. Various methods have been proposed for suppressing natural convection, but simple methods such as reducing the inner diameter of the growth chamber and reducing the internal pressure of the growth chamber are simple methods.

【0010】ここで最も重大な課題は強制対流の抑制で
ある。気体原料の一部を外部から供給しながらバルク結
晶を成長させる場合は、必然的に強制対流が存在するか
らである。そこで、本発明では、成長室の前段に外室を
設け、化合物半導体の構成元素の少なくとも1つを含む
第1の気体原料を外室に充満させ、前記外室と前記成長
室とを接続する気体原料導入孔の近傍に、前記化合物半
導体の構成元素の残りの元素を含む固体原料又は液体原
料を配置し、前記固体原料又は液体原料から第2の気体
原料を生成し、前記成長室の低温部に第1の気体原料及
び第2の気体原料を静圧の下で拡散させ、化合物半導体
を結晶化させることにより、強制対流を外室に限定し、
成長室内の強制対流を抑制することができ、バルク結晶
の成長が可能になった。
[0010] The most important problem here is to suppress forced convection. This is because when a bulk crystal is grown while a part of the gaseous raw material is supplied from the outside, forced convection necessarily exists. Therefore, in the present invention, an outer chamber is provided before the growth chamber, and the first chamber is filled with a first gaseous raw material containing at least one of the constituent elements of the compound semiconductor, and the outer chamber is connected to the growth chamber. In the vicinity of the gas source introduction hole, a solid source or a liquid source containing the remaining elements of the compound semiconductor is arranged, and a second gas source is generated from the solid source or the liquid source. The first gas source and the second gas source are diffused under static pressure in the portion, and the compound semiconductor is crystallized, so that forced convection is limited to the outer chamber,
Forced convection in the growth chamber could be suppressed, and bulk crystal growth became possible.

【0011】この方法においても、外室中の気体原料成
分が無くなれば成長が停止するので、結晶成長に伴って
外室に気体原料を導入することが望ましい。なお、結晶
成長において、気体原料以外の気体が形成される場合
は、その気体を外室から排出して、外室及び成長室中の
各気体の分圧を一定に保つことにより、結晶成長を長時
間同一条件で継続することが可能になる。ここで外室に
導入する気体は気体原料に限定されない。即ち反応もし
くは輸送を媒介するガスや、圧力調整のための不活性ガ
スを同時に導入してもよい。
In this method as well, the growth stops when the gaseous raw material component in the outer chamber is exhausted. Therefore, it is desirable to introduce the gaseous raw material into the outer chamber along with the crystal growth. In the case where a gas other than the gaseous raw material is formed during crystal growth, the gas is discharged from the outer chamber and the partial pressure of each gas in the outer chamber and the growth chamber is kept constant, so that crystal growth is performed. It is possible to continue under the same conditions for a long time. Here, the gas introduced into the outer chamber is not limited to the gas raw material. That is, a gas that mediates the reaction or transport or an inert gas for adjusting the pressure may be simultaneously introduced.

【0012】図1及び図2は、本発明の方法を実施する
ための成長装置の概念図である。図1の成長装置は、外
室内に成長室を配置したものであり、外室には第1の気
体原料の導入口及び排出口を設け、成長室一端の低温部
には種結晶を配置し、他端には例えば網状の気体原料導
入孔を設け、外室と連通可能とする。そして、成長室の
気体原料導入孔近傍に固体もしくは液体原料を配置し、
成長室周囲に配置したヒータで固体もしくは液体原料を
加熱して第2の気体原料を発生させ、第1の気体原料と
第2の気体原料を静圧の下で成長室の低温部に移送して
種結晶上に結晶成長させるものである。このように、気
体原料の移送を強制対流によらず、静圧の下で行うた
め、種結晶近傍に過飽和な状態が形成されることもな
く、また、成長速度の面内不均一を回避することが可能
となる。なお、前記の固体もしくは液体原料を外室の気
体原料導入孔近傍に配置することも可能であるが、固体
もしくは液体原料から生成する第2の気体原料の一部が
外室から系外に放出されるという欠点はある。
FIGS. 1 and 2 are conceptual diagrams of a growth apparatus for carrying out the method of the present invention. The growth apparatus shown in FIG. 1 has a growth chamber disposed in an outer chamber, an inlet and an outlet for a first gaseous material are provided in the outer chamber, and a seed crystal is disposed in a low-temperature portion at one end of the growth chamber. The other end is provided with, for example, a gaseous material introduction hole in the form of a mesh so that it can communicate with the outer chamber. Then, a solid or liquid source is placed near the gas source introduction hole in the growth chamber,
A solid or liquid source is heated by a heater disposed around the growth chamber to generate a second gas source, and the first gas source and the second gas source are transferred to a low temperature part of the growth chamber under static pressure. To grow a crystal on a seed crystal. As described above, since the transfer of the gaseous raw material is performed under static pressure without using forced convection, a supersaturated state is not formed in the vicinity of the seed crystal, and in-plane nonuniformity of the growth rate is avoided. It becomes possible. The solid or liquid raw material can be disposed in the outer chamber in the vicinity of the gas raw material introduction hole. However, part of the second gas raw material generated from the solid or liquid raw material is discharged from the outer chamber to the outside of the system. There is a disadvantage that it is done.

【0013】図2の成長装置は、気体原料導入孔を介し
て外室と成長室を連通したものであり、気体原料の排出
口は気体原料導入孔の直前の外室に設けた以外は、図1
と同じ構造の装置であり、図1の装置と同じようにして
用いられる。本発明の結晶成長方法は、適当な反応系が
存在さえすればどのような結晶の成長にも適応できる
が、融液法や通常の気相法でのバルク結晶成長が困難な
V族元素が窒素である III−V族化合物半導体結晶の成
長にも有効である。
The growth apparatus shown in FIG. 2 communicates the outer chamber with the growth chamber through a gas material introduction hole, and a gas material outlet is provided in the outer chamber immediately before the gas material introduction hole. FIG.
This is a device having the same structure as that of FIG. 1, and is used in the same manner as the device of FIG. The crystal growth method of the present invention can be applied to any type of crystal growth as long as an appropriate reaction system is present. It is also effective for growing a group III-V compound semiconductor crystal that is nitrogen.

【0014】[0014]

【実施例】(実施例1)図1の成長装置を用いてGaA
s結晶を成長させた。気体原料導入口からN2とAsC
3 の混合気体を2sccmの割合で外室に導入し、外
室の内圧が5torrになるように、気体原料排出口か
ら排気を行った。成長室として、内径25.4mm、深
さ50mmの片封じ石英管を使用し、その開放端側に石
英製格子を取り付けた。成長室の石英製格子の近傍には
Gaを収容した石英製ボートを配置した。成長室の片封
じ側には直径1インチの(111)B面GaAs基板を
種結晶として配置した。Gaを配置した部分を900
℃、種結晶部分の温度を800℃に加熱して30日間結
晶成長を行った。得られた結晶は(111)Bファセッ
トを有する厚さ14mmのGaAs単結晶であった。
(111)Bファセットを目視で観察したところ、マク
ロなステップは観察されず、安定なファセットが形成さ
れており、結晶の厚みも均一であった。結晶をスライス
したところ断面にボイドは認められなたった。
(Embodiment 1) GaAs was grown using the growth apparatus shown in FIG.
An s crystal was grown. N 2 and AsC from the gas feed inlet
l 3 mixed gas was introduced into the outer chamber at a rate of 2 sccm, and the gas was exhausted from the gas raw material outlet so that the inner pressure of the outer chamber became 5 torr. A single-sealed quartz tube having an inner diameter of 25.4 mm and a depth of 50 mm was used as a growth chamber, and a quartz lattice was attached to the open end side. A quartz boat containing Ga was placed near the quartz lattice in the growth chamber. On one side of the growth chamber, a (111) B-plane GaAs substrate having a diameter of 1 inch was disposed as a seed crystal. The part where Ga is placed is 900
℃, the temperature of the seed crystal portion was heated to 800 ℃, crystal growth was carried out for 30 days. The obtained crystal was a GaAs single crystal having a thickness of 14 mm and having a (111) B facet.
When the (111) B facet was visually observed, macro steps were not observed, stable facets were formed, and the thickness of the crystal was uniform. When the crystal was sliced, no void was observed in the cross section.

【0015】[0015]

【発明の効果】本発明は、上記の構成を採用することに
より、固体もしくは液体原料と、気体原料を使用して気
相成長方法で、ボイドを含有せず、安定なファセット表
面を有する化合物半導体のバルク単結晶の成長を可能に
した。
According to the present invention, there is provided a compound semiconductor having a stable facet surface containing no void by a vapor phase growth method using a solid or liquid raw material and a gas raw material by adopting the above structure. Enabled the growth of bulk single crystals.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法を実施するための結晶成長装置の
概念図である。
FIG. 1 is a conceptual diagram of a crystal growth apparatus for performing a method of the present invention.

【図2】本発明の方法を実施するための、もう1つの結
晶成長装置の概念図である。
FIG. 2 is a conceptual diagram of another crystal growth apparatus for performing the method of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 気相法によって成長室の低温部に化合物
半導体結晶を成長させる方法において、前記化合物半導
体の構成元素の少なくとも1つを含む第1の気体原料を
充満させる外室を設け、前記外室と前記成長室とを気体
原料導入孔を介して接続し、前記成長室又は前記外室の
内で前記気体原料導入孔の近傍に、前記化合物半導体の
構成元素の残りの元素を含む固体原料又は液体原料を配
置し、前記固体原料又は液体原料から第2の気体原料を
生成し、前記成長室の低温部に第1の気体原料と第2の
気体原料の分圧差で拡散させ、化合物半導体を結晶化さ
せることを特徴とする化合物半導体結晶の成長方法。
1. A method for growing a compound semiconductor crystal in a low temperature portion of a growth chamber by a vapor phase method, wherein an outer chamber filled with a first gas source containing at least one of the constituent elements of the compound semiconductor is provided. An outer chamber and the growth chamber are connected via a gas material introduction hole, and a solid containing the remaining elements of the compound semiconductor in the vicinity of the gas material introduction hole in the growth chamber or the outer chamber. Disposing a raw material or a liquid raw material, generating a second gaseous raw material from the solid raw material or the liquid raw material, and diffusing the second gaseous raw material in a low temperature part of the growth chamber by a partial pressure difference between the first gaseous raw material and the second gaseous raw material; A method for growing a compound semiconductor crystal, comprising crystallizing a semiconductor.
【請求項2】 第1の気体原料を前記外室に導入し、過
剰の第1の気体原料を前記外室から排出することによ
り、前記外室内の第1の気体原料の濃度を常時一定に保
持することを特徴とする請求項1記載の化合物半導体結
晶の成長方法。
2. A method of introducing a first gaseous raw material into the outer chamber and discharging an excess of the first gaseous raw material from the outer chamber so that the concentration of the first gaseous raw material in the outer chamber is always constant. 2. The method for growing a compound semiconductor crystal according to claim 1, wherein the crystal is held.
JP2940198A 1998-02-12 1998-02-12 Growth of compound semiconductor crystal Pending JPH11228298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2940198A JPH11228298A (en) 1998-02-12 1998-02-12 Growth of compound semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2940198A JPH11228298A (en) 1998-02-12 1998-02-12 Growth of compound semiconductor crystal

Publications (1)

Publication Number Publication Date
JPH11228298A true JPH11228298A (en) 1999-08-24

Family

ID=12275129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2940198A Pending JPH11228298A (en) 1998-02-12 1998-02-12 Growth of compound semiconductor crystal

Country Status (1)

Country Link
JP (1) JPH11228298A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023109459A1 (en) * 2021-12-14 2023-06-22 盛美半导体设备(上海)股份有限公司 Electroplating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023109459A1 (en) * 2021-12-14 2023-06-22 盛美半导体设备(上海)股份有限公司 Electroplating device

Similar Documents

Publication Publication Date Title
US5704985A (en) Device and a method for epitaxially growing objects by CVD
US6048398A (en) Device for epitaxially growing objects
US7422633B2 (en) Method of forming gallium-containing nitride bulk single crystal on heterogeneous substrate
US5433167A (en) Method of producing silicon-carbide single crystals by sublimation recrystallization process using a seed crystal
JP2002080298A (en) Method of growing semiconductor layer
US6030661A (en) Device and a method for epitaxially growing objects by CVD
JPH09315899A (en) Compound semiconductor vapor growth method
US3941647A (en) Method of producing epitaxially semiconductor layers
JPH11171699A (en) Growth of gallium nitride phosphide single crystal
JP2001181097A (en) Vapor growth apparatus of nitride
US4389273A (en) Method of manufacturing a semiconductor device
JPH11228298A (en) Growth of compound semiconductor crystal
JP2003286099A (en) Apparatus and method for growing group iii nitride crystal
JPH0321516B2 (en)
JPS6060714A (en) Vapor-phase epitaxial crowing method for i-v group compound semiconductor
JP2711327B2 (en) Crust forming apparatus for vapor phase epitaxy growth
JP3104677B2 (en) Group III nitride crystal growth equipment
JPS63227007A (en) Vapor growth method
JP2666919B2 (en) Method for forming compound semiconductor crystal
JP2002308698A (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL
JPH08181077A (en) Growing method of nitride iii-v compound semiconductor crystal
JP3101753B2 (en) Vapor growth method
JPH03119721A (en) Crystal growth
JPS6377112A (en) Vapor growth method
JPS63228713A (en) Vapor growth method