JPS62272835A - Method of controlling superconducting energy storage apparatus - Google Patents

Method of controlling superconducting energy storage apparatus

Info

Publication number
JPS62272835A
JPS62272835A JP61110784A JP11078486A JPS62272835A JP S62272835 A JPS62272835 A JP S62272835A JP 61110784 A JP61110784 A JP 61110784A JP 11078486 A JP11078486 A JP 11078486A JP S62272835 A JPS62272835 A JP S62272835A
Authority
JP
Japan
Prior art keywords
circuit
energy storage
reactive power
active
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61110784A
Other languages
Japanese (ja)
Inventor
秀文 白濱
桜井 芳美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61110784A priority Critical patent/JPS62272835A/en
Publication of JPS62272835A publication Critical patent/JPS62272835A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は超電導エネルギー貯蔵装置の制御方式に係り、
特vC変流系統から超電導エネルギー貯蔵袋#に流入T
る有効及び無効覆力P高速制御するのに好適な超電導エ
ネルギー貯蔵装置の制御方式〔従来の技術」 超電導エネルギー貯蔵装置に、超!4コイルのエネルギ
ー蓄積機能を利用し交流系統の有効及び無効電力を制御
するものであり、系統安定化装置として用いられる。こ
の装#ニょジ交流系統の安定化を図るには、従来、昭和
57年電気学会全国大会論文に記載のように系統制御装
置からの有効・無効電力指令値に応じ交流系統から超電
導エネルギー貯1[1tに流入する有効・無効電力を閉
ループ制御していた。
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a control method for a superconducting energy storage device,
T flows into the superconducting energy storage bag # from the special vC current transformation system.
Control method for superconducting energy storage device suitable for high-speed control of effective and reactive overpowering force P [Prior art] Superconducting energy storage device has super! It controls the active and reactive power of an AC system using the energy storage function of the four coils, and is used as a system stabilization device. In order to stabilize the AC system with this system, superconducting energy has been stored from the AC system in response to active and reactive power command values from the system control device, as described in a paper at the 1981 National Conference of the Institute of Electrical Engineers of Japan. 1 [The active and reactive power flowing into 1t was controlled in a closed loop.

しかし、閉ループ制−を安定して行なうr(α閉ループ
制御系のループ中に時定数をもつ関数回路ノ設ける必要
があり、このため閉ループ制御系に瞬時応答ができなか
った。したがって、従来の超電導エネルギー貯蔵袋#t
ri、電力系統の事故時において系統安定化のために要
求される有効・無効電力の急激な変更πに対応できなか
った。
However, in order to stably perform closed-loop control, it is necessary to provide a function circuit with a time constant in the loop of the closed-loop control system, which makes it impossible to provide an instantaneous response to the closed-loop control system. Energy storage bag #t
ri, it was not possible to cope with the rapid change π in active and reactive power required for grid stabilization in the event of a power system fault.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は超電導エネルギー貯蔵装置の応答を高速
化する配慮がされておらず、系統事故時に要求される有
効・無効電力の急激な変更に対応できない等の問題があ
った。
The above-mentioned conventional technology does not consider speeding up the response of the superconducting energy storage device, and has problems such as being unable to respond to sudden changes in active and reactive power required in the event of a system failure.

本発明の目的に、上記の問題を解決Tるため超電導エネ
ルギー貯蔵装着の有効・無効電力の高速制御を可能にす
る超電導エネルギー貯蔵装置の制御方式を提供すること
にある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a control method for a superconducting energy storage device that enables high-speed control of the active and reactive power of a superconducting energy storage device in order to solve the above-mentioned problems.

〔問題点?解決するための手段〕〔problem? Means to solve]

上記目的に、従来の閉ループ制菌系における関数回路と
関数回路の次段につながる回路との間に加算器回路を設
け、上記関数回路の出力信号と系統制調装置からの有効
・無効電力指令値を加算した信号を上記次段の回路の入
力信号とすることにより連取される。
For the above purpose, an adder circuit is provided between the function circuit and the circuit connected to the next stage of the function circuit in the conventional closed-loop antibacterial system, and the output signal of the function circuit and the active/reactive power command from the system control and adjustment device are The signal resulting from the addition of the values is used as an input signal to the circuit at the next stage, so that the signal is continuously acquired.

〔作用〕[Effect]

閉ループ制卸系における関数回路と関数回路の次段につ
ながる回路との間に設けた加算器回路の出力信号げ系統
制調装置からの有効・無効電力指令値の変化に応じ、加
X器回路の動作時間のみの遅れだけで変化する。したが
って、上記関数回路の時定数の影響を受けず、超電導エ
ネルギー貯蔵装#に系統制調装置からの有効・無効電力
指令値の変化に庵速応答する。
The output signal of the adder circuit provided between the function circuit and the circuit connected to the next stage of the function circuit in the closed-loop control system. The only difference is the delay in the operating time. Therefore, the superconducting energy storage device quickly responds to changes in active and reactive power command values from the system control and adjustment device without being affected by the time constant of the function circuit.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図、第2図により説明す
る。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

第1図に、本実施例の全体構成図であり、交流系統1、
変換器用変圧器2.3、サイリスタ変換器4.5、超電
導コイル6から成る主回路、及び交流電流検出回路7、
直流電流検出回路8、交流電圧検出回路9,10.有効
・無効電力算出回路1】、無負荷直流tEE算出回路1
2、有効・無効電力算出回路13、位相制仰回路】4か
ら成る側副回路で構成されている。
FIG. 1 is an overall configuration diagram of this embodiment, and shows an AC system 1,
A main circuit consisting of a converter transformer 2.3, a thyristor converter 4.5, a superconducting coil 6, and an alternating current detection circuit 7,
DC current detection circuit 8, AC voltage detection circuits 9, 10. Active/reactive power calculation circuit 1], No-load DC tEE calculation circuit 1
2, an active/reactive power calculation circuit 13, and a phase control circuit].

第1図において、各サイリスタ変換器4,50制@連れ
角をそれぞれαl〔度〕、α2〔度〕、サイリスタ変換
器1台の無負荷最大直流1圧をEO〔V〕、また超電導
コイル6を流れる直R,電流をIdCA]とTると、交
流系統】から超1!導エネルギー貯蔵装fitに流入す
る有効電力PCW〕、無効電力Q〔Var]に、サイリ
スタ変換装置の転流リアクタ7スを無視すると、次式で
表わされる。
In Fig. 1, each thyristor converter 4 and 50 control angles are αl [degrees] and α2 [degrees], respectively, the no-load maximum DC 1 voltage of one thyristor converter is EO [V], and the superconducting coil 6 If the direct R flowing through the current is IdCA] and T, then the AC system] is super 1! If the active power PCW] flowing into the conductive energy storage device fit, the reactive power Q[Var] and the commutation reactor 7 of the thyristor conversion device are ignored, they are expressed by the following equation.

P=EoId(ωSα、−4−cosα2)    ・
・・(1)Q = Eo Id(sinα++sinα
2)    ・・・(2)式(1)、 (2)かられか
るように、各制副遅れ角α1゜C2を操作することによ
り有効電力P及び無効電力Qを調節することができる。
P=EoId(ωSα, -4-cosα2) ・
...(1) Q = Eo Id(sinα++sinα
2) As can be seen from equations (1) and (2) of (2), active power P and reactive power Q can be adjusted by manipulating each control and sub-delay angle α1°C2.

したがって、超電導エネルギー貯蔵製雪の制御回路に、
5!″流系統1から超電導エネルギー貯蔵装會Vca人
する有効電力P及び無効電力Qを検出し系統制調装置か
ら与えられる有効電力指令値Pr及び無効電力指令1[
Qrと比較し、P、Qをそれぞれpr、QrVc近づけ
るようにサイリスタ変換器4.5の各制@遅れ角α1.
α2を4!i!作する機能を有する。
Therefore, in the control circuit of superconducting energy storage snowmaking,
5! Detects the active power P and reactive power Q from the superconducting energy storage system Vca from the flow system 1, and calculates the active power command value Pr and the reactive power command 1 given from the system control and adjustment device.
Compared with Qr, each control @ delay angle α1.
α2 is 4! i! It has the ability to create

上記機能を実現Tるため、第1図の制御回路における有
効・無効電力算出回路11a交流電流検出回路7、交流
電圧検出回路9を介して検出される交R,電流及び交流
電圧からP、Qを算出し出力する。また、式(1)、 
(2)の関係からC1,C2を算出するため無負荷直流
′成田EO1直流電流Iaの頁が必要であり、E、Q交
流電圧の実効値に比例していることから交流電圧検出回
路lOの出力信号をもとに無負荷M流電玉算出回路12
が作放し、Iaに直流′IlI流検出流路出回路り得ら
れる。有効無効電力匍1副回路13ri、P 、QトP
r、 Qr cn値を比較しP、Qをpr、Qrに近づ
けるための制仰遅れ角αI、α2をEo、Idの値を用
いて算出しC1,C2の1[ニそれぞれ比例した位相側
、m信号C8t 、 C82?i=出力Tる。ここで、
直流電流設9[1drは超電導エネルギー貯蔵装置を安
定して動作させるのに必要な信号であり、この信号は系
統制rI@装置から与えられるものでになく、装置の匍
(倒回路に付R(、T−設定回路で作られる信号である
。位相制御回路14ri、位相制御信号CSt。
In order to realize the above function, P and Q are obtained from the AC R, current and AC voltage detected via the active/reactive power calculation circuit 11a, the AC current detection circuit 7, and the AC voltage detection circuit 9 in the control circuit shown in FIG. Calculate and output. Also, formula (1),
In order to calculate C1 and C2 from the relationship (2), a page of no-load DC'Narita EO1 DC current Ia is required, and since E and Q are proportional to the effective value of AC voltage, the AC voltage detection circuit lO No-load M current current ball calculation circuit 12 based on the output signal
is released, and a direct current 'IlI flow detection flow path output circuit is obtained at Ia. Active reactive power 1 subcircuit 13ri, P, QtoP
r, Qr cn values are compared, and the suppression delay angles αI and α2 for bringing P and Q closer to pr and Qr are calculated using the values of Eo and Id. m signal C8t, C82? i=output T. here,
The DC current setting 9[1dr is a signal necessary for stable operation of the superconducting energy storage device. (, T-This is a signal generated by the setting circuit. Phase control circuit 14ri, phase control signal CSt.

C82の大きざに応じ各サイリスタ変換器4.5をそれ
ぞれ制御遅れ角αl、α2で@作濾せるためのゲートパ
ルス信号g1* gzを発生T;!:r。
Generate gate pulse signals g1*gz to control each thyristor converter 4.5 with control delay angles αl and α2 according to the size of C82. :r.

上記有効・無効電力算出回路13に本発明を適用してお
り、第2図はその詳細回路図を示してhる。
The present invention is applied to the above active/reactive power calculation circuit 13, and FIG. 2 shows a detailed circuit diagram thereof.

第2図の回路は、加算器回路15.16.1?。The circuit in Figure 2 is an adder circuit 15.16.1? .

18.19,20,21.電流側−関数回路22、有効
電力側−関数回路23、無効電力制飼関数回路24、乗
算器回路25,26、徐算器回路27゜28、有効・無
効電力リミッタ29、位相側副信号算出回路30から成
っており、本発明に加算器回路18及び19で実現され
ている。
18.19,20,21. Current side - function circuit 22, active power side - function circuit 23, reactive power limiting function circuit 24, multiplier circuits 25, 26, divider circuit 27゜28, active/reactive power limiter 29, phase side secondary signal calculation The circuit 30 is implemented in the present invention with adder circuits 18 and 19.

次に、第2FI!Jの回路の動作を説明する。加算器回
路17に直流電流設定値Idrと直流電流検出値Idと
の差をat (=Idr −Id)として出力し、電流
制御関数回路22にCIをに1倍しC1(=Kt#t)
を出力する。加算器回路15に、系統側@装置からの有
効電力指令値Pr、[流側偶関数回路22の出力信号C
I及び有効電力検出値Pから信号gp (Pr+C1−
P)を作成する。有効電力雪11@関数回路23げ、例
えば次式の伝達間数G pcs)ただし、Kp、 Tp
s 、 Tp2  はそれぞれゲイン、遅れ時定数、及
び進み時定数である。
Next, the second FI! The operation of the circuit J will be explained. The difference between the DC current setting value Idr and the DC current detection value Id is output to the adder circuit 17 as at (=Idr - Id), and the CI is multiplied by 1 to the current control function circuit 22 as C1 (=Kt#t).
Output. The adder circuit 15 receives the active power command value Pr from the grid side@device, and the output signal C of the even function circuit 22 on the downstream side.
From I and active power detection value P, signal gp (Pr+C1-
P) is created. Active power snow 11@Function circuit 23, for example, the number of transmission intervals G pcs in the following equation) However, Kp, Tp
s and Tp2 are the gain, lag time constant, and lead time constant, respectively.

このとき、出力Dp 1rx Gp (s)・ipとな
る。また、この回路框リミッタ機能をもっており、信号
Dp2の大きざをリミッタ値として、Dplの値を−l
 Dp、 l≦Dpl≦IDI)21 の範囲に制限す
る。
At this time, the output becomes Dp 1rx Gp (s)·ip. It also has this circuit frame limiter function, and the magnitude of the signal Dp2 is used as the limiter value, and the value of Dpl is -l.
Dp, l≦Dpl≦IDI)21.

丁なわち、DQ2が正の値のときGp(s) ・t p
>Dpzであれば Dp+= DQ2とし、DQ2が負
の値のとき、G p(S)・gp<Dpz  であれば
、Dpt =Dpsとする。
In other words, when DQ2 is a positive value, Gp(s) ・t p
>Dpz, then Dp+=DQ2, and when DQ2 is a negative value, if Gp(S)·gp<Dpz, then Dpt=Dps.

加算器回路18F1Pr、 DI)tを入力信号として
Pr2(=Dpt+Pr)  を作成する。
Adder circuit 18F1Pr, creates Pr2 (=Dpt+Pr) using DI)t as an input signal.

加算器回路16は系統制御装菫からの無効電力指令([
Qrと無効電力検出値Qとの差εa(=Qr−Q)を作
成Tる。無効電力制御関数回路24は回路23と同様に
次の伝達関数GQ(S)を実現している。
The adder circuit 16 receives a reactive power command ([
A difference εa (=Qr−Q) between Qr and the detected reactive power value Q is created. Similar to the circuit 23, the reactive power control function circuit 24 realizes the following transfer function GQ(S).

ただし、KQ * TQI * Towriそれぞれ’
lイア、遅れ時定数、及び進み時定数である〇 このとき、出力DQIにGQ(S)・at2  となる
。また、この回路も回路23と同様にリミッタ機能をも
っており、信号DQ2の大きざをリミッタ値として、D
QIの値を−IDQ21≦DQI≦IDQ!+  の範
囲に制限する。すなわち、DQ2が正の値のときGQ(
S)・’Q>DQ2であればDQ1=DQ2とし、DQ
2が負の価のとき、GQ(S)・’Q<DQ2 であれ
ば、Dqt=DQzとする。加算器回路19はQ’l 
DQ tを入力信号としてQr2 (=DQs +Q 
r lを作成する。
However, KQ * TQI * Towri'
lia, lag time constant, and lead time constant. At this time, the output DQI becomes GQ(S)·at2. Also, like the circuit 23, this circuit also has a limiter function, and the magnitude of the signal DQ2 is used as the limiter value.
The value of QI is −IDQ21≦DQI≦IDQ! Limited to + range. That is, when DQ2 is a positive value, GQ(
S)・'If Q>DQ2, set DQ1=DQ2, and DQ
When 2 has a negative value, if GQ(S)·'Q<DQ2, then Dqt=DQz. The adder circuit 19 has Q'l
Qr2 (=DQs +Q
Create r l.

以上得られePr!、Qr=を式(1)、 (2) v
cおけるP、Qの代わりに用いα里、α2を算出する。
You can get more ePr! , Qr= by equations (1), (2) v
α ri and α2 are calculated by using them instead of P and Q at c.

すなわち、次式からα型。α2を求めることになる。In other words, α type from the following equation. α2 will be found.

P r* = Eo I d (”tlr −)−Q)
Sc12 )   =(5)Qrx= EoId (s
inαt −1−cos ax )   ・・・(6)
まず、徐算器回路27.28Vcより、上式を2EoZ
dでわ9規格比する。したがって、徐算器回路27.2
8の出力信号Pr、 、 Qr、  框それぞれPr1
 =Pr2/2EoId I Qrl=Qr2/2Eo
Idとなる。このとき、式(5)、 (6)d次のよう
に変換されA− ところが、装置の?#注上、P r21+Q凸S1の条
件を満たず必要があり、もし、P?t +Qr”l )
 1の場合有効・無効電力リミッタ29が動作し、P 
’ I +Qrt  fそれぞれ変更しPro+Qro
とTる。このとき− となる。位相制量信号算出回路300上式の関係式から
α! 、α25−算出し\α1.α2の大きさに比例し
た信号をそれぞれ位相側#J信号C8I、C82として
出力する。
P r* = Eo I d ("tlr -) - Q)
Sc12 ) = (5) Qrx = EoId (s
inαt −1−cos ax ) ...(6)
First, from the divider circuit 27.28Vc, convert the above equation to 2EoZ
Compare 9 standard with d. Therefore, the divider circuit 27.2
8 output signals Pr, , Qr, frame each Pr1
=Pr2/2EoId I Qrl=Qr2/2Eo
It becomes Id. At this time, equations (5) and (6)d are converted as follows: A- However, the device's ? #Note: It is necessary to satisfy the condition of P r21 + Q convex S1, and if P? t+Qr”l)
1, the active/reactive power limiter 29 operates and P
' Change I + Qrt f respectively and Pro + Qro
and T. At this time, - becomes. From the above relational expression of the phase control signal calculation circuit 300, α! , α25-calculate\α1. Signals proportional to the magnitude of α2 are output as phase side #J signals C8I and C82, respectively.

また、乗算器回路25.26はそれぞれ、P ’ O*
Qro vc2Eo I f乗じ、pr3. Pr3ト
して出力する。さらに加算器回路20,21H1それぞ
れからpr、Qrを引き、P ’o * Q’o ”対
し、DpHDQI  に対応Tる値Dp2 、 DQ2
 f逆算的に求める。
Moreover, the multiplier circuits 25 and 26 each have P'O*
Qro vc2Eo If multiplied, pr3. Pr3 and output. Furthermore, pr and Qr are subtracted from each of the adder circuits 20 and 21H1, and the values Dp2 and DQ2 corresponding to DpHDQI are obtained for P'o * Q'o''.
Find f backwards.

第2図においては、JJO算器回路15、有効電力制御
関数回路23から成る有効成力の開ループ制御系、及び
加算器回路16、無効電力匍1例関数回路24から収る
無効電力の開ループ制御系に、Pr、Qr、l!:P、
Qとの間の誤差補正を行ない、prが直接71OX器回
路18に遅する開ループ制御系、及びQrが直接、加算
器回路19Vc達する開ループ制御系に、徐算器回路2
7.28、有効・無効電力リミッタ29、及び位相制御
信号算出回路から成る位相制副信号算出磯!1!K p
r、 Qrの変fヒを高速に伝える。
In FIG. 2, an open-loop control system for active power consisting of a JJO calculator circuit 15 and an active power control function circuit 23, an adder circuit 16, and a reactive power control system consisting of an active power control function circuit 24 are shown. In the loop control system, Pr, Qr, l! :P,
The divider circuit 2 is connected to an open loop control system in which pr is directly delayed to the 71OX circuit 18 and Qr is directly delayed to the adder circuit 19Vc.
7.28, phase-based sub-signal calculation consisting of active/reactive power limiter 29 and phase control signal calculation circuit! 1! K p
Transmit the changes of r and Qr at high speed.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、系統制御−gtからの有効・無効嵯力
指令唱の変fヒ牙、@接、位相制御信号算出機構に伝え
ることができるので、系統制#J装置からの指令に対す
るMAit導エネルギー貯蔵装置の応答を高速化するこ
とが可能である。
According to the present invention, since it is possible to transmit the change of valid/invalid force command from the system control device to the phase control signal calculation mechanism, MAit for the command from the system control #J device can be transmitted to the phase control signal calculation mechanism. It is possible to speed up the response of conductive energy storage devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方式分用いてなる一実施例の説明図、
第2図汀同じくブロック図である。
FIG. 1 is an explanatory diagram of an embodiment using the method of the present invention,
FIG. 2 is also a block diagram.

Claims (1)

【特許請求の範囲】[Claims] 1、交流系統と超電導コイル間の電力の授受を半導体電
力変換器で行なう超電導エネルギー貯蔵装置に、交流系
統から流入する有効電力または無効電力を有効電力指令
値または無効電力指令値に応じて該半導体電力変換器の
閉ループ制御で調節する超電導エネルギー貯蔵装置の制
御方式において、該閉ループ制御を行なう関数要素の出
力側に、直接、有効電力指令値または無効電力指令値の
変化が伝わる開ループ要素を付加したことを特徴とする
超電導エネルギー貯蔵装置の制御方式。
1. A superconducting energy storage device that transfers power between an AC system and a superconducting coil using a semiconductor power converter converts active power or reactive power flowing from the AC system into the semiconductor according to an active power command value or a reactive power command value. In a control method for a superconducting energy storage device that is adjusted by closed-loop control of a power converter, an open-loop element is added to the output side of the function element that performs the closed-loop control, to which changes in the active power command value or reactive power command value are directly transmitted. A control method for a superconducting energy storage device characterized by the following.
JP61110784A 1986-05-16 1986-05-16 Method of controlling superconducting energy storage apparatus Pending JPS62272835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61110784A JPS62272835A (en) 1986-05-16 1986-05-16 Method of controlling superconducting energy storage apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61110784A JPS62272835A (en) 1986-05-16 1986-05-16 Method of controlling superconducting energy storage apparatus

Publications (1)

Publication Number Publication Date
JPS62272835A true JPS62272835A (en) 1987-11-27

Family

ID=14544534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61110784A Pending JPS62272835A (en) 1986-05-16 1986-05-16 Method of controlling superconducting energy storage apparatus

Country Status (1)

Country Link
JP (1) JPS62272835A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007060833A (en) * 2005-08-25 2007-03-08 Toshiba Mitsubishi-Electric Industrial System Corp Power converter for superconducting coil
JP2009044785A (en) * 2007-08-06 2009-02-26 Toshiba Corp Superconducting coil energy storage device and superconducting coil energy storage method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007060833A (en) * 2005-08-25 2007-03-08 Toshiba Mitsubishi-Electric Industrial System Corp Power converter for superconducting coil
JP4721825B2 (en) * 2005-08-25 2011-07-13 東芝三菱電機産業システム株式会社 Power converter for superconducting coils
JP2009044785A (en) * 2007-08-06 2009-02-26 Toshiba Corp Superconducting coil energy storage device and superconducting coil energy storage method

Similar Documents

Publication Publication Date Title
JP3265398B2 (en) DC power transmission device control device
CA2209225C (en) Series compensator inserting real and reactive impedance into electric power system for damping power oscillations
GB1347548A (en) Apparatus for controlling a line-commutated current convertor
JPS62272835A (en) Method of controlling superconducting energy storage apparatus
US3119957A (en) Electric motor control system
JPS5937653B2 (en) Uninterruptible power system
JP2580746B2 (en) Control method of suburban power compensator
JPS62293944A (en) Control of superconducting energy storage apparatus
JPS6118405B2 (en)
JPH04319717A (en) Power compensating device
JPH0743616B2 (en) Reactive power controller
JPS63136915A (en) Controller of reactive power compensator
SU537431A1 (en) Device for controlling the valve converter
JPH0767255A (en) Control circuit for reactive power compensator
SU425185A1 (en) POWER MONITORING SYSTEM
JPS62272826A (en) Method of controlling superconducting energy storage apparatus
JPS62230357A (en) Controlling device for pwm power converter
JPS6154824A (en) Controller of ac/dc converter
CN110350570A (en) A kind of full rank TSM control method based on back-to-back VSC-HVDC
JPS59149742A (en) Reactive power compensator of power system
JPS60207455A (en) Power converter
JPH02144616A (en) Cooperative operation control system for reactive power compensating device
JPS6048519A (en) Automatic voltage regulating system of power unit
JPH0270234A (en) Reactive power compensator
JPH04255427A (en) Compensator for higher harmonic and reactive power