JPS62278179A - Method of curing concrete formed body - Google Patents

Method of curing concrete formed body

Info

Publication number
JPS62278179A
JPS62278179A JP12099786A JP12099786A JPS62278179A JP S62278179 A JPS62278179 A JP S62278179A JP 12099786 A JP12099786 A JP 12099786A JP 12099786 A JP12099786 A JP 12099786A JP S62278179 A JPS62278179 A JP S62278179A
Authority
JP
Japan
Prior art keywords
water
curing
temperature
concrete
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12099786A
Other languages
Japanese (ja)
Inventor
柴山 幸夫
悦郎 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP12099786A priority Critical patent/JPS62278179A/en
Publication of JPS62278179A publication Critical patent/JPS62278179A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/02Selection of the hardening environment
    • C04B40/0277Hardening promoted by using additional water, e.g. by spraying water on the green concrete element
    • C04B40/0286Hardening under water

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〈産業上の利用分野〉 本発明はコンクリート成形体の養生方法、特に曲げ強度
の低下のない、又凍結融解抵抗性のすぐれたコンクリー
ト成形体を得るための養生方法に関する。
[Detailed Description of the Invention] 3. Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for curing concrete molded bodies, and in particular to a concrete molded body that does not reduce bending strength and has excellent freeze-thaw resistance. Regarding the curing method to obtain.

本発明においてコンクリート成形体とは、コンクリート
成形体及びモルタル成形体t−総称するものである。
In the present invention, the concrete molded body is a general term for concrete molded bodies and mortar molded bodies.

〈従来の技術及びその問題点〉 従来、コンクリート成形体の強度を短時間で得るためや
長期寸法安定法を計るために高温高圧(オートクレーブ
)養生をしている、しかし、高温高圧養生したコンクリ
ートは、曲げ強度が低いことや、凍結融解抵抗性が省ジ
、その改善が切望されていた。
<Conventional technology and its problems> Conventionally, concrete is cured at high temperature and high pressure (autoclave) in order to obtain strength in a short time and to achieve long-term dimensional stability.However, concrete cured at high temperature and high pressure is , low bending strength and freeze-thaw resistance, and improvements have been desperately needed.

本発明者らは、高温高圧養生によってひび割れが生じた
り、曲げ強度が低下することや、凍結融解抵抗性が劣る
問題を解決すべく徨々検討を重ねた結果、コンクリート
成形体が高温高圧養生中及び降温時に乾−しない養生方
法を用いることで、曲げ強度などの力学性状や耐久性の
すぐれたコンクリート成形体が得られることを見い出し
本発明を光取するに到った。
The inventors of the present invention have conducted extensive studies to solve the problems of cracking, decreased bending strength, and poor freeze-thaw resistance caused by high-temperature and high-pressure curing, and found that concrete molded bodies are They have also discovered that a concrete molded body with excellent mechanical properties such as bending strength and durability can be obtained by using a curing method that does not dry out when the temperature drops, and has now developed the present invention.

く問題点を解決するための手段〉 即ち、本発明はコンクリート成形体を水中に埋没させた
状態で高温高圧養生を行なうことを特徴とするコンクリ
ート成形体の養生方法である。
Means for Solving the Problems> That is, the present invention is a method for curing a concrete molded body, which is characterized by performing high temperature and high pressure curing while the concrete molded body is submerged in water.

以下、本発明について詳細に説明する。本発明における
コンクリート成形体とは、水硬性物質と水とを主成分と
して成形・硬化した硬化体である。
The present invention will be explained in detail below. The concrete molded body in the present invention is a hardened body formed and hardened mainly containing a hydraulic substance and water.

水硬性物質と水とを主成分とするセメント組底物に必要
に応じて骨材、化学混和剤、混和材、繊維あるいは、例
えば網や鋼材などの補強材などと組み合せることも可能
である。
It is also possible to combine cement composites, which are mainly composed of hydraulic substances and water, with aggregates, chemical admixtures, admixtures, fibers, or reinforcing materials such as nets and steel materials, as necessary. .

水硬性物質とは、水と混練りしたとき硬化性を示す無機
物質で、例えば各種セメントや高炉スラグとアルカリ刺
激剤の組み合せ、ポゾラン類とセメントの組み合せなど
があげられる。これら水硬性物質と水とを混合し混練す
ると水利反応を生じ硬化体をつくることができる。水硬
性物質に各種化学混和剤及び/又は混和材(以下混和材
等という)を那えることも可能である。
Hydraulic substances are inorganic substances that exhibit hardening properties when mixed with water, such as various cements, combinations of blast furnace slag and alkali stimulants, and combinations of pozzolans and cement. When these hydraulic substances and water are mixed and kneaded, a water utilization reaction occurs and a hardened material can be produced. It is also possible to add various chemical admixtures and/or admixtures (hereinafter referred to as admixtures, etc.) to the hydraulic substance.

混和材等としては、水を減少させ流動性を得るため減水
剤及び高性能減水剤があり、コンクリート中の空気量を
調整するためのAE剤及びAm減V1水剤があり、硬化
収縮≠播を防ぐための硬化収縮低減剤などもある。更に
は、低水セメント比で流動性を保つために水硬性物質と
水に高性能減水剤と超微粉(例えばシリカヒユーム、炭
酸カルシウム、シリカゲル、オパール質硅石、フライア
ッシュ、高炉スラグ、酸化チタン、酸化アルミニウム及
び水硬性物質の微粉砕品等)とを配合することも可能で
ある。又、ポリビニルアルコールやセルロース誘導体等
の水溶性ポリマーを水硬性物質に加え低水セメント比で
ツインロールなトラ用イて混練し高強度成形体を得るこ
ともできる。
Admixtures include water reducing agents and high performance water reducing agents to reduce water content and obtain fluidity, and AE agents and Am reducing V1 water agents to adjust the amount of air in concrete. There are also curing shrinkage reducing agents to prevent this. Furthermore, in order to maintain fluidity at a low water-to-cement ratio, high-performance water reducers and ultrafine powders (e.g. silica hume, calcium carbonate, silica gel, opalescent silica, fly ash, blast furnace slag, titanium oxide, oxide) are added to the hydraulic substance and water. It is also possible to blend aluminum, finely pulverized products of hydraulic substances, etc.). Alternatively, a high-strength molded product can be obtained by adding a water-soluble polymer such as polyvinyl alcohol or a cellulose derivative to a hydraulic substance and kneading the mixture in a twin-roll tray at a low water-to-cement ratio.

なお本発明においては、以上の材料の他に必要に応じて
骨材を使用することができる。骨材としては一般に土木
分野でコンクリート調合する際に使用されているもので
良い。また、さらに強度の高いセラミックス系や金属系
の骨材を用い高強度な成形体を褥ることも可能である。
In addition, in the present invention, in addition to the above-mentioned materials, aggregate can be used as necessary. The aggregate may be one that is generally used when mixing concrete in the civil engineering field. Furthermore, it is also possible to fold a high-strength molded body using ceramic-based or metal-based aggregates that have even higher strength.

上記各材料の混合及び混練り方法は均一に混合及び混練
りできれば、いずれの方法でも良く、添加順序も特に制
限されるものではない。同、強度向上の面から脱泡操作
を行うことは好ましい。混練り時に加える水量は、水量
が少ない程硬化後の強度は、大きくなるが、混線り時の
流動性は低下する。通常は水セメント比が45%〜65
%である。減水剤及び高性能減水剤をさらに用いると3
0t!Ib〜45チである。水硬性物質に高性能減水剤
と超微粉を用いる方法では15%〜30%が可能となる
。ただし加圧による押し出し成型や水硬性物質に水溶性
高分子を組み合せツインロールにより練ジ混ぜる方法に
よれば更に低い水セメント比でも混練りが可能である。
The above-mentioned materials may be mixed and kneaded by any method as long as they can be mixed and kneaded uniformly, and the order of addition is not particularly limited. Similarly, from the viewpoint of improving strength, it is preferable to perform a defoaming operation. The smaller the amount of water added during kneading, the higher the strength after curing, but the lower the fluidity during mixing. Usually the water-cement ratio is 45% to 65
%. If a water reducing agent and a high performance water reducing agent are further used, 3
0t! Ib~45chi. A method using a high performance water reducing agent and ultrafine powder as a hydraulic substance can achieve a reduction of 15% to 30%. However, kneading is possible even at a lower water-cement ratio by extrusion molding under pressure or by combining a water-soluble polymer with a hydraulic substance and kneading it using twin rolls.

本発明における高温高圧養生とは、通常、100℃以上
の飽和水蒸気下で養生する場合を云うが、本発明におい
ては、常にコンクリート成形体を水が、120°C〜2
50°C程度が普通である。また、。
In the present invention, high-temperature and high-pressure curing usually refers to curing under saturated steam at 100°C or higher, but in the present invention, the concrete molded body is always cured under water at 120°C to 2°C.
A temperature of about 50°C is normal. Also,.

経断性や装置の能力と物性との関係より決定され、通常
180℃、5時間程度が多く用いられている。
The temperature is determined based on the relationship between the cutting properties, the ability of the device, and the physical properties, and a temperature of 180° C. for about 5 hours is usually used.

なお、高温高圧養生を水中で行なうため、前養生が必要
であり、乾燥のかからないようにした養生を行なう。製
置は通常20℃〜80′c程度である。
In addition, since high temperature and high pressure curing is performed in water, pre-curing is necessary, and curing is carried out to prevent drying. Preparation is usually about 20°C to 80'C.

乾燥をなくすために温水養生が最も好ましい。養生時間
は、成形体がある程度の形を保持できれば良く特に制限
されるものではない。通常20℃では1E!、50°C
で5〜8時間、8o0cでは4〜6時間程度が目安であ
るが、これに限定されることはない@ 〈実施例〉 以下本発明を実施例にて詳細に説明する。
Warm water curing is most preferred to eliminate dryness. The curing time is not particularly limited as long as the molded article can maintain its shape to some extent. Usually 1E at 20℃! , 50°C
The standard time is about 5 to 8 hours at 8o0c, and about 4 to 6 hours at 8o0c, but the time is not limited to this.

実施例1 表−1に示す配合のものを用いて、混練し、4×4×1
6cIILの供試体を作製し、50℃、8時間の前養生
後、各種条件にて養生を行なった。その後、常温にもど
し、JISR5201に準じて曲げ強度と圧縮強度を測
定した。
Example 1 The composition shown in Table 1 was kneaded to form a 4×4×1
A 6cIIL specimen was prepared, and after pre-curing at 50°C for 8 hours, it was cured under various conditions. Thereafter, the temperature was returned to room temperature, and the bending strength and compressive strength were measured according to JISR5201.

結果は表−2に示す。表から本i明において曲げ強度が
改善されることが明らかとなっている。
The results are shown in Table-2. It is clear from the table that the bending strength is improved in the present invention.

く使用材料〉 白色セメント:秩父セメント製 シリカヒユーム:日本重化製 高性能減水剤:第一工業製薬[セルフロー110Pj骨
材:鉄粉、同和鉄粉工業H(0,15yrtx下)水 
:水道水 表  −1 実施例2 以下に示す配合によりコンクリートを製造し、φ10×
20cWL及びI Qx 1 Ox40cmの供試体を
作製した。φ10X20cILの供試体6本を蒸気養生
65℃3時間後、さらに180°06時間の高温高圧養
生を実施した。この際、上記供試体の半数の一方は従来
の高温高圧養生を行なった(実験、%3)が、他方につ
いては水中に埋没させた本発明の高温高圧養生(実験/
164)を実施した。なお、配合は単位セメント量45
0kF!/m、高性能減水剤添加量、セメントに対し、
0.5重量%とし、スランプ8±1c!IL1水セメン
ト比34重量%とした。
Materials used> White cement: Chichibu Cement silica hume: Nippon Heavy Industries, Ltd. High performance water reducing agent: Daiichi Kogyo Seiyaku [Cellflow 110Pj Aggregate: Iron powder, Dowa Iron Powder Kogyo H (0.15yrtx bottom) Water
:Tap water table-1 Example 2 Concrete was manufactured using the formulation shown below, and φ10×
A specimen of 20 cWL and I Qx 1 Ox 40 cm was prepared. Six specimens of φ10×20cIL were steam-cured at 65°C for 3 hours, and then subjected to high-temperature and high-pressure curing at 180°C for 6 hours. At this time, one half of the test specimens was subjected to conventional high-temperature and high-pressure curing (experiment, %3), while the other half was subjected to high-temperature and high-pressure curing of the present invention (experiment /
164) was carried out. The composition is based on a unit cement amount of 45
0kF! /m, amount of high performance water reducer added, for cement,
0.5% by weight, slump 8±1c! The IL1 water-cement ratio was 34% by weight.

実施例1と同様に圧縮強度を測定し、さらに同様に、1
10X10X40Fの供試体を用い委秦キ喚=シ斡示#
7ASTM C−666に従い、凍結融解試験を実施3
00サイクルの耐久性係数全測定した。 妬it表−3
)ミ=4゜ く使用材料〉 セメント:アンデス社製 普通ポルトランドセメント 細骨材:富士用度川砂(比重2.62 >粗骨材:西多
摩産砕石(Max源200)高性能減水剤: ≠字ダ4
=を采rマイティ150」花王妥′、ヒ・ 主成分ナフタレンスルホン酸ホルム、7)アルデヒド縮
金物系 水  : 水道水 〔発明の効果〕 本方法により、曲げ強度の低下のない、凍結融解試験性
のすぐれた、高温高圧養生したコンクリート成形体の提
供が可能となった。
Compressive strength was measured in the same manner as in Example 1, and 1
Using a 10X10X40F specimen
Freeze-thaw test conducted in accordance with 7ASTM C-6663
The durability coefficient of 00 cycles was completely measured. Jealousy it table-3
) Mi = 4゜ Materials used〉 Cement: Ordinary Portland cement made by Andes Co., Ltd. Fine aggregate: Fuji river sand (specific gravity 2.62 > Coarse aggregate: Crushed stone from Nishitama (Max source 200) High performance water reducing agent: ≠ character Da 4
Main ingredient: Naphthalene sulfonate form, 7) Aldehyde-condensed metal water: Tap water [Effects of the invention] With this method, freeze-thaw testability is achieved without any decrease in bending strength. It is now possible to provide a concrete molded body cured at high temperature and high pressure with excellent properties.

Claims (1)

【特許請求の範囲】[Claims] (1)コンクリート成形体を水中に埋没させた状態で高
温高圧養生を行なうことを特徴とするコンクリート成形
体の養生方法。
(1) A method for curing a concrete molded body, which is characterized by performing high temperature and high pressure curing while the concrete molded body is submerged in water.
JP12099786A 1986-05-28 1986-05-28 Method of curing concrete formed body Pending JPS62278179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12099786A JPS62278179A (en) 1986-05-28 1986-05-28 Method of curing concrete formed body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12099786A JPS62278179A (en) 1986-05-28 1986-05-28 Method of curing concrete formed body

Publications (1)

Publication Number Publication Date
JPS62278179A true JPS62278179A (en) 1987-12-03

Family

ID=14800227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12099786A Pending JPS62278179A (en) 1986-05-28 1986-05-28 Method of curing concrete formed body

Country Status (1)

Country Link
JP (1) JPS62278179A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1090892A1 (en) * 1998-06-04 2001-04-11 Denki Kagaku Kogyo Kabushiki Kaisha Method for producing chemically prestressed concrete product, high-temperature, high-pressure underwater concrete product curing device suitably used for the method and curing method for concrete product using the curing device
JP2007099544A (en) * 2005-10-03 2007-04-19 Univ Chuo Curing method in highly durable cement based formed article production

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1090892A1 (en) * 1998-06-04 2001-04-11 Denki Kagaku Kogyo Kabushiki Kaisha Method for producing chemically prestressed concrete product, high-temperature, high-pressure underwater concrete product curing device suitably used for the method and curing method for concrete product using the curing device
EP1090892A4 (en) * 1998-06-04 2005-11-30 Denki Kagaku Kogyo Kk Method for producing chemically prestressed concrete product, high-temperature, high-pressure underwater concrete product curing device suitably used for the method and curing method for concrete product using the curing device
JP2007099544A (en) * 2005-10-03 2007-04-19 Univ Chuo Curing method in highly durable cement based formed article production
JP4694937B2 (en) * 2005-10-03 2011-06-08 学校法人 中央大学 Curing method in the manufacture of highly durable cement-based molded products

Similar Documents

Publication Publication Date Title
Li et al. Synergistic cementing efficiencies of nano-silica and micro-silica in carbonation resistance and sorptivity of concrete
Qian et al. The relationships between stress and strain for high-performance concrete with metakaolin
AU698949B2 (en) Shrinkage reduction cement composition
US5389143A (en) Low shrinkage cement composition
Uddin et al. Experimental study on strength gaining characteristics of concrete using Portland Composite Cement
CA2308237A1 (en) Compositions and methods for curing concrete
JPH0231026B2 (en)
JP2008162843A (en) High-strength admixture and concrete composition for centrifugal molding
JPS62278179A (en) Method of curing concrete formed body
JPH0412043A (en) Hydraulic binder
JPS59102849A (en) Super high strength cement hardened body
JPH02307851A (en) Concrete composition
JP6959000B2 (en) Cement composition
Coppola et al. Influence of superplasticizer type on the compressive strength of RPM
JP4165992B2 (en) Hydraulic composition
Abbas et al. SELF–CURING CEMENT MORTAR COMPOSITE BY USING POLY VINYL ALCOHOL
JPH05279101A (en) Cast-in-place fresh concrete having high packing property
JPH0542383B2 (en)
JPS62223048A (en) Reduction of concrete hydration heat
JP5383045B2 (en) Cement composition for grout and grout material using the same
JP2749257B2 (en) Highly functional mortar / concrete and method for producing the same
JPS60221355A (en) High strength non-shrink grout material
JPS62240510A (en) Cement concrete cured body
JP4615669B2 (en) Admixture and binder for heavy grout mortar and heavy grout mortar
JPH0637319B2 (en) Method for curing cement composition