JPS62268066A - Starting method for fuel cell - Google Patents

Starting method for fuel cell

Info

Publication number
JPS62268066A
JPS62268066A JP61111141A JP11114186A JPS62268066A JP S62268066 A JPS62268066 A JP S62268066A JP 61111141 A JP61111141 A JP 61111141A JP 11114186 A JP11114186 A JP 11114186A JP S62268066 A JPS62268066 A JP S62268066A
Authority
JP
Japan
Prior art keywords
fuel
temperature
fuel cell
pipe
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61111141A
Other languages
Japanese (ja)
Inventor
Motohei Katsuta
勝田 基平
Nobuaki Murakami
信明 村上
Shozo Kaneko
祥三 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP61111141A priority Critical patent/JPS62268066A/en
Publication of JPS62268066A publication Critical patent/JPS62268066A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To make a fuel cell body raisable up to the required starting temperature while controlling it according to a very strict program, by burning a part of fuel to be supplied, while recirculating generating heat and generated gas together with the remaining fuel, and raising the temperature to the extent of starting condition temperature of a fuel cell. CONSTITUTION:Energizing electric heaters 8 and 8' with a continuous rating current, a catalyzer surface is heated so as to become more than 500 deg.C, while an air feed blower 16 is driven while opening a control valve 10 slightly, and air is fed by degrees from a pipe line 9. On the catalyzer surface, combustion gets started, and heat of reaction in response to this combustion is generated there. Gas inclusive of nuburned fuel is recirculated while heating a cell pipe (or a cell pipe group) 11, and new fuel in quantity commensurate to fuel consumption is resupplied to a pipe line 5 from a PSA tower 4. Thus, combustion is continuously started at a catalytic combuster 7, whereby the cell pipe 5 is raised in temperature in succession. And, opening of the control valve 10 of the pipe line 9 is controlled so as to go along the specified temperature up program, adjusting an air feed quantity.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は燃料電池を起動させる方法に関し、特に高温条
件下で作動する溶融炭酸塩並びに固体電解質型燃料電池
の発電プラントに使用されるものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for starting a fuel cell, particularly for use in molten carbonate and solid oxide fuel cell power plants operating under high temperature conditions. be.

〔従来の技術〕[Conventional technology]

燃料電池による発電プラントでは、一般にその起動条件
にまで温度上昇させるための加熱手段が含まれている。
Fuel cell power plants generally include heating means to raise the temperature to their starting conditions.

このために従来法用されている方法につき、第2図を参
照して説明する。
A method conventionally used for this purpose will be explained with reference to FIG.

第2図は従来の燃料電池による発電プラントのフローチ
ャートである。同図において、1は燃料改′R装置2へ
の原料の供給管で、必要に応じて水蒸気を既に含むか、
場合によっては石炭ガス化装置並びにガス正常化装置系
で置換えられることもある。3は圧力スイング型吸着塔
(PSA)4への配管で、この例では窒素および炭酸ガ
スをこのPSA4で除去した上で、配管5を介して燃料
電池6へ供給している。燃料電池6は、例えば従来知ら
れている固体電wI質型燃料電池の場合、通常は850
℃で作動を開始し、1000℃で使用される。
FIG. 2 is a flowchart of a conventional power generation plant using fuel cells. In the figure, 1 is a supply pipe for raw materials to the fuel reformer 2, which may already contain water vapor or contain water vapor as necessary.
In some cases, it may be replaced with a coal gasifier and gas normalizer system. 3 is a pipe to a pressure swing adsorption tower (PSA) 4; in this example, nitrogen and carbon dioxide are removed by the PSA 4, and then supplied to the fuel cell 6 via a pipe 5. For example, in the case of a conventionally known solid-state electrolyte fuel cell, the fuel cell 6 is usually 850
It starts operating at 1000°C and is used at 1000°C.

また、溶融炭酸塩型燃料電池の場合には500°C〜5
50℃以上で起動される。この例において燃料電池6は
管型で、その外表面に燃1’EllI(アノード)があ
り、管の内面側に空気橿(カソード)が配置されている
。より詳細に説明すれば、燃料電池を構成するセル管1
1の内列に、空気を供給するセラミック製の空気導入管
12が配置されている。
In addition, in the case of molten carbonate fuel cells, the temperature is 500°C to 5°C.
It is activated at temperatures above 50°C. In this example, the fuel cell 6 is tubular, with a fuel cell (anode) on its outer surface and an air rod (cathode) on the inner surface of the tube. To explain in more detail, the cell tube 1 constituting the fuel cell
A ceramic air introduction pipe 12 for supplying air is arranged in the inner row of 1.

そして、複数局のセル管11を直列または並51]に祖
合せ、夫々のアノード、カソードから負極および正(本
を電路28を介して取出すと共に、これを・直流/交流
変換器(インバータ)29で交流に変換したものを電力
負荷30に使用する。
Then, the cell tubes 11 of multiple stations are connected in series or in parallel 51], and the negative and positive electrodes are taken out from the respective anodes and cathodes via the electrical circuit 28, and are connected to the DC/AC converter (inverter) 29. The AC power converted into AC power is used for the power load 30.

また通常の場合、燃料電池6のセル管11内では供給5
の約70%〜90%の燃料および25%〜50%の空気
が消費される。即ち、燃n7!1池モジュール6の内部
A(セル管11の出口)付近において、燃料と空気とが
混合されて燃焼する。その後、一部は空気導入管12を
加熱し、更に配管13から配管18を通って突気余熱器
17で空気加熱管21を加熱する。残りは配管19で他
の熱回収系へ送られる。この空気余熱器17は、場合に
よっては例えばボイラヤガスタービン等の他の熱回収系
の後に設けられることもある。16は空気導入用ブロワ
−で、配管20によりい空気加熱管21と連結され、配
管22.23を通じて燃料電池の空気導入管12に連絡
している。
In addition, normally, in the cell tube 11 of the fuel cell 6, the supply 5
Approximately 70% to 90% of fuel and 25% to 50% of air are consumed. That is, near the interior A (outlet of the cell tube 11) of the fuel n7!1 pond module 6, fuel and air are mixed and combusted. Thereafter, part of the air heats the air introduction pipe 12, and further heats the air heating pipe 21 through the piping 13 to the piping 18 in the gust preheater 17. The remainder is sent to another heat recovery system via piping 19. This air preheater 17 may be installed after another heat recovery system, such as a boiler gas turbine, depending on the case. Reference numeral 16 denotes an air introduction blower, which is connected to the air heating tube 21 through a pipe 20, and communicates with the air introduction pipe 12 of the fuel cell through pipes 22 and 23.

ところで、既述のように溶融炭酸塩型燃料電池では50
0℃〜550℃以上、固体電解貢型燃r4電池では85
0℃〜900℃まで加熱しなければ電池の作動温度に到
達しない。そこで、従来の燃料電池発電プラントでは、
加熱した不活性ガスを循環して起動条件まで温度を上昇
させた後、燃料および空気系に切替えて起vJ″A程に
入る方法が採用されているa第2図における41.42
はこのために設けた不活性ガスの供給循環ラインであり
、43は不活性ガスを加熱するためのガス余熱器である
By the way, as mentioned above, in a molten carbonate fuel cell, 50
0°C to 550°C or higher, 85% for solid electrolyte fuel R4 batteries
The operating temperature of the battery cannot be reached unless it is heated to 0°C to 900°C. Therefore, in conventional fuel cell power generation plants,
The method used is to circulate heated inert gas to raise the temperature to the starting condition, then switch to the fuel and air system and enter the starting process.a41.42 in Figure 2
is an inert gas supply circulation line provided for this purpose, and 43 is a gas preheater for heating the inert gas.

なお、不活性ガスとして最も一般的に用いられるのは、
窒素ガスである。
The most commonly used inert gases are:
It is nitrogen gas.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来の方法による燃料電池発電プラントの起動方法
では、既述したところから明らかなように、これを実施
するために不活性ガスの加熱炉または熱交換器を別途必
要とする。また、燃料中に水蒸気を随伴させる必要があ
る場合には、別個にボイラやその供給配管を設けなけれ
ばならず、設備費用が嵩む問題がある。
As is clear from the above, the conventional method for starting up a fuel cell power plant requires an additional inert gas heating furnace or heat exchanger. Furthermore, if it is necessary to entrain water vapor into the fuel, a separate boiler and its supply piping must be provided, which raises the problem of increased equipment costs.

しかも、燃料電池起動のための昇温速度は一般に厳密に
ill !OLなければならないのに対し、熱交換器を
介しての制御では温度変化が遅いため制+30性が劣る
問題がある。
Moreover, the temperature increase rate for fuel cell startup is generally strictly ill! OL is required, whereas control via a heat exchanger has the problem of poor controllability because temperature changes are slow.

上記事情に鑑み、本発明は特別な付加設備を必要とする
ことなく、燃料電池本体を穫めて厳密なプログラムに従
って制御しつつ所要の起INa度まで昇温することがで
きる方法を技術的課題とするものである。
In view of the above circumstances, the present invention aims to solve the technical problem of providing a method for heating a fuel cell main body to a required INa degree while controlling it according to a strict program without requiring any special additional equipment. That is.

〔問題点を解決するための手段) 本発明による燃料電池の起動方法は、燃料電池/X供給
される燃料の一部を燃焼させて、発生する熱と生成ガス
とを残りの前記燃料と共に再循環させ、航記燃料N池の
起動条件温度まで昇温することを特徴とするものである
[Means for Solving the Problems] The fuel cell startup method according to the present invention burns a part of the fuel supplied to the fuel cell/X, and recycles the generated heat and generated gas together with the remaining fuel. It is characterized by circulating the fuel and raising the temperature to the starting condition temperature of the navigation fuel N pond.

本発明の方法は、従来の燃料電池発電プラントにおける
燃料供給系の一部(例えば燃料電池本体内空間の一部)
に触媒燃焼器を設けるだけで実施することができる。
The method of the present invention applies to a part of the fuel supply system (for example, a part of the internal space of the fuel cell main body) in a conventional fuel cell power generation plant.
This can be implemented simply by providing a catalytic combustor.

〔作用〕[Effect]

本発明の方法では燃料を燃焼させて発生した熱で燃料T
i池を昇温させるため、空気の供給量を調部するだけで
へ〇熱はを厳密に制御し、(〜めて綿密な昇温プログラ
ムに従って実施することができる。
In the method of the present invention, the heat generated by burning fuel is used to
In order to raise the temperature of the pond, the heating can be strictly controlled by simply adjusting the amount of air supplied, and it can be carried out according to a detailed heating program.

また、燃料燃焼により水および次間ガスが生成するため
、これら生成ガスの作用で不活性ガスのみを使用する場
合よりも燃焼顕熱が有効に利用される上、不活性ガスは
不要である。
Further, since water and interstitial gas are generated by fuel combustion, the sensible heat of combustion is utilized more effectively than when only inert gas is used due to the action of these generated gases, and inert gas is not required.

〔発明の実施例〕[Embodiments of the invention]

第1図は、本発明による起動方法を実施するために構成
された燃料電池発電プラントの一例を示すフローチャー
トである。
FIG. 1 is a flowchart illustrating an example of a fuel cell power plant configured to carry out the start-up method according to the present invention.

同図において、1は燃料供給管、2は燃料改質装置、4
はPSA型ガス吸着等、6は燃料電池本体、11はセル
管、12は空気導入管12.28はセル管から負極およ
び正極を取出すための電路、2つは直流変換器(インバ
ータ)、30は電力負荷30.17は空気余熱器、21
は空気加熱管、16は空気導入用ブロワ−である。これ
らの構成および作用は第2図の発電プラントと同じであ
る。
In the figure, 1 is a fuel supply pipe, 2 is a fuel reformer, and 4 is a fuel supply pipe.
PSA type gas adsorption, etc., 6 is the fuel cell body, 11 is the cell tube, 12 is the air introduction tube 12. 28 is the electric circuit for taking out the negative electrode and the positive electrode from the cell tube, 2 is the DC converter (inverter), 30 is the power load 30.17 is the air preheater, 21
1 is an air heating tube, and 16 is an air introduction blower. These structures and operations are the same as the power plant shown in FIG.

他方、この発電プラントでは第1図における不活性ガス
の供給循環ライン41,42、ガス余熱器43が設けら
れていない。その代りに、この場合には次の構成が採用
されている。
On the other hand, in this power plant, the inert gas supply circulation lines 41 and 42 and the gas preheater 43 shown in FIG. 1 are not provided. Instead, the following configuration is adopted in this case.

まず、燃料電池6に燃料を供給する連絡用の配管5の先
端で、燃料電池6の本体の一部に触媒燃焼器7を設けて
いる。該触媒燃焼器7の内部には、触媒を含浸したアル
ミナ系セラミックの粒状体または多孔質体が充填されて
いる。前記含浸させる触媒としては、バナジウム(V)
、サマリウム(Sm)、ランタン(La)等の化合物が
用いられ、また白金(Pt)等の貴金属を用いてもよい
First, a catalytic combustor 7 is provided in a part of the main body of the fuel cell 6 at the tip of a communication pipe 5 for supplying fuel to the fuel cell 6 . The inside of the catalytic combustor 7 is filled with alumina ceramic particles or porous bodies impregnated with a catalyst. As the catalyst to be impregnated, vanadium (V)
Compounds such as , samarium (Sm), and lanthanum (La) are used, and noble metals such as platinum (Pt) may also be used.

これら触媒の活性化温度は路次の通りである。The activation temperatures of these catalysts are as follows.

V系:500℃ Sm系;400℃ La系;450℃ Pt:340〜350℃ 触媒の活性化温度が上記の通りかなり高温であるため、
図示のように電気ヒータ8,8′で触媒面を余熱して燃
焼を補助してやる必要がある。そして、触媒活性化温度
以上になってから電気ヒータ8.8′を切るようにする
。この意味からは、活性化温度の低い白金等の貴金属触
媒を用いるのが好ましい。
V system: 500°C Sm system: 400°C La system: 450°C Pt: 340-350°C As the activation temperature of the catalyst is quite high as mentioned above,
As shown in the figure, it is necessary to preheat the catalyst surface using electric heaters 8, 8' to assist combustion. Then, the electric heater 8.8' is turned off after the temperature reaches the catalyst activation temperature or higher. From this point of view, it is preferable to use a noble metal catalyst such as platinum, which has a low activation temperature.

上記の触媒燃焼器7での燃焼に必要な空気は、燃料電池
6に空気を導入するための配管22を分岐した配管24
を通り、制御弁10、配管9を通って触媒燃焼器7内に
送られる。制御弁10は、燃r4電池本体6に設けた温
度計Tおよび水蒸気濃度計Sの何れかと連結され、検知
した温度または水蒸気伍に応じて空気供給伍を調節でき
るようになっている。
The air necessary for combustion in the catalytic combustor 7 is supplied to a pipe 24 branching from the pipe 22 for introducing air into the fuel cell 6.
The fuel is sent through the control valve 10 and piping 9 into the catalytic combustor 7. The control valve 10 is connected to either a thermometer T or a water vapor concentration meter S provided in the fuel R4 battery main body 6, and can adjust the air supply level according to the detected temperature or water vapor level.

触媒燃焼器7で燃焼された後の未燃焼燃料を含むガスは
、燃料ffi池本体6を出た後に配管13の途中から再
循環ブロワ14および配管15.15′を通り、更に配
管5を通って殆ど全量が再循環できるようになっている
。また、配管15から分岐した配管25を通してこの再
循環ガスの一部をPSA型ガス吸着塔4に導入すること
により、再循環ガス中に含まれるCO2(または必要に
より水蒸気)を除去できるようになっている。なお、こ
こで分離除去されたCO2や水蒸気は、配管26を介し
て系外に排除される。
After leaving the fuel ffi pond body 6, the gas containing unburned fuel after being burned in the catalytic combustor 7 passes through the recirculation blower 14 and the pipes 15 and 15' from the middle of the pipe 13, and then passes through the pipe 5. Almost the entire amount can be recycled. In addition, by introducing a part of this recirculated gas into the PSA type gas adsorption tower 4 through a pipe 25 branched from the pipe 15, it becomes possible to remove CO2 (or water vapor if necessary) contained in the recirculated gas. ing. Note that the CO2 and water vapor separated and removed here are removed to the outside of the system via piping 26.

次に、本発明による起動方法を、上記第1図の燃料電池
発電プラントに適用した一実施例について説明する。
Next, an embodiment in which the startup method according to the present invention is applied to the fuel cell power plant shown in FIG. 1 will be described.

セル管11またはセル管群を収納した燃料電池モジュー
ルは6は、通常100℃/時以下のできるだけゆっくり
、しかも温度ムラの少ない状態で昇温しなければならな
い。そのために次の手順で実施した。
The fuel cell module 6 housing the cell tubes 11 or a group of cell tubes must be heated as slowly as possible, usually at 100° C./hour or less, and with little temperature variation. For this purpose, the following steps were taken.

まず、配管13に設けた弁Vl 、配管23に設けた弁
V2.配管25に設けた弁V3が同れも閉じていること
を確認した上で、PSA型ガス吸着等4から配管5を通
して燃料電池モジュール6へ燃料ガスを供給する。同時
に再循環ブロワ14を駆動し、配管13,15.15’
 を通る燃料循環系を作り出す。燃料ガスとしては水素
および一酸化炭素の混合物を用いることができる。
First, the valve Vl provided in the pipe 13, the valve V2 provided in the pipe 23. After confirming that the valve V3 provided in the pipe 25 is also closed, fuel gas is supplied from the PSA type gas adsorption etc. 4 to the fuel cell module 6 through the pipe 5. At the same time, the recirculation blower 14 is driven, and the piping 13, 15.15'
Creates a fuel circulation system through the. A mixture of hydrogen and carbon monoxide can be used as fuel gas.

次いで、電気ヒータ8,8′に通電して触媒表面が50
0℃以上になるように加熱し、制岨弁10な僅かに開き
ながら空気供給ブロワ16を駆動し、配管20、空気加
熱管21(冷態状態)、配管22.24を通して配管9
から徐々に空気を供給する。触媒表面では、こうして供
給された空気中の酸素が完全に消費されるようにして燃
焼が生じ、それに応じた反応熱が生成する。未′!!!
焼燃料を含むガスは、この生成熱でセル管(またはセル
管群)11を加熱しながら再循環される。また、燃料の
消費に見合った量の新しい燃料が、PSA塔4から配管
5に補充供給される。こうして触媒燃焼器7では連続的
に燃焼が起り、セル管11は連続的に昇温される。
Next, the electric heaters 8 and 8' are energized so that the surface of the catalyst becomes 50%
Heat the temperature to 0°C or above, drive the air supply blower 16 while slightly opening the control valve 10, and pass the pipe 9 through the pipe 20, air heating pipe 21 (in a cold state), pipes 22 and 24.
Air is gradually supplied from At the surface of the catalyst, combustion occurs so that the oxygen in the air thus supplied is completely consumed, and corresponding heat of reaction is generated. Not yet! ! !
The gas containing the burnt fuel is recirculated while heating the cell tube (or cell tube group) 11 with the generated heat. Also, new fuel is supplied from the PSA tower 4 to the pipe 5 in an amount commensurate with the fuel consumption. In this way, combustion occurs continuously in the catalytic combustor 7, and the temperature of the cell tube 11 is continuously raised.

当然ながら、セル管11の昇温速用は前記反応熱の大き
さに依存し、反応熱の大きさは空気の供給伍に依存する
。従って、所定の昇温プログラムに沿った昇温を行なう
ために、前記配管9に設けた制御弁10の開度を制御し
、空気供給毎を調節する。その際、燃料電池モジュール
6に設けた温度計Tで達成温度を検知し、該検知温度に
基づいて制御弁10の開度をIIすることにより、昇温
プログラムに沿った確実な制御が可能である。なお、検
知温度が前記触媒の活性化;3麿以上になったら、触媒
表面での燃焼反応は外部からの加熱がなくとも進行する
から、電気ヒータ8,8′は切ってもよい。
Naturally, the temperature increase rate of the cell tube 11 depends on the magnitude of the reaction heat, which in turn depends on the air supply level. Therefore, in order to raise the temperature in accordance with a predetermined temperature raising program, the opening degree of the control valve 10 provided in the piping 9 is controlled and the air supply is adjusted each time. At this time, by detecting the achieved temperature with a thermometer T provided in the fuel cell module 6 and setting the opening degree of the control valve 10 to II based on the detected temperature, reliable control according to the temperature increase program is possible. be. Incidentally, when the detected temperature reaches 3 degrees or higher for activation of the catalyst, the electric heaters 8 and 8' may be turned off, since the combustion reaction on the catalyst surface proceeds even without external heating.

上記の昇温操作により燃料電池の作動温度条件(100
0℃)が達成されたら、弁V+ 、V2を開いて空気を
燃料電池内に導入し、発電を開始する。
The operating temperature condition of the fuel cell (100
0° C.), open valves V+ and V2 to introduce air into the fuel cell and start power generation.

この導入空気量は燃料電池の消費量よりも過剰であるた
め、図中Aで示す電池出口近傍において、余剰空気によ
る残り燃料の燃焼が持続する。このため排ガス1易度は
1000℃近くの高)Bを維持するから、該排ガスは空
気余熱器17に通すことにより供給空気の余熱に用いる
Since this amount of introduced air is in excess of the amount consumed by the fuel cell, combustion of the remaining fuel by the excess air continues in the vicinity of the cell outlet indicated by A in the figure. For this reason, the temperature of the exhaust gas is maintained at a high temperature (B) close to 1000° C., so the exhaust gas is passed through the air preheater 17 and used for preheating the supplied air.

燃料が水素ガスのみからなる場合、燃料電池を作動した
後は配管24からの空気の供給を遮断する。しかし、燃
料が水素ガスと一酸化炭素ガスとの混合ガスである場合
には、燃料電池の作動後にJ5いても、配管24からの
空気供給を遮断することなく岨統して行なう。これによ
り触媒燃焼器では燃料ガス中に含まれる水素の部分燃焼
をa続さぜ、燃料の余熱共に、入口で3〜4%の水蒸気
含有伍を維持するようにする。この場合、燃料電池6に
設けた水蒸気温度計Sで水蒸気層を検出し、その検出直
に基づいて制御弁10の開度をFAllf!することに
より水蒸気層をあり御する。
When the fuel consists only of hydrogen gas, the supply of air from the pipe 24 is cut off after the fuel cell is activated. However, when the fuel is a mixed gas of hydrogen gas and carbon monoxide gas, the air supply from the pipe 24 is continuously carried out without being cut off even if J5 is reached after the fuel cell is activated. As a result, in the catalytic combustor, partial combustion of hydrogen contained in the fuel gas is continued for a period of time, and a water vapor content of 3 to 4% is maintained at the inlet as well as residual heat of the fuel. In this case, the water vapor layer is detected by the water vapor thermometer S provided in the fuel cell 6, and the opening degree of the control valve 10 is adjusted based on the detection. By doing so, the water vapor layer can be controlled.

なお、メンフロール内を流れるガス流中の水や炭酸ガス
が過剰になったときには、弁V3を問いてガス流をPS
A塔に返送し、過剰に含まれる水や炭酸ガスをパージす
る。その量は戻りガスの2〜5%程度とし、これは弁v
3の開度や図示しない流口設定器の作動等で行なう。
In addition, when water or carbon dioxide in the gas flow flowing through the membrane roll becomes excessive, check valve V3 to switch the gas flow to PS.
It is returned to Tower A and purged of excess water and carbon dioxide. The amount should be about 2 to 5% of the return gas, and this is the valve v
This is done by adjusting the opening of step 3 or operating a flow port setting device (not shown).

以上の説明から明らかなように、この実施例の方法では
燃料ガスの一部を接触燃焼させ、その際に発生する燃焼
熱で直接燃料電池を加熱することで所定の作動温度に昇
温している。従って、高温の不活性ガスを介して所定の
起動温度まで昇温する従来の方法に比較した場合、次の
ような種々の利点が得られる。
As is clear from the above explanation, in the method of this embodiment, a part of the fuel gas is catalytically combusted, and the combustion heat generated at that time directly heats the fuel cell to raise the temperature to a predetermined operating temperature. There is. Therefore, when compared with the conventional method of raising the temperature to a predetermined starting temperature via a high-temperature inert gas, the following various advantages can be obtained.

第一は、昇温効率がよいことである。これは昇温速度の
厳密な制御を可能とし、燃料電池を円滑に且つ短時間で
起動できることを意味する。その結果、短時間での立上
げができ、燃料電池モジュールの昇1も無理がないため
破損のおそれがないといった大きな効果が得られる。
The first is that it has good heating efficiency. This means that the rate of temperature rise can be precisely controlled and the fuel cell can be started up smoothly and in a short time. As a result, it is possible to start up the fuel cell module in a short time, and since the fuel cell module can be raised easily, there is no risk of damage.

第二は、不活性ガスのための供給ラインや余熱器か不要
なことである。また、必要な混入水蒸気耳 も水素の部分燃焼で達成できるから、ボイラ呑の設備を
別途用いる必要がない。従って、装置コストを節減でき
る効果が得られる。
Second, there is no need for an inert gas supply line or preheater. In addition, since the necessary amount of mixed steam can be achieved by partial combustion of hydrogen, there is no need to use separate boiler equipment. Therefore, the effect of reducing device costs can be obtained.

第三1は、不活性ガスと燃料ガスとの切替え操作が不要
であるため、起動の工程が簡単になる。
Thirdly, since there is no need to switch between inert gas and fuel gas, the startup process is simplified.

(発明の効果〕 以上詳述したように、本発明の起動方法によれば、不活
性ガスを加熱媒体として用いる従来の方法のように特別
な付加XQ Bを必要とせずに、燃料電池本体8汚めて
1完なプログラムに従って制叩しつつ、円滑かつ短時間
で所要の起e温度まで昇(温することができる等、顕著
な効果が1qられるものである。
(Effects of the Invention) As detailed above, according to the startup method of the present invention, the fuel cell main body 8 It has remarkable effects such as being able to smoothly and quickly raise the temperature to the required temperature while controlling the drum according to a complete program.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の起動方法を実施するために構成された
燃料電池発電プラントの一例を示すフローチャート、第
2図は燃料電池発電プラントにおける従来の起動方法を
説明するためのフローチャートである。
FIG. 1 is a flowchart showing an example of a fuel cell power generation plant configured to carry out the startup method of the present invention, and FIG. 2 is a flowchart for explaining a conventional startup method in a fuel cell power generation plant.

Claims (1)

【特許請求の範囲】[Claims] 燃料電池へ供給される燃料の一部を燃焼させて、発生す
る熱と生成ガスとを残りの前記燃料と共に再循環させ、
上記燃料電池の起動条件温度まで昇温することを特徴と
する燃料電池の起動方法。
combusting a portion of the fuel supplied to the fuel cell and recirculating the generated heat and product gas with the remaining fuel;
A method for starting a fuel cell, the method comprising raising the temperature to the temperature required for starting the fuel cell.
JP61111141A 1986-05-15 1986-05-15 Starting method for fuel cell Pending JPS62268066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61111141A JPS62268066A (en) 1986-05-15 1986-05-15 Starting method for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61111141A JPS62268066A (en) 1986-05-15 1986-05-15 Starting method for fuel cell

Publications (1)

Publication Number Publication Date
JPS62268066A true JPS62268066A (en) 1987-11-20

Family

ID=14553495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61111141A Pending JPS62268066A (en) 1986-05-15 1986-05-15 Starting method for fuel cell

Country Status (1)

Country Link
JP (1) JPS62268066A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0780917A1 (en) * 1995-12-19 1997-06-25 Sulzer Innotec Ag Device comprising fuel cells
WO1999027598A1 (en) * 1997-11-20 1999-06-03 Siemens Westinghouse Power Corporation Cover and startup gas supply system for solid oxide fuel cell generator
WO2001086745A2 (en) * 2000-05-11 2001-11-15 Siemens Aktiengesellschaft Method for cold starting fuel cells of a fuel cell facility and corresponding fuel cell facility
JP2003045464A (en) * 2001-07-26 2003-02-14 Kyocera Corp Fuel cell and its power generation method
JP2006521675A (en) * 2003-03-25 2006-09-21 ユーティーシー フューエル セルズ,エルエルシー System and method for starting a fuel cell stack assembly at temperatures below freezing
JP2007012548A (en) * 2005-07-04 2007-01-18 Nissan Motor Co Ltd Fuel cell system
JP2007323904A (en) * 2006-05-31 2007-12-13 Japan Energy Corp Solid oxide fuel cell module and its starting method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0780917A1 (en) * 1995-12-19 1997-06-25 Sulzer Innotec Ag Device comprising fuel cells
US5840437A (en) * 1995-12-19 1998-11-24 Sulzer Innotec Ag Apparatus with fuel cells
WO1999027598A1 (en) * 1997-11-20 1999-06-03 Siemens Westinghouse Power Corporation Cover and startup gas supply system for solid oxide fuel cell generator
WO2001086745A2 (en) * 2000-05-11 2001-11-15 Siemens Aktiengesellschaft Method for cold starting fuel cells of a fuel cell facility and corresponding fuel cell facility
WO2001086745A3 (en) * 2000-05-11 2003-02-13 Siemens Ag Method for cold starting fuel cells of a fuel cell facility and corresponding fuel cell facility
JP2003045464A (en) * 2001-07-26 2003-02-14 Kyocera Corp Fuel cell and its power generation method
JP2006521675A (en) * 2003-03-25 2006-09-21 ユーティーシー フューエル セルズ,エルエルシー System and method for starting a fuel cell stack assembly at temperatures below freezing
JP4903557B2 (en) * 2003-03-25 2012-03-28 ユーティーシー パワー コーポレイション System and method for starting a fuel cell stack assembly at temperatures below freezing
JP2007012548A (en) * 2005-07-04 2007-01-18 Nissan Motor Co Ltd Fuel cell system
JP2007323904A (en) * 2006-05-31 2007-12-13 Japan Energy Corp Solid oxide fuel cell module and its starting method

Similar Documents

Publication Publication Date Title
JP5588709B2 (en) Solid oxide fuel cell system and cogeneration system equipped with the same
US20190190050A1 (en) Solid oxide fuel cell system
JPH02226666A (en) Automatic temperature/ power control of high temperature fuel cell
JPS62268066A (en) Starting method for fuel cell
JP3704299B2 (en) Combined system of solid oxide fuel cell and industrial process using combustion and its operation method
JPH08119602A (en) Fuel reformer
JP5836044B2 (en) Gas turbine combined power generation system having high temperature fuel cell and operation method of gas turbine combined power generation system having high temperature fuel cell
JP3722868B2 (en) Fuel cell system
JP2004063368A (en) Fuel cell power generation system
JPH07192742A (en) Catalyst layer temperature control system of fuel reformer for fuel cell
JP2017082670A (en) Engine system, and engine system operating method
US20170040628A1 (en) Transition arrangement and process of a fuel cell system operation state
JPH0589899A (en) Internal reforming type fused carbonate fuel cell and operation thereof
JPS61197402A (en) Apparatus for reforming fuel for fuel cell
JP3997264B2 (en) Fuel cell cogeneration system
JPH07208200A (en) Combustion equipment for turbine compressor and method thereof
JP3928675B2 (en) Combined generator of fuel cell and gas turbine
JP2014123576A (en) Solid oxide fuel cell system
JP2005050629A (en) Method and device for treating reformed gas and fuel cell power generation system
JPS59149664A (en) Fuel-cell system
JPH04243538A (en) Method and device for controlling catalyst layer temperature of fuel reformer for fuel battery use
JPH11339829A (en) Phosphoric acid fuel cell power generating device
CN117039080B (en) Fuel cell system with carbon removal function and carbon removal method
JPH05303971A (en) Molten carbonate fuel cell generating system
JPH0293207A (en) Hot air room-heater