JPH0412043A - Hydraulic binder - Google Patents

Hydraulic binder

Info

Publication number
JPH0412043A
JPH0412043A JP11259790A JP11259790A JPH0412043A JP H0412043 A JPH0412043 A JP H0412043A JP 11259790 A JP11259790 A JP 11259790A JP 11259790 A JP11259790 A JP 11259790A JP H0412043 A JPH0412043 A JP H0412043A
Authority
JP
Japan
Prior art keywords
blast furnace
alkali
strength
mortar
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11259790A
Other languages
Japanese (ja)
Inventor
Takuji Nakamura
卓史 中村
Kazuhiko Tsukamoto
和彦 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP11259790A priority Critical patent/JPH0412043A/en
Publication of JPH0412043A publication Critical patent/JPH0412043A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a hydraulic binder having a high initial strength without deteriorating a long-period strength by adding an alkali metallic compound to fine granulated blast furnace slag powder, activating the aforementioned blast furnace slag powder and blending the resultant alkali-activated slag with hydrous Mg inosilicate. CONSTITUTION:A hydraulic binder is obtained by adding an alkali metal hydroxide, carbonate or silicate in an amount of 1-10 pts.wt. expressed in terms of NaO2O to 100 pts.wt. fine granulated blast furnace slag powder having >=3000cm<2>/g Blaine specific surface area and acitvating the above-mentioned blast furnace slag powder. The hydraulic binder contains 0.1-10wt.% hydrous Mg inosilicate (a compound expressed by the formula and sepiolite which is a natural mineral is normally used) in the resultant alkali-activated slag. Although mortar using the alkali-activated slag as a binder has conventional disadvantages in deteriorating a long-period strength, mortar or hardened products of concrete with a high initial strength and hardly any deterioration in the long-period strength can be obtained by adding the hydrous Mg inosilicate Thereto. the mortar of concrete using the aforementioned binder has hardly any shrinkage in hardening.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、水硬性結合材に係り、詳しくは高炉水砕スラ
グ微粉末をアルカリ金属の水酸化物、炭酸塩又は珪酸塩
で活性化したアルカリ活性化スラグにおいて、その欠点
である長期強度低下を防止し、収縮を低減した水硬性結
合材に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a hydraulic binder, and more specifically, the present invention relates to a hydraulic binder, and more specifically, it is made by activating granulated blast furnace slag powder with an alkali metal hydroxide, carbonate, or silicate. This invention relates to a hydraulic binder that prevents long-term strength loss and reduces shrinkage in alkali-activated slag.

〔従来の技術〕[Conventional technology]

高炉水砕スラグ微粉末は潜在水硬性を有するので、アル
カリ刺激剤を加えると活性化して水硬性を発現する。そ
こで、モルタルやコンクリートの結合材の原料としての
利用が期待されているが、現実には、高炉セメントが普
及しているに過ぎない。しかし、高炉セメントは、ポル
トランドセメントと比べて種々の利点はあるものの初期
強度が低くいという欠点があり、用途が限定されている
Granulated blast furnace slag powder has latent hydraulic properties, so when an alkaline stimulant is added, it is activated and develops hydraulic properties. Therefore, it is expected to be used as a raw material for binding materials for mortar and concrete, but in reality, blast furnace cement is only widely used. However, although blast furnace cement has various advantages over Portland cement, it has the disadvantage of low initial strength, which limits its uses.

一方、高炉水砕スラグ微粉末をアルカリ金属の水酸化物
、炭酸塩又は珪酸塩で活性化したアルカリ活性化スラグ
を結合材とし水で混練したモルタルは早強性、高強度発
現の点で優れていて、養生条件にもよるが、圧縮強度で
表すと、通常、混練後3時間750kgf/cn程度、
材令1日で300kg f / cffl程度、材令2
8日で1.000kgf /afl程度であり、曲げ強
度で表すと、混練後3時間で15 kg f /ctA
程度、材令1日で45kgr/cf+程度、材令28日
で110kgf/d程度である。
On the other hand, mortar made by kneading granulated blast furnace slag powder with water and using alkali-activated slag as a binder, which is made by activating fine powder of granulated blast furnace slag with alkali metal hydroxide, carbonate, or silicate, has excellent early strength and high strength. Although it depends on the curing conditions, the compressive strength is usually about 750 kgf/cn for 3 hours after kneading.
Approximately 300 kg f / cffl in 1 day, wood age 2
It was about 1.000 kgf/afl in 8 days, and expressed in terms of bending strength, it was 15 kgf/ctA in 3 hours after kneading.
The yield is about 45 kgr/cf+ at 1 day old and about 110 kgf/d at 28 days old.

これは、従来から早強性の優れた水硬性結合材として知
られ、超速硬セメントとして市販されてイルシェツトセ
メントを結合材として用いたモルタルが、材令28日で
の圧縮強度が500kgf/ct1程度、曲げ強度が8
0 kg f /crA程度と高強度発現の点で劣り、
価格も高いこと、普通ポルトランドセメントを用い高強
度を発現するために水セメント比を26〜28%程度に
抑えたモルタルが、凝結時間が始発で2時間、終結で3
時間と長く、混練後3時間では強度発現せず早強性の点
で劣ることを考えると、アルカリ活性化スラグが材令2
8日までの強度発現の点で極めて優れていることがわか
る。
This has long been known as a hydraulic binder with excellent early-strengthening properties, and mortar that is commercially available as super-fast hardening cement and uses Irushet cement as a binder has a compressive strength of 500 kgf/ct1 at 28 days of age. degree, bending strength is 8
It is inferior in terms of high intensity expression at around 0 kg f /crA,
The price is high, and the mortar that uses ordinary Portland cement and keeps the water-cement ratio to about 26-28% to achieve high strength has a setting time of 2 hours at the beginning and 3 hours at the end.
Considering that it takes a long time and does not develop strength within 3 hours after kneading and is inferior in terms of early strength, alkali-activated slag is
It can be seen that the strength development up to 8 days is extremely excellent.

しかし、アルカリ活性化スラグを結合材として用いたモ
ルタルには、長期材令での強度、特に曲げ強度が大きく
低下する欠点があり、甚だしい場合には、材令91日で
の曲げ強度が材令28日での曲げ強度の60〜70%程
度まで低下することが判った。
However, mortar using alkali-activated slag as a binder has the disadvantage that its long-term strength, especially its bending strength, decreases significantly. It was found that the bending strength decreased to about 60 to 70% of the bending strength after 28 days.

この欠点の解決方法として、クリンカ粉末やアルカリ金
属の硫酸塩等の無機添加剤を添加する方法やセメント減
水剤を添加する方法が提案されているが、何れも効果が
十分でない(特公昭6310109号公報、特開昭55
−162456号公報)。
As a solution to this drawback, methods of adding inorganic additives such as clinker powder and alkali metal sulfates, and methods of adding cement water reducing agents have been proposed, but none of them are sufficiently effective (Japanese Patent Publication No. 6310109 Publication, JP-A-55
-162456).

(発明が解決しようとする課題〕 本発明の目的は、初期強度が高く、長期強度の低下がな
い水硬性結合材を提供することにある。
(Problems to be Solved by the Invention) An object of the present invention is to provide a hydraulic binder having high initial strength and no decrease in long-term strength.

(ilaを解決するための手段〕 本発明者は、上記のような課題を解決するため研究を行
い、アルカリ活性化スラグを用いたモルタルの長期強度
低下の原因が、モルタル硬化体に形成した毛細管の脱水
による収縮にあると推定し、保水性を有するとともに強
アルカリ性の条件下で水和反応する物質を加えることに
より解決できることを見出し、本発明を完成した。
(Means for solving ila) The present inventor conducted research to solve the above problems and discovered that the cause of the long-term strength reduction of mortar using alkali-activated slag is the capillary tubes formed in the hardened mortar. They presumed that this was due to shrinkage due to dehydration, and found that this could be solved by adding a substance that has water retention properties and undergoes a hydration reaction under strongly alkaline conditions, and completed the present invention.

すなわち、本発明は、ブレーン比表面積3000cd/
g以上の高炉水砕スラグ微粉末100重量部にアルカリ
金属の水酸化物、炭酸塩又は珪酸塩をNa、Qに換算し
て1〜10重蓋部加えて活性化したアルカリ活性化スラ
グに対し、マグネシウムの含水イノケイ酸塩を0.1〜
10重量%含有させたことを特徴とする水硬性結合材で
ある。
That is, the present invention has a Blaine specific surface area of 3000 cd/
For alkali-activated slag activated by adding 1 to 10 parts of alkali metal hydroxide, carbonate, or silicate in terms of Na and Q to 100 parts by weight of pulverized blast furnace slag of 100 parts by weight or more. , hydrated inosilicate of magnesium from 0.1 to
This is a hydraulic binder characterized by containing 10% by weight.

以下、さらに詳しく本発明について説明する。The present invention will be explained in more detail below.

本発明でいう高炉水砕スラグ微粉末は、高炉で銑鉄を製
造する際に副生ずる高炉スラグを水で急冷、破砕して得
られる水砕スラグを粉砕したもので、ブレーン比表面積
が3000cd/g以上のものである。3000cff
l/g未満のものでは、強度発現が非常↓二弱い。一方
、上限は特にないが、過粉砕成分の含有量が高くなると
、乾燥収縮が大きくなるので、粉砕方法にもよるが、−
船釣には8000cd/g以下が好ましい。
The pulverized blast furnace slag powder referred to in the present invention is obtained by pulverizing granulated slag obtained by rapidly cooling and crushing blast furnace slag, which is a by-product when producing pig iron in a blast furnace, and has a Blaine specific surface area of 3000 cd/g. That's all. 3000cff
If it is less than l/g, the strength development is very weak. On the other hand, although there is no particular upper limit, the higher the content of over-pulverized components, the greater the drying shrinkage, so depending on the pulverization method, -
For boat fishing, 8000 cd/g or less is preferable.

本発明でいうアルカリ活性化スラグは、高炉水砕スラグ
微粉末にアルカリ金属の水酸化物、炭酸塩又は珪酸塩を
加えて活性化したものである。その添加量は、高炉水砕
スラグ微粉末100重量部に対しNa2Oに換 算して1〜10重量部である。1重量部未満でも10重
量部を超えても強度発現が悪い。
The alkali-activated slag referred to in the present invention is activated by adding an alkali metal hydroxide, carbonate, or silicate to pulverized blast furnace slag powder. The amount added is 1 to 10 parts by weight in terms of Na2O per 100 parts by weight of pulverized blast furnace slag powder. Even if it is less than 1 part by weight or more than 10 parts by weight, strength development is poor.

本発明の水硬性結合材は、アルカリ活性化スラグに長期
強度低下防止材としてマグネシウムの含水イノケイ酸塩
を加えたものである。具体的なマグネシウムの含水イノ
ケイ酸塩を含有する物質としては、天然鉱物のセビオラ
イトがある。セビオライトは、トルコ、中国、米国等で
産出されており、主な用途として、建材分野で壁材や断
熱材の増粘材や早期脱型用材料として使用されている。
The hydraulic binder of the present invention is made by adding hydrated inosilicate of magnesium to alkali-activated slag as a long-term strength deterioration preventive agent. A specific example of a substance containing hydrated magnesium inosilicate is the natural mineral Seviolite. Seviolite is produced in Turkey, China, the United States, and other countries, and is mainly used in the building materials field as a thickening agent for wall materials and insulation materials, and as a material for early demolding.

セビオライトはS i +zMge O3o (OHz
)a 、8H2Oの化学式で示される含水イノケイ酸マ
グZ、シウムを主成分きするもので、化学組成の一例を
示せば、5iO752〜58%、Mg015〜25%で
あり、MgOの一部がA1.0,0.5〜2%、Fez
 O:I O,5〜3%で置換され、不純物としてCa
b、Na2O,に、O等を若干量含む。セビオライトは
、長さ0.2〜5薗、輻100〜300人、厚さ50〜
100人の繊維状で空隙を有する単結晶をもち、この構
造により、特殊な吸着性や吸水性、粘着性を有するため
、長期強度低下防止材としての効果が特に優れている。
Seviolite is S i +zMge O3o (OHz
)a, hydrated inosilicate mag Z, which is shown by the chemical formula of 8H2O, is mainly composed of silium, and an example of the chemical composition is 5iO752-58%, Mg015-25%, and a part of MgO is A1 .0, 0.5-2%, Fez
O: substituted with IO, 5-3%, with Ca as an impurity
b, Na2O, contains a small amount of O, etc. Seviolite is 0.2 to 5 mm long, 100 to 300 mm long, and 50 mm thick.
It has a single crystal structure that is fibrous and has voids, and because of this structure, it has special adsorption, water absorption, and adhesive properties, making it particularly effective as a material for preventing long-term strength loss.

なお、セビオライトの真比重は2.0〜2.3と言われ
ているが、実用上用いる乾燥品は水分約10%を含んで
いるもので、嵩比重が0.6程度であマグネシウムの含
水イノケイ酸塩の長期強度低下防止材としての添加量は
、アルカリ活性化スラグの0.1〜10重量%好ましく
は0.5〜3重量%である。0.1重量部未満では長期
強度低下防止の効果が小さく、10重量部を超えるとモ
ルタルの粘性が高くなり作業性に悪影響を与えるので好
ましくない。
The true specific gravity of Seviolite is said to be 2.0 to 2.3, but the dry product used for practical purposes contains about 10% water, and the bulk specific gravity is about 0.6, which is higher than the water content of magnesium. The amount of inosilicate added as a long-term strength reduction prevention material is 0.1 to 10% by weight, preferably 0.5 to 3% by weight of the alkali-activated slag. If it is less than 0.1 parts by weight, the effect of preventing long-term strength reduction is small, and if it exceeds 10 parts by weight, the viscosity of the mortar will increase and workability will be adversely affected, which is not preferable.

その他、本発明の水硬性結合材は、高炉水砕スラグ微粉
末100重量部に対して、例えば20重量部程度以下の
範囲で、各種添加剤を加えてもよい。具体的には、フラ
イアッシュ、製鋼スラグ粉末等の潜在水硬性を有する物
質、タリン力粉末、セメントm水剤及び消泡材等のセメ
ント添加剤、メチルセルロース、ポリビニルアルコール
等の水溶性高分子等を添加してもよい。特にセメント添
加剤を適当量使用することにより、各種の性能を改善で
きる。
In addition, various additives may be added to the hydraulic binder of the present invention, for example, in an amount of about 20 parts by weight or less per 100 parts by weight of pulverized blast furnace slag powder. Specifically, materials with latent hydraulic properties such as fly ash and steelmaking slag powder, cement additives such as talin powder, cement m water agents and antifoaming agents, and water-soluble polymers such as methylcellulose and polyvinyl alcohol are used. May be added. In particular, various performances can be improved by using appropriate amounts of cement additives.

本発明の水硬性結合材はモルタルやコンクリートの結合
材として、現在広く用いられている普通ポルトランドセ
メントと比べても同等以上の性能を有し、特に耐酸性や
耐熱性が優れているので、より幅広い分野での使用が期
待できる。特に、構造用材料として使用する場合には、
マグネシウムの含水イノケイ酸塩の長期強度低下防止材
としての効果が、材令2ケ月あたりから大きく作用する
ことにより、従来のアルカリ活性化スラグでの長期強度
低下及び収縮が大きいという致命的欠陥が克服されてい
るので、硬化体の品質及び安定性が高いという好ましい
結果を与える。
The hydraulic binder of the present invention has the same or better performance as a binder for mortar and concrete than ordinary Portland cement, which is currently widely used, and has particularly excellent acid resistance and heat resistance. It can be expected to be used in a wide range of fields. Especially when used as a structural material,
The effect of magnesium hydrated inosilicate as a material that prevents long-term strength loss becomes significant from around 2 months of age, which overcomes the fatal flaws of conventional alkali-activated slag, such as long-term strength loss and large shrinkage. As a result, the quality and stability of the cured product are high.

〔実施例〕〔Example〕

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

実施例1 ブレーン比表面積5120cd/gの高炉水砕スラグ微
粉末100重量部、メタ珪酸ソーダ23重量部、セピオ
ライト1若しくは2重量部、セメント減水剤1.2重量
部及び消泡剤2.5重量部を配合してなる結合材につい
て、細骨材として炭カル砂200重量部を用い、それぞ
れ42重量部又は45重量部の水で混練したモルタルを
4×4×16cmの二連型枠に打設して供試体を作成し
た。
Example 1 100 parts by weight of pulverized blast furnace slag powder with a Blaine specific surface area of 5120 cd/g, 23 parts by weight of sodium metasilicate, 1 or 2 parts by weight of sepiolite, 1.2 parts by weight of a cement water reducer, and 2.5 parts by weight of an antifoaming agent. 200 parts by weight of charcoal sand as a fine aggregate and mortar mixed with 42 parts by weight or 45 parts by weight of water, respectively, were poured into a double formwork of 4 x 4 x 16 cm. A test specimen was created using the following equipment.

各供試体の養生は、温度20°C湿度95%の条件での
湿潤養生とし、材令1日で脱型し、その後は、供試体を
ビニール袋で密封して所定の材令まで養生した。
Each specimen was cured under humid conditions at a temperature of 20°C and a humidity of 95%, and was removed from the mold after 1 day of age. After that, the specimen was sealed in a plastic bag and cured to the specified age. .

各材令に達した供試体について、J I 5−R520
1に従って、曲げ強度及び圧縮強度を測定した。
For specimens that have reached each material age, J I 5-R520
1, the bending strength and compressive strength were measured.

使用した高炉水砕スラグ微粉末及びメタ珪酸ソーダの化
学成分組成を第1表及び第2表に、セビオライ(・及び
水の使用量と各材令の供試体の曲げ強度及び圧縮強度を
第3表に示す。
The chemical compositions of the used granulated blast furnace slag powder and sodium metasilicate are shown in Tables 1 and 2. Shown in the table.

比較例1 セピオライトを用いず、水の使用量を30重量部とした
他は実施例]と同様にした。
Comparative Example 1 The same procedure as in Example was carried out except that sepiolite was not used and the amount of water used was 30 parts by weight.

結果を第3表に示す。The results are shown in Table 3.

第2表 第3表 メタ珪酸ソーダの化学成分組成 (%) 実施例2 実施例1で用いた高炉水砕スラグ微粉末100重量部及
びメタ珪酸ソーダ27.5重量部並びにセビオライト2
重量部を配合してなる結合材について、細骨材として炭
カル砂200重量部を用い、30重量部の水で混練した
モルタルを4X4X]6cmの二連型枠に打設して供試
体を作成した。供試体の養生は、材令3日までは温度2
0゛C湿度95%の条件での湿潤養生とし、その後は温
度20°C湿度60%の条件での気乾養生とした。なお
、材令1日で脱型し、その後は、供試体をビニール袋で
密封して所定の材令まで養生した。
Table 2 Table 3 Chemical composition of sodium metasilicate (%) Example 2 100 parts by weight of granulated blast furnace slag powder used in Example 1, 27.5 parts by weight of sodium metasilicate, and Seviolite 2
Regarding the binder made by mixing parts by weight, mortar mixed with 200 parts by weight of coal sand as a fine aggregate and 30 parts by weight of water was poured into a double formwork of 4 x 4 x] 6 cm to form a specimen. Created. The specimen is cured at a temperature of 2 until the third day of age.
Humid curing was carried out under conditions of 0°C and humidity of 95%, and then air-dry curing was carried out under conditions of temperature of 20°C and humidity of 60%. The specimen was demolded after one day of age, and then the specimen was sealed in a plastic bag and cured to a predetermined age.

各材令に達した供試体は、JJS、R−5201に従っ
て、曲げ強度を測定した。各材令の供試体の曲げ強度を
第4表に示す。
The bending strength of the specimens that reached each material age was measured in accordance with JJS, R-5201. Table 4 shows the bending strength of the specimens of each material age.

また、前記モルタルを用いて長さ変化を測定した。長さ
変化の測定は、長さ変化測定用(モルタルバー法)型枠
内に前記モルタルを打設し、温度20°CyW度95%
の条件で湿潤養生し、材令1日で脱型して得た供試体を
温度20°C湿度60%の条件で気乾養生しなから各材
令での供試体の長さを測定して行った。脱型時の長さを
基準として各材令までの収縮率を第5表に示す。
Further, the length change was measured using the mortar. To measure the length change, place the mortar in a formwork for length change measurement (mortar bar method) and set the mortar at a temperature of 20°CyW and 95%.
The specimens obtained by moist curing under the following conditions and demolding at one day of age were air-dryed at a temperature of 20°C and humidity of 60%, and the length of the specimen at each age was measured. I went. Table 5 shows the shrinkage rate for each material based on the length at the time of demolding.

比較例2 セビオライトを用いなかった他は実施例2と同様にした
Comparative Example 2 The same procedure as Example 2 was carried out except that Seviolite was not used.

結果を第4表及び第5表に示す。The results are shown in Tables 4 and 5.

実施例3 材令3日以降の養生を温度20 ’C?W度95%の条
件での封緘養生とした他は実施例2と同様にした。
Example 3 Curing after 3 days of age at a temperature of 20'C? The same procedure as in Example 2 was carried out except that sealing and curing were carried out under conditions of 95% W degree.

結果を第4表に示す。The results are shown in Table 4.

比較例3 セビオライトを用いながった他は実施例3と同様にした
Comparative Example 3 The same procedure as Example 3 was carried out except that Seviolite was not used.

結果を第4表に示す。The results are shown in Table 4.

[発明の効果] 本発明の水硬性結合材を用いると、従来のアルカリ活性
化スラグセメントと異なり、初期強度が高く、長期強度
の低下が少ないモルタルやコンクリート硬化体を得るこ
とができる。また、本発明の水硬性結合材を用いたモル
タルやコンクリートは硬化時の収縮が少ない。
[Effects of the Invention] When the hydraulic binder of the present invention is used, unlike conventional alkali-activated slag cement, it is possible to obtain a mortar or concrete hardened product that has high initial strength and little decrease in long-term strength. Furthermore, mortar and concrete using the hydraulic binder of the present invention have little shrinkage during hardening.

Claims (1)

【特許請求の範囲】[Claims] (1)ブレーン比表面積3000cm^2/g以上の高
炉水砕スラグ微粉末100重量部にアルカリ金属の水酸
化物、炭酸塩又は珪酸塩をNa_2Oに換算して1〜1
0重量部加えて活性化したアルカリ活性化スラグに対し
、マグネシウムの含水イノケイ酸塩を0.1〜10重量
%含有させたことを特徴とする水硬性結合材。
(1) Add an alkali metal hydroxide, carbonate, or silicate to 100 parts by weight of pulverized blast furnace slag powder with a Blaine specific surface area of 3000 cm^2/g or more in an amount of 1 to 1 in terms of Na_2O.
A hydraulic binder characterized by containing 0.1 to 10% by weight of hydrated inosilicate of magnesium based on 0 parts by weight of activated alkali-activated slag.
JP11259790A 1990-04-27 1990-04-27 Hydraulic binder Pending JPH0412043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11259790A JPH0412043A (en) 1990-04-27 1990-04-27 Hydraulic binder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11259790A JPH0412043A (en) 1990-04-27 1990-04-27 Hydraulic binder

Publications (1)

Publication Number Publication Date
JPH0412043A true JPH0412043A (en) 1992-01-16

Family

ID=14590724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11259790A Pending JPH0412043A (en) 1990-04-27 1990-04-27 Hydraulic binder

Country Status (1)

Country Link
JP (1) JPH0412043A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004104344A (en) * 2002-09-06 2004-04-02 Sharp Corp Dipole antenna, tag using the same, and mobile unit identification system
JP2006298698A (en) * 2005-04-20 2006-11-02 Chugoku Electric Power Co Inc:The Production method of hardened body, hardened body, and structure using the hardened body
KR100707519B1 (en) * 2006-10-31 2007-04-13 주식회사 포스코건설 Fire-resistant board adhesive composition for concrete
JP2010532307A (en) * 2007-06-29 2010-10-07 インダストリー ファウンデーション オブ チョンナム ナショナル ユニバーシティー Alkali active binder containing no cement, method for producing mortar using the same, and method for producing alkali active reinforced mortar containing no cement
US8118931B2 (en) 2008-05-30 2012-02-21 Construction Research & Technology Gmbh Mixture, in particular construction material mixture containing furnace slag
CN109400087A (en) * 2018-11-06 2019-03-01 安徽理工大学 A kind of method-Ca (OH) enhancing alkali-activated carbonatite concrete resisting carbonization2Inner blending method
JP2019524633A (en) * 2016-08-04 2019-09-05 ジオポリマー ソリューションズ エルエルシーGeopolymer Solutions Llc Low temperature melting concrete
WO2023100915A1 (en) * 2021-12-02 2023-06-08 株式会社トクヤマ Powdery hydraulic composition

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004104344A (en) * 2002-09-06 2004-04-02 Sharp Corp Dipole antenna, tag using the same, and mobile unit identification system
JP2006298698A (en) * 2005-04-20 2006-11-02 Chugoku Electric Power Co Inc:The Production method of hardened body, hardened body, and structure using the hardened body
KR100707519B1 (en) * 2006-10-31 2007-04-13 주식회사 포스코건설 Fire-resistant board adhesive composition for concrete
JP2010532307A (en) * 2007-06-29 2010-10-07 インダストリー ファウンデーション オブ チョンナム ナショナル ユニバーシティー Alkali active binder containing no cement, method for producing mortar using the same, and method for producing alkali active reinforced mortar containing no cement
JP2012232901A (en) * 2007-06-29 2012-11-29 Industry Foundation Chonnam National Univ Alkaline active binder containing no cement, method for producing mortar using the same, and method for producing alkaline active reinforcing mortar containing no cement
US8118931B2 (en) 2008-05-30 2012-02-21 Construction Research & Technology Gmbh Mixture, in particular construction material mixture containing furnace slag
JP2019524633A (en) * 2016-08-04 2019-09-05 ジオポリマー ソリューションズ エルエルシーGeopolymer Solutions Llc Low temperature melting concrete
CN109400087A (en) * 2018-11-06 2019-03-01 安徽理工大学 A kind of method-Ca (OH) enhancing alkali-activated carbonatite concrete resisting carbonization2Inner blending method
WO2023100915A1 (en) * 2021-12-02 2023-06-08 株式会社トクヤマ Powdery hydraulic composition

Similar Documents

Publication Publication Date Title
EP0312323B1 (en) Cement compositions
US4046583A (en) Method of producing expansive and high strength cementitious pastes, mortars and concretes
KR20130018500A (en) Mortar or concrete composition using fly ash and use thereof
JP2007297226A (en) Cement admixture and cement composition using the same
JPH0412043A (en) Hydraulic binder
CA1090835A (en) Hydraulic cement mixes and process for improving hydraulic cement mixes
US4762561A (en) Volume-stable hardened hydraulic cement
JPS6366788B2 (en)
US6447597B1 (en) Hydrated calcium aluminate based expansive admixture
CN110698088B (en) Retarded portland cement and preparation method thereof
JPS6238314B2 (en)
CA2298328C (en) Hydrated calcium aluminate based expansive admixture
JPH01208354A (en) Low-alkali cement composition
JPH0235699B2 (en)
JP5383045B2 (en) Cement composition for grout and grout material using the same
Abd EL-Moatey et al. DEVELOPMENT OF GEOPOLYMER (GREEN) CEMENT STRENGTH WITHOUT NATURAL AND CHEMICALS ADDITIVE.
JPH0549621B2 (en)
JP2886594B2 (en) Lightweight cement molding
JPH0776121B2 (en) Volume stable hardening hydraulic cement
Boubekeur et al. Beneficial E ec o ncor ora ion o Sla on he H dra ion Hea, Mechanical ro er ies and urabili o emen on ainin imes one o der
JPH0637319B2 (en) Method for curing cement composition
JP2934347B2 (en) Inorganic hard material
JP2022116529A (en) High-strength underwater inseparable mortar composition for high-temperature environments and mortar using the same
SU1020408A1 (en) Heat insulating composition
JP2530637B2 (en) Method for producing cement molded body