JPS6227303A - Reformer for producing hydrogen for fuel cell - Google Patents

Reformer for producing hydrogen for fuel cell

Info

Publication number
JPS6227303A
JPS6227303A JP60164669A JP16466985A JPS6227303A JP S6227303 A JPS6227303 A JP S6227303A JP 60164669 A JP60164669 A JP 60164669A JP 16466985 A JP16466985 A JP 16466985A JP S6227303 A JPS6227303 A JP S6227303A
Authority
JP
Japan
Prior art keywords
combustion
reformer
catalyst
fuel cell
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60164669A
Other languages
Japanese (ja)
Inventor
Tetsuro Okano
哲朗 岡野
Toshiki Furue
古江 俊樹
Kenji Arisaki
有崎 虔治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP60164669A priority Critical patent/JPS6227303A/en
Publication of JPS6227303A publication Critical patent/JPS6227303A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To realize low NOx combustion and to prevent the generation of pollution by providing a catalyst type main combustion device and burner type auxiliary combustion device to a combustion part for heating a reactor of a reformer and regulating the ratio of supplying gases to both combustion devices with regulators. CONSTITUTION:A gaseous raw material such as LNG is introduced together with steam from an inlet nozzle 111 into the reformer 110 and is subjected to reforming reaction in a reforming catalyst layer 112. The reformed gas is taken out of an outlet nozzle 114. Part of a anode waste gas 216 of a fuel cell is supplied to the catalyst type main combustion device 210 and is burned therein. The balance is supplied to the burner type auxiliary combustion device 213 and is burned therein so that the heat necessary for the reforming reaction is generated. The temp. of the catalyst in the device 210 in this stage is detected by a thermocouple 214a and the ratio of the waste gas 216 to be supplied to the device 210 and the device 213 is regulated by the regulators 214 in accordance with the detected value by which the temp. of the catalyst is controlled to a prescribed value.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、水素と酸素の電気化学反応を利用した燃料電
池用の水素を製造する改質器に係り、特に原料を改質し
て水素に転換する際の原料の加熱用ガス発生部に触媒燃
焼装置を採用した改質器に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a reformer for producing hydrogen for fuel cells using an electrochemical reaction between hydrogen and oxygen, and particularly relates to a reformer that produces hydrogen for fuel cells by reforming raw materials. This invention relates to a reformer that employs a catalytic combustion device in the gas generation section for heating the raw material when it is converted into.

(従来の技術とその問題点) 第2図に燃料電池システム(リン酸型)の概要を示す。(Conventional technology and its problems) Figure 2 shows an overview of the fuel cell system (phosphoric acid type).

LNG (液体天然ガス)等の原料は、改質用スチーム
と共に供給管1から改質器反応部2に供給される。反応
部において改質器燃焼部6より熱を受けた原料は、水素
リッチの改質ガスとなって、シフトコンバータ3に供給
される。シフl−コンバータ3で電池に有害なCOガス
を除去された改質ガスは電池アノード4に供給される。
A raw material such as LNG (liquid natural gas) is supplied to a reformer reaction section 2 from a supply pipe 1 together with reforming steam. The raw material that has received heat from the reformer combustion section 6 in the reaction section becomes a hydrogen-rich reformed gas and is supplied to the shift converter 3. The reformed gas from which CO gas harmful to the battery has been removed by the Schifl-converter 3 is supplied to the battery anode 4.

電池アノード4で発電に使用されなかった残りの水素を
含むガスは、改質器燃焼部6にリサイクルされ、ここで
燃焼して反応部2に熱を与える。
The remaining hydrogen-containing gas that is not used for power generation by the battery anode 4 is recycled to the reformer combustion section 6, where it is combusted to provide heat to the reaction section 2.

燃料電池に必要な空気は、送風機10から電池カソード
5に供給され発電に利用される。送風機10からの空気
の一部は、改質器の燃焼部6に送られ燃焼用空気として
利用される。
Air necessary for the fuel cell is supplied from the blower 10 to the battery cathode 5 and used for power generation. A portion of the air from the blower 10 is sent to the combustion section 6 of the reformer and used as combustion air.

改質器の燃焼部での燃料の燃焼にはバーナが用いられて
おり、燃料としては燃料電池のアノード排ガスを使用す
るが、組成はH2ガスが約30%、CH4ガスが約8%
、残りがCO2とH20である。この燃料をバーナの安
定運転域である過剰0□率5%で、フレッシュ・エヤー
を使って燃焼させると、燃焼温度は1400〜1550
℃、電池カソード5の排空気(0211i度10%)を
使って過剰02率5%で燃焼させると燃焼温度は120
0〜1350℃となっる。
A burner is used to burn the fuel in the combustion section of the reformer, and the anode exhaust gas of the fuel cell is used as the fuel, and the composition is approximately 30% H2 gas and 8% CH4 gas.
, the rest are CO2 and H20. When this fuel is burned using fresh air at an excess 0□ rate of 5%, which is the burner's stable operating range, the combustion temperature will be 1400 to 1550.
℃, when the exhaust air from the battery cathode 5 (0211i degrees 10%) is burned at an excess 02 rate of 5%, the combustion temperature is 120.
The temperature ranges from 0 to 1350°C.

燃料電池は需要地に近い所に設置できる点に大きなメリ
ットを有しており、したがって、低公害運転が必須条件
となる。よって、改質器燃焼部の燃焼においても低NO
x燃焼が要求される。しかるに前述のように1200℃
以上の高温度域で燃焼が行われると、燃焼用空気に含ま
れている窒素分が酸素と結びついたサーマルNOxが多
量に発生して問題である。このため改質器の燃焼部の燃
焼温度をもつと下げる必要がある。
Fuel cells have the great advantage of being able to be installed near areas of demand, so low-pollution operation is an essential condition. Therefore, the combustion in the reformer combustion section also has low NO.
x combustion is required. However, as mentioned above, 1200℃
When combustion is carried out in the above-mentioned high temperature range, a large amount of thermal NOx, in which nitrogen contained in the combustion air combines with oxygen, is generated, which is a problem. For this reason, it is necessary to lower the combustion temperature in the combustion section of the reformer.

よって、改質器燃焼部に触媒燃焼方式を採用し、過剰空
気率を高め、燃料濃度を下げた燃焼を行うことが検討さ
れた。ところが、第3図に示すように、改質器反応部の
入口部分では、原料を400〜500 ’Cに加熱しな
がら主反応部に供給する必要がある。このため、反応部
入口部分を上記温度に加熱する燃焼部出口ガス温度は5
0〜600°Cに保持する必要がある。
Therefore, consideration was given to adopting a catalytic combustion method in the reformer combustion section to increase the excess air ratio and perform combustion with a lower fuel concentration. However, as shown in FIG. 3, at the inlet of the reformer reaction section, it is necessary to heat the raw material to 400 to 500'C while supplying it to the main reaction section. Therefore, the temperature of the gas at the outlet of the combustion section that heats the inlet of the reaction section to the above temperature is 5.
It is necessary to maintain the temperature between 0 and 600°C.

本発明者らの実験によれば、改質器の燃焼部最高温度を
1200℃以下にして燃焼させると、燃焼部出口温度は
500〜600℃に保つことは困難でそれ以下になり勝
ちであった。本発明はこの点を解決するためになされた
ものである。
According to the experiments conducted by the present inventors, if the maximum temperature of the combustion section of the reformer is set to 1200℃ or less, it is difficult to maintain the combustion section exit temperature at 500 to 600℃, and the temperature tends to drop below that. Ta. The present invention has been made to solve this problem.

(問題点を解決するための手段) 本発明では、前記従来技術の問題点を解決するため、改
質器の燃焼部において、主燃焼器として触媒燃焼器を設
け、それを補助する補助燃焼器としてバーナ方式の燃焼
器を設けたことを特徴とする。
(Means for Solving the Problems) In order to solve the problems of the prior art, the present invention provides a catalytic combustor as a main combustor in the combustion section of a reformer, and an auxiliary combustor to assist the catalytic combustor. It is characterized by being equipped with a burner type combustor.

(発明の実施例) 本発明による改質器の一実施例を第1図に示す。(Example of the invention) An embodiment of a reformer according to the present invention is shown in FIG.

LNGなどの原料ガスは水蒸気とともに入口ノズル11
1から改質器110に入り、反応外管115aと反応内
管115bの中間区間に入り改質触媒層112を通過し
下降したのち、Uターンして反応内管115b中を上昇
し、改質ガスヘッダ113および改質ガス出口ノズル1
14を経て外部に送り出される。
Raw material gas such as LNG is passed through the inlet nozzle 11 along with water vapor.
1, enters the reformer 110, enters the intermediate section between the outer reaction tube 115a and the inner reaction tube 115b, passes through the reforming catalyst layer 112 and descends, then makes a U turn and ascends through the inner reaction tube 115b, reforming. Gas header 113 and reformed gas outlet nozzle 1
14 and sent out to the outside.

改質器の底部には燃焼装置が設けられている。A combustion device is provided at the bottom of the reformer.

燃料電池のアノード排ガスは216から供給され、弁2
18を経て燃焼用空気217と混合され、リング状のヘ
ッダ211 (図ではその断面を示す)より触媒式燃焼
器210に供給され燃焼される。
Fuel cell anode exhaust gas is supplied from 216 and valve 2
18, it is mixed with combustion air 217, and is supplied to a catalytic combustor 210 through a ring-shaped header 211 (the cross section of which is shown in the figure), where it is combusted.

燃料電池のアノード排ガスの一部は、弁219を経て補
助燃料入口ノズル212に入り、補助燃焼ノズル213
から噴射され燃焼される。触媒式燃焼器210に供給さ
れる燃料と空気の混合気体は、0 過剰率が高(とられ
ているので(たとえば30〜100%)、補助燃焼ノズ
ル213からは燃料のみが噴射されても、燃焼に必要な
空気は十分に与えられることになる。なお、補助燃焼ノ
ズルには空気と燃料の混合気を噴射してもよい。
A portion of the fuel cell anode exhaust gas enters the auxiliary fuel inlet nozzle 212 via the valve 219 and enters the auxiliary combustion nozzle 213.
is injected and combusted. The mixture gas of fuel and air supplied to the catalytic combustor 210 has a high excess ratio (for example, 30 to 100%), so even if only fuel is injected from the auxiliary combustion nozzle 213, Sufficient air is provided for combustion.A mixture of air and fuel may be injected into the auxiliary combustion nozzle.

このようにして燃焼されたのちの燃焼ガスは、反応外管
115bの外部に設けられた伝熱粒子117の間隙をぬ
って上昇し、反応管115a、115b内の原料ガスを
加熱したのち燃焼ガス排出ノズル220より外部に排出
される。
The combustion gas after being combusted in this way rises through the gap between the heat transfer particles 117 provided outside the reaction outer tube 115b, heats the raw material gas in the reaction tubes 115a and 115b, and then the combustion gas It is discharged from the discharge nozzle 220 to the outside.

第1図においては、触媒燃焼器210は燃焼部116に
対しやや奥まったところに設けられており、この間には
、触媒燃焼器で生した一次燃焼ガスが通る短いダクト2
15が存在する(第4図)。
In FIG. 1, the catalytic combustor 210 is installed at a slightly recessed location relative to the combustion section 116, and between this, there is a short duct 2 through which the primary combustion gas generated in the catalytic combustor passes.
There are 15 (Figure 4).

触媒燃焼器の触媒温度を制御する熱電対214aは触媒
層210aの先端部に取付けられ、温度調節器214に
よって燃焼触媒層温度(上限は約1200℃)が設定値
よりも高くなると、触媒燃焼器への燃料供給量を絞り、
絞った分だけ補助燃焼ノズルへの燃料供給量を増加する
。触媒燃焼器より出るダクト215を流れる燃焼ガスの
流速は燃焼室内のガス流速よりも速いため、補助燃焼ノ
ズル213よりの燃焼により生じた高温の燃焼ガスは、
触媒燃焼器210の触媒に接触しない。
A thermocouple 214a that controls the catalyst temperature of the catalytic combustor is attached to the tip of the catalyst layer 210a, and when the combustion catalyst layer temperature (the upper limit is about 1200°C) becomes higher than the set value by the temperature regulator 214, the catalytic combustor by reducing the amount of fuel supplied to
The amount of fuel supplied to the auxiliary combustion nozzle is increased by the amount of throttle. Since the flow rate of the combustion gas flowing through the duct 215 exiting the catalytic combustor is faster than the gas flow rate inside the combustion chamber, the high temperature combustion gas generated by combustion from the auxiliary combustion nozzle 213 is
It does not contact the catalyst of the catalytic combustor 210.

燃焼部の断面図を第4図に示す。また、補助燃焼ノズル
213は高温になるため、第5図に示すように、先端を
セラミックパイプとし、これを補助燃料入口ノズル21
2にはめ込む形として、伸びを考慮したクリアランスを
もたせた上で耐火材で固定する。
A cross-sectional view of the combustion section is shown in FIG. In addition, since the auxiliary combustion nozzle 213 reaches a high temperature, the tip of the auxiliary combustion nozzle 213 is made of a ceramic pipe, as shown in FIG.
2, fix it with fireproof material after providing a clearance that takes into account elongation.

本発明が用いられる改質器は、比較的小型のオンサイ)
(on  5ite)型燃料電池として用いられる。こ
のオンサイト型燃料電池は、設置場所の関係上高さ制限
を受ける場合が多く、改質器底面に鏡板でなく平板が使
われる場合が多い。
The reformer used in the present invention is relatively small (on-site)
(on 5ite) type fuel cell. These on-site fuel cells are often subject to height restrictions due to the installation location, and a flat plate rather than a mirror plate is often used at the bottom of the reformer.

ところで、本発明の実施例では燃焼部底面に補助燃焼ノ
ズルを持つ関係上、燃焼部底面が高温になり易く、材料
強度や熱損失の点で対応が必要である。
By the way, in the embodiment of the present invention, since the auxiliary combustion nozzle is provided on the bottom surface of the combustion section, the bottom surface of the combustion section tends to become high temperature, and measures must be taken in terms of material strength and heat loss.

上記実施例では、改質器底面ケーシングを水冷とする方
法が良く、また、この冷却水には改質器で使用する上記
を発生させるための蒸気発生装置用の給水を用いる。第
6図に底面ケーシングの冷却管301構造を示し、第7
図に底面ケーシングの冷却フローラインを示す。第7図
において、改質器用蒸気は燃料電池の発熱を加熱器30
2で利用して蒸気ドラム303で発生するが、改質器冷
却水配管301はこの蒸気ドラムへの給水系をあてる。
In the above embodiment, it is preferable to water-cool the bottom casing of the reformer, and this cooling water uses feed water for a steam generator used in the reformer to generate the above. Figure 6 shows the structure of the cooling pipe 301 of the bottom casing, and
The figure shows the cooling flow line of the bottom casing. In Figure 7, the steam for the reformer is transferred to a heater 30 that uses heat from the fuel cell.
The reformer cooling water piping 301 is used as a water supply system to this steam drum.

これにより、熱損失を低下し熱効率の向上が計られる。This reduces heat loss and improves thermal efficiency.

(発明の効果) 本発明により、燃料電池用改質器の反応器加熱用燃焼部
に触媒燃焼装置を通用することが可能となり、低NOx
燃焼により低公害の改質器とすることができる。
(Effects of the Invention) According to the present invention, it is possible to use a catalytic combustion device in the reactor heating combustion section of a fuel cell reformer, resulting in low NOx
Combustion can create a low-pollution reformer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明になる改質器の一実施例を示す図面、第
2図は燃料電池システムの概要を示す図面、第3図は改
質器底面部入口と燃焼出口における温度関係を説明する
図面、第4図は燃焼部の断面図、第5図は補助燃焼ノズ
ルの拡大図、第6図は改質器底面部の冷却管取付けを示
す図面、第7図は改質・器底面部の冷却フローラインを
示す図面である。 111・・・原料入口ノズル、112・・・改質触媒層
、114・・・改質ガス出口ノズル、115a、15b
・・・反応管、116・・・燃焼室、210・・・触媒
燃焼器、213・・・補助燃焼ノズル、214・・・調
整装置、214a・・・熱電対、216・・・水素含有
アノード排ガス供給管、217・・・空気供給管。 代理人 弁理士  川 北 武 長 第1図 燃料 第4図   第5図
Fig. 1 is a drawing showing an embodiment of the reformer according to the present invention, Fig. 2 is a drawing showing an outline of the fuel cell system, and Fig. 3 explains the temperature relationship between the bottom inlet and combustion outlet of the reformer. Figure 4 is a cross-sectional view of the combustion section, Figure 5 is an enlarged view of the auxiliary combustion nozzle, Figure 6 is a diagram showing the installation of cooling pipes on the bottom of the reformer, and Figure 7 is the bottom of the reformer. FIG. 111... Raw material inlet nozzle, 112... Reforming catalyst layer, 114... Reformed gas outlet nozzle, 115a, 15b
. . . Reaction tube, 116 . . . Combustion chamber, 210 . Exhaust gas supply pipe, 217... air supply pipe. Agent Patent Attorney Takenaga Kawakita Figure 1 Fuel Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] LNG等の原料を加熱して燃料電池用水素に改質する改
質器において、原料加熱用燃焼ガスを発生する燃焼部に
は、燃料電池のアノードからの水素含有排ガスを燃焼さ
せるための、触媒燃焼器とバーナ式補助燃焼器の二つを
備え、かつ、触媒燃焼器の触媒の温度を検出する装置と
、同装置の検出値に基づいて、前記触媒の温度を所定値
に制御するための、触媒燃焼器と補助燃焼器への前記排
ガス供給割合を調整する調整装置を設けたことを特徴と
する燃料電池用の水素製造改質器。
In a reformer that heats a raw material such as LNG to reform it into hydrogen for fuel cells, the combustion section that generates combustion gas for heating the raw material is equipped with a catalyst to combust the hydrogen-containing exhaust gas from the anode of the fuel cell. A device comprising a combustor and a burner-type auxiliary combustor and detecting the temperature of the catalyst of the catalytic combustor, and a device for controlling the temperature of the catalyst to a predetermined value based on the detected value of the device. A hydrogen production reformer for a fuel cell, characterized in that it is provided with an adjustment device that adjusts the proportion of exhaust gas supplied to the catalytic combustor and the auxiliary combustor.
JP60164669A 1985-07-25 1985-07-25 Reformer for producing hydrogen for fuel cell Pending JPS6227303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60164669A JPS6227303A (en) 1985-07-25 1985-07-25 Reformer for producing hydrogen for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60164669A JPS6227303A (en) 1985-07-25 1985-07-25 Reformer for producing hydrogen for fuel cell

Publications (1)

Publication Number Publication Date
JPS6227303A true JPS6227303A (en) 1987-02-05

Family

ID=15797575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60164669A Pending JPS6227303A (en) 1985-07-25 1985-07-25 Reformer for producing hydrogen for fuel cell

Country Status (1)

Country Link
JP (1) JPS6227303A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01143153A (en) * 1987-11-27 1989-06-05 Ishikawajima Harima Heavy Ind Co Ltd Temperature control method for fused carbonate type fuel cell power generator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6065472A (en) * 1983-09-20 1985-04-15 Babcock Hitachi Kk Fuel cell device
JPS61236601A (en) * 1985-04-10 1986-10-21 Hitachi Ltd Steam reforming apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6065472A (en) * 1983-09-20 1985-04-15 Babcock Hitachi Kk Fuel cell device
JPS61236601A (en) * 1985-04-10 1986-10-21 Hitachi Ltd Steam reforming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01143153A (en) * 1987-11-27 1989-06-05 Ishikawajima Harima Heavy Ind Co Ltd Temperature control method for fused carbonate type fuel cell power generator

Similar Documents

Publication Publication Date Title
US6838062B2 (en) Integrated fuel processor for rapid start and operational control
US6932958B2 (en) Simplified three-stage fuel processor
US6585785B1 (en) Fuel processor apparatus and control system
US8658323B2 (en) Solid oxide fuel cell generation system
EA013477B1 (en) Fuel cell system and method for the operation of a reformer
EP1148024A1 (en) Apparatus for producing hydrogen gas and fuel cell system using the same
JPH07296834A (en) Fuel cell power plant and operating method for reformer of plant
JPS59203372A (en) Fuel reformer for fuel cell
JPH07192742A (en) Catalyst layer temperature control system of fuel reformer for fuel cell
JPS6227303A (en) Reformer for producing hydrogen for fuel cell
JPH0589899A (en) Internal reforming type fused carbonate fuel cell and operation thereof
JPH07106881B2 (en) Fuel cell reformer device
JP2006044977A (en) Hydrogen production apparatus
JPS59149664A (en) Fuel-cell system
JPS62268066A (en) Starting method for fuel cell
JP2001151502A (en) Fuel reforming device
JP4872760B2 (en) Operation control method and apparatus for fuel processor
JPH02281569A (en) Fused carbonate fuel cell power generating plant
JP2001106513A (en) Fuel reforming device
JP3758070B2 (en) Operation method of fuel cell power generator
JP2006294464A (en) Fuel cell power generation system
JPS6348774A (en) Combustion gas controller of fuel reformer
JPH04243538A (en) Method and device for controlling catalyst layer temperature of fuel reformer for fuel battery use
JPH06281129A (en) Catalyst combustion chamber-integrated heatexchanger type reforming device
JPH11339829A (en) Phosphoric acid fuel cell power generating device