JPS60207455A - Power converter - Google Patents

Power converter

Info

Publication number
JPS60207455A
JPS60207455A JP59060791A JP6079184A JPS60207455A JP S60207455 A JPS60207455 A JP S60207455A JP 59060791 A JP59060791 A JP 59060791A JP 6079184 A JP6079184 A JP 6079184A JP S60207455 A JPS60207455 A JP S60207455A
Authority
JP
Japan
Prior art keywords
current
signal
control system
simulated
current control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59060791A
Other languages
Japanese (ja)
Other versions
JPH0568946B2 (en
Inventor
Tadao Mose
茂瀬 忠男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59060791A priority Critical patent/JPS60207455A/en
Publication of JPS60207455A publication Critical patent/JPS60207455A/en
Publication of JPH0568946B2 publication Critical patent/JPH0568946B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)
  • Control Of Voltage And Current In General (AREA)

Abstract

PURPOSE:To obtain a high performance power converter by compensating the variation in a transmission gain by a signal compared of the state variation in a control system with the state variation in a simulation control system. CONSTITUTION:A power converter 1 has a thyristor converter 3 and a smoothing circuit 4, and supplies power to a load 2. The converter 3 is controlled at alpha by a phase controller 7 of a main current control system 13 to form a phase control signal 11 from a current deviation signal between a current feedback signal from a current detector 8 and a current command value 9. In this case, a simulation current control system 18 is composed of a simulation smoothing circuit 14 similar to the smoothing circuit 4 and a unit 17 simulating the controller 7. Thus, the second phase control signal 12 obtained through a compensating amplifier 21 from the system 18 is added to the signal 11 to obtain an input signal of the controller 7. In this manner, the transmission gain decrease of the system 13 is compensated to eliminate the large variation in the current control response.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はサイリスタ変換器と、平滑回路に飽和特性を有
するリアクトル及びコンデンf’l用いた電力変換装置
に係り、電流の断続によって生ずるサイリスタ変換器出
力電圧の非線形特性、及び流れる電流の大きさによって
生ずるリアクトルの非線形特性乞補償して電流制御系の
電流応答の改善を計った電力変換装置(2関するもので
ある。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a power conversion device using a thyristor converter, a reactor and a capacitor f'l having saturation characteristics in a smoothing circuit, and the present invention relates to a thyristor converter which is generated by intermittent current. This is a power conversion device (2) that aims to improve the current response of a current control system by compensating for the nonlinear characteristics of the reactor caused by the magnitude of the flowing current and the nonlinear characteristics of the output voltage.

〔発明の技術的背景と問題点〕[Technical background and problems of the invention]

サイリスタ変換器の出力電圧(平均電圧)Edは一般(
二(1)式で示される。
The output voltage (average voltage) Ed of the thyristor converter is generally (
It is shown by equation 2(1).

Ed = K(2)α ・曲・(1) 但し、Kは入力電圧、整流相数等で決まる定数であり、
αは制御遅れ角である。
Ed = K(2)α・Song・(1) However, K is a constant determined by the input voltage, number of rectification phases, etc.
α is the control delay angle.

従って、逆余弦ISI数ら一1乞介して位相制御信号s
p、 4与えれば制御遅れ角αとの関係は(21式とな
り、サイリスタ変換器の出力電圧Edと位相制御信号S
pHの関係は(3)式で示されるようC二比例関係が成
立する。
Therefore, by using the inverse cosine ISI number, the phase control signal s
If p, 4 is given, the relationship with the control delay angle α becomes (Equation 21), where the output voltage Ed of the thyristor converter and the phase control signal S
As for the pH relationship, a C-biproportional relationship holds true as shown by equation (3).

crs a = SpH−−・421 Ed = K・SpH・・・・・・(3)丁なわち逆余
弦関数特性を持つ位相制御装置と、サイリスタ変換器乞
組合せれば比例増幅器と考えることができる。
crs a = SpH--・421 Ed = K・SpH (3) If a phase control device with inverse cosine function characteristics is combined with a thyristor converter, it can be considered as a proportional amplifier. .

し刀ゝし、上記(1)式はサイリスタ変換器に流れる電
流が連続する条件で成立し、電流が断続する状態では成
立しない。
However, the above equation (1) holds true under the condition that the current flowing through the thyristor converter is continuous, but does not hold true under the condition that the current flows intermittently.

すなわち、電流断続期間のサイリスタ変換器出力電圧瞬
時値は電流断続の状態によって決まり、出力電圧Edは
(3)式とは異なる非線形特性となる。
That is, the instantaneous value of the thyristor converter output voltage during the current intermittent period is determined by the current intermittent state, and the output voltage Ed has a nonlinear characteristic different from the equation (3).

以上のことからサイリスタ変換器と位相制御装置ヲ組合
せて制御系内の要素と丁れば、制御系内C二非線形要素
を含むことC二なり、この非線形特性−は電流の断続状
態で現われ℃くる。
From the above, if we combine the thyristor converter and the phase control device and compare them with the elements in the control system, the control system will contain C2 nonlinear elements, and this nonlinear characteristic will appear in the intermittent state of current. come.

また、サイリスタ変換器の出力にリアクトルとコンデン
サに依る平滑回路を具備した電力変換装置では、リアク
トルのインダクタンス値、コンテンツの容量及び充放電
状態、負荷電流の大きさ等で゛サイリスタ変換器の電流
断続は生じ易く複雑となる。また、一般(二電流平滑用
及び電流断続をできるだけ防止するために挿入する平滑
回路のりアクドルは大きな電流で小さなインダクタンス
、小さな電流で大きなインダクタンスとなるようC二飽
和特性を持たせることによって小形、軽量、低価格化馨
計っている。このことは、電流断続状態の複雑化やりア
クドルの非線形特性がそのまま制御系の非線形化となり
電力変換装置の電流制御をより複雑な非線形制御系とし
ていた。
In addition, in a power conversion device equipped with a smoothing circuit using a reactor and a capacitor at the output of the thyristor converter, the current intermittent of the thyristor converter may be is likely to occur and becomes complicated. In addition, the general smoothing circuit (for dual-current smoothing and to prevent current interruption as much as possible) is small and lightweight by giving it C bisaturation characteristics so that it has a small inductance at large currents and a large inductance at small currents. This is due to the complexity of the intermittent current state, and the nonlinear characteristics of the accelerator directly make the control system nonlinear, making the current control of the power conversion device a more complicated nonlinear control system.

通常の電力置換装置の電流制御系では、′@流の断続し
ない状態で電流制御応答を調整すると、電流断続の状態
における電流制御応答は著しく遅くなり、さらに負荷電
流の大きい時と小さい時とでも電流制御応答が異なると
いう欠点ン持っていた。
In the current control system of a normal power replacement device, if the current control response is adjusted when the current is not intermittent, the current control response when the current is intermittent becomes extremely slow, and even when the load current is large or small. It had the disadvantage that the current control response was different.

この欠点は、電流断続による非線形特性と、リアクトル
の飽和特性による非線形特性が電流制御系内に含まれて
いることC二起因するもので、電流制御系の開ループ伝
達利得が変化するためであるという認識に二基づき、従
来の装置では、前記欠点の改善策として、電流制御系の
マイナーループに電圧制御系を設けて電流制御系全体の
開ループ伝達利得を増加させる方法や電流断続状態を検
出して電流制御系内の利得馨多段6二切換て補償Tる等
の方法が用いられてきた。しかし、非線形特性に起因す
る開ループ伝達利得の変化は、平滑回路のりアクドルの
飽和特性、コンデンチ容量及び充放電の状態、負荷電流
の大きさ、さらζニサイリスタ素子の特性C二も関係下
るため、断続状態での開ループ伝達利得は非常C二複雑
になっており、上記従来の補償方法では、満足のいく補
償を施こすことは困難であり若干の特性改善が得られる
程度であるという間軸かあった。
This drawback is due to the fact that the current control system includes nonlinear characteristics due to intermittent current and nonlinear characteristics due to saturation characteristics of the reactor, and the open loop transfer gain of the current control system changes. Based on this recognition, conventional devices have proposed a method to improve the above-mentioned drawbacks by providing a voltage control system in the minor loop of the current control system to increase the open loop transfer gain of the entire current control system, and by detecting current intermittent conditions. Methods have been used in which compensation is achieved by switching multi-stage gain controls within the current control system. However, the change in open loop transfer gain due to nonlinear characteristics is affected by the smoothing circuit's saturation characteristics, capacitance and charging/discharging conditions, the magnitude of the load current, and the characteristic C2 of the ζ thyristor element. , the open-loop transfer gain in the discontinuous state is extremely complex, and with the conventional compensation method described above, it is difficult to perform satisfactory compensation, and only a slight improvement in characteristics can be obtained. There was a shaft.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記従来における問題点に鑑みてなさ
れたもので、サイリスタ変換器における電流速続状態と
電流断続状態、及び負荷電流の大小によって電流制御応
答が大きく変化しないようにした電流制御系を持つ電力
変換装置ン提供することである。
The object of the present invention has been made in view of the above-mentioned conventional problems, and is to provide current control in which the current control response does not change significantly depending on the current continuous state and current intermittent state in a thyristor converter, and the magnitude of load current. The purpose of the present invention is to provide a power conversion device with a power conversion system.

〔発明の概要〕[Summary of the invention]

本発明は上記目的ン達成Tるために、サイリスタ変換器
とりアクドル及びコンデンサから成る平滑回路を具備し
て負荷に電カン供給し、前記サイリスタ救換器のサイリ
スタ点弧タイミング馨制御する位相制御装置と、前記サ
イリスタ敦換器C二流れる電流を検出する電流検出器と
、電流指令値から前記電流検出器出力信号を減算して得
られる偏差信号と増幅する主電流制御増叫器とを具備し
、前記主電流制御増幅器出力信号が、前記位相制御装置
の第1の位相制御信号となるように電流制御系が構成さ
れた電力変換装置において、前記平滑回路の出力である
負荷電流な検出、あるいは演算によってめる負荷電流検
出器と、前記サイリスタ変換器、平滑回路ン含めて前記
主電流制御系ン模擬した模擬電流制御系と前記電力変換
装置の出力電圧C二対応した出力電圧信号を得る電圧検
出回路と前記模擬電流制御系から得られる出力模擬填圧
信号から前記電圧検出回路によって検出された出力電圧
信号r減算して得られる偏差信号ン増幅する補償増幅器
とを具備し、前記模擬電流制御系の直流出力模擬端子ζ
ユ、前記負荷電流検出器を接続して前記模擬電流制御系
′iJ>らの模擬負荷電流信号とし、前記補償増幅器の
出力信号7al−第2の位4’d制御信号とし、前記第
1の位相制御信号と%2の位相制御イΔ号と馨加算して
前記位相制御装置の入力信号としたことによりサイリス
タ変換器における電流連続状態と電流断続状態及び負荷
電流の大小C二よって電流制御応答が大きく変化しない
ようにしたこと馨特徴とするものである。
In order to achieve the above object, the present invention provides a phase control device which includes a smoothing circuit consisting of a thyristor converter, an accelerator, and a capacitor, supplies electric current to a load, and controls the firing timing of the thyristor of the thyristor converter. and a current detector that detects the current flowing through the thyristor converter C2, and a main current control loudspeaker that amplifies a deviation signal obtained by subtracting the output signal of the current detector from the current command value. , in a power conversion device in which a current control system is configured such that the main current control amplifier output signal becomes a first phase control signal of the phase control device, detecting a load current that is an output of the smoothing circuit; A load current detector determined by calculation, a simulated current control system that simulates the main current control system including the thyristor converter, and the smoothing circuit, and the output voltage C of the power conversion device.2 A voltage for obtaining a corresponding output voltage signal. The simulated current control system includes a detection circuit and a compensation amplifier that amplifies the deviation signal obtained by subtracting the output voltage signal r detected by the voltage detection circuit from the output simulated filling signal obtained from the simulated current control system. System DC output simulation terminal ζ
Y, the load current detector is connected to provide a simulated load current signal of the simulated current control system 'iJ>, the output signal 7al of the compensation amplifier - the second digit 4'd control signal, and the first By adding the phase control signal and the phase control signal Δ of %2 and using it as the input signal of the phase control device, the current control response is determined by the current continuous state and current intermittent state in the thyristor converter and the magnitude of the load current C2. The key feature of this method is that it does not change significantly.

〔発明の実施例〕[Embodiments of the invention]

以下に、本発明による電力変換装置をメッキ用電流制御
装置等の負荷に指令された電流を供給する電流源装置に
適用した実施例について第1図ン参照して説明する。
Hereinafter, an embodiment in which the power converter according to the present invention is applied to a current source device that supplies a commanded current to a load such as a current control device for plating will be described with reference to FIG.

負荷2(二電力を供給する電力変換装置lはサイリスタ
変換器3と平滑回路4ン具備し、平滑回路4は飽和特性
?もつりアクドル5とコンデンf6によって構成されて
いる。サイリスタ変換器3は位相制御装置i17によっ
てα制御され、サイリスタ変換器3 C流れる電流は電
流検出器8によって検出され、この電流検出信号が電流
帰還信号となり、電流指令値9との差がとられ、電流偏
差信号となる。この電流偏差信号が主電流制御増幅器1
0によって増幅されて得られた第1の位相制御信号11
と後述Tる第2の位相制御信号12が加算され位相制御
装置7への入力信号となるように主電流制御系13か構
成されている。
The power converter l that supplies the load 2 (two-power) is equipped with a thyristor converter 3 and a smoothing circuit 4, and the smoothing circuit 4 has a saturation characteristic and is composed of an accelerator 5 and a capacitor f6. The current flowing through the thyristor converter 3C is α-controlled by the phase control device i17, and is detected by the current detector 8. This current detection signal becomes a current feedback signal, and the difference between it and the current command value 9 is taken, and it becomes a current deviation signal. This current deviation signal is the main current control amplifier 1.
The first phase control signal 11 obtained by being amplified by 0
The main current control system 13 is configured such that a second phase control signal 12 (described later) is added to the input signal T and becomes an input signal to the phase control device 7.

次に、平滑回路4と同じ構成ンもつ模擬平滑回路14に
位相制御装置7とサイリスタ変換器3を模擬した比例増
幅器15が接続され、比例増幅器15(電流れる電流信
号に相当する信号?検出Tる模擬電流検出器16により
検出された電流相当信号は電流帰還信号となり電流指令
値9この差がとられて模擬電流増幅器17により増幅し
て得られた信号が比例増幅器15の入力となり模擬電流
制御系18Y構成している。この模擬電流制御系18の
模擬負荷電流は負荷電流検出器19I:よって模擬平滑
回路14に接続されて負荷2ン模擬している。また主電
流制御系J3の出力電圧に対応した信号を検出する電圧
検出器20からの出力である出力電圧信号と模擬電流制
御系18から得られる模擬出力電圧信号との差かとられ
て補償増幅器21(ユよって増幅される。増幅されて得
られた信号が第2の位相制御信号として上記主電流制御
増幅器10の出力信号である第1の位相制御信号と加算
され位相制御装置7の入力となる。
Next, a phase control device 7 and a proportional amplifier 15 simulating the thyristor converter 3 are connected to a simulated smoothing circuit 14 having the same configuration as the smoothing circuit 4. The current equivalent signal detected by the simulated current detector 16 becomes a current feedback signal, and the difference is taken from the current command value 9. The signal obtained by amplifying it by the simulated current amplifier 17 becomes the input to the proportional amplifier 15 and performs simulated current control. The simulated load current of the simulated current control system 18 is connected to the load current detector 19I: therefore, the simulated smoothing circuit 14 to simulate the load 2. Also, the output voltage of the main current control system J3 The difference between the output voltage signal that is the output from the voltage detector 20 that detects a signal corresponding to The obtained signal is added as a second phase control signal to the first phase control signal, which is the output signal of the main current control amplifier 10, and becomes an input to the phase control device 7.

ここで、比例増幅器15及び模擬平滑回路14の模擬リ
アクトル22は線形であり非線形特性をもたないようC
′−選定される。また負荷電流検出器19の出力は負荷
電流に対応した電流源信号であり模擬平滑回路14の模
擬コンデン?23と並列に接続されている。
Here, the proportional amplifier 15 and the simulated reactor 22 of the simulated smoothing circuit 14 are linear, and C
′- selected. The output of the load current detector 19 is a current source signal corresponding to the load current, and is a simulated capacitor of the simulated smoothing circuit 14. 23 is connected in parallel.

以上のように構成された主電流制御系13と模擬電流制
御系18ン比較してみると、それぞれの構成要素が対応
していることがわかる。したがって主電流増幅器10と
模擬電流増幅器17とは同一特性とし、主電流制御系1
3の開ループ伝達利得と模擬電流制御系18の開ループ
伝達利得ン同じく丁れば両者の電流制御系の特性は同じ
となる。電流指令9の変化(二伴なう状態変数の過渡状
態での動き、及び負荷電流の変化に伴なう状態変数の過
渡状態での動きをすべての条件の基に同じくするC二は
主電流制御系13内のすべての要素が線形特性ン有して
いることが必要となる。なぜなら模擬電流制御系18内
の構成要素は丁べて線形特性?有しているからである。
Comparing the main current control system 13 and the simulated current control system 18 configured as described above, it can be seen that the respective components correspond to each other. Therefore, the main current amplifier 10 and the simulated current amplifier 17 have the same characteristics, and the main current control system 1
If the open loop transfer gain of No. 3 and the open loop transfer gain of the simulated current control system 18 are the same, the characteristics of both current control systems will be the same. Changes in current command 9 (2) The movement of the accompanying state variables in the transient state and the movement of the state variables in the transient state accompanying changes in the load current are the same under all conditions.C2 is the main current It is necessary that all the elements in the control system 13 have linear characteristics, because all the components in the simulated current control system 18 have linear characteristics.

上記のことを換言下れば両者の状態変数に過渡状態で差
が生じることは主電流制御系13内の構成要素のもつ非
線形特性に起因下ることは明らかである。従がって両者
状態変数の差である第2の位相制御信号12はサイリス
タ変換器31:よる電流断続現象やりアクドル5の飽和
特性(:よって生ずる信号となる。主電流制御系13と
模擬電流制御系18の要素特性が同じ状態では第2の位
相制御信号12は零であり、何ら模擬電流制御系18は
主電流制御系13i二影flax与えない。次C二、負
荷電流が小さくなった状態を考えると、飽和特性をもつ
りアクドル5は大きなインダクタンス値となり、さらに
サイリスタ変換器3の電流が断続したとすると、そのと
き主電流制御系13の開ループ伝達利得は非常に低下す
るが、模擬電流制御系18の開ループ伝達利得は液化し
ない。従がって、負荷反動や電流指令9の変化(−よる
主電流制御系13の電流応答は遅れるが、模擬電流制御
系18の電流応答は遅れないためI:その差が第2の位
相制御信号12として現われる。したがって、この第2
の位相制御信号12’?第1の位相制御信号11に加え
ることにより、主電流制御系13の伝達利得の低下分ン
直ちにサイリスク変換器3の出力電圧ン強制することに
より補償Tる。
In other words, it is clear that the difference between the state variables in the transient state is caused by the nonlinear characteristics of the components in the main current control system 13. Therefore, the second phase control signal 12, which is the difference between the two state variables, is a signal that occurs due to the current intermittent phenomenon caused by the thyristor converter 31 and the saturation characteristics of the accelerator 5.The main current control system 13 and the simulated current When the element characteristics of the control system 18 are the same, the second phase control signal 12 is zero, and the simulated current control system 18 does not give any flux to the main current control system 13i.Next C2, the load current becomes smaller. Considering the situation, if the accelerator 5 has a saturation characteristic and has a large inductance value, and if the current of the thyristor converter 3 is intermittent, then the open loop transfer gain of the main current control system 13 will be extremely reduced. The open loop transfer gain of the simulated current control system 18 is not liquefied. Therefore, although the current response of the main current control system 13 is delayed due to load reaction and changes in the current command 9 (-), the current response of the simulated current control system 18 is Since I is not delayed, the difference appears as the second phase control signal 12. Therefore, this second
phase control signal 12'? By adding it to the first phase control signal 11, the reduction in the transfer gain of the main current control system 13 is compensated for by immediately forcing the output voltage of the SiRisk converter 3 to decrease.

以上の作用により、サイリスク変換器3の電流断続や負
荷電流の大小g二よって電流制御応答が大きく液化しな
いよう(二することができる。
Due to the above-mentioned effects, it is possible to prevent the current control response from being greatly liquefied due to the intermittent current of the SIRISK converter 3 or the magnitude of the load current.

面、実施例Cユおいて模擬平滑回路14の構成要素とし
てリアクトルとコンデンf(二よって表現しているが特
性が模擬できる要素であればリアクトル、コンデンチ以
外の何でもよ”い。
In Example C, the components of the simulated smoothing circuit 14 are expressed as a reactor and a condenser, but any element other than the reactor or condenser may be used as long as the characteristics can be simulated.

第2図は本発明(−よる電力変換装置の他の実施例につ
いて示した構成図である。主電流制御系13反び模擬電
流制御系18などの電力変換装置lの内部構成は前述第
1図で構成された電流#i、装置と同様であるため説明
は省略下るが、負荷2aは直流から交流C二重力変換T
るようなインバータ装置等の場合、電力変換装置lの出
力電圧は定められた電圧(ニなる様に適圧制御増幅器2
4が設けられて電圧制御系が構成されている。したがっ
て、電力変換装置lの中の主電流制御系13は電圧制御
系のマイカループとなる様に構成される。このような適
用例の場合、負荷2aは電圧制御系や電力変換装置lと
は無関係(二負荷電流乞流丁。あるいは負荷2aの運転
方式ζ二よって電圧制御系の電圧指令が定められる場合
もあり、負荷2aによって電力変換装置【内の状態が定
められるといってよい。このことは、負荷(二よって電
力変換装置lの出力電圧が反動されることン意味するが
@運のように電力変換装置l内の主電流制御系13が特
性改善されて全状態で迎れのない同じ電流応答特性?有
しているため、この主電流制御系13ンマイナーループ
としている電圧制御系の応答も早くすることができ負荷
(二よる゛岨圧夏動ン小さく下ることができる。
FIG. 2 is a block diagram showing another embodiment of the power converter according to the present invention. The current #i configured in the figure is the same as the device, so the explanation will be omitted, but the load 2a is DC to AC double force conversion T
In the case of an inverter device, etc., the output voltage of the power converter l is set to a predetermined voltage (2).
4 is provided to constitute a voltage control system. Therefore, the main current control system 13 in the power converter l is configured to be a mica loop of a voltage control system. In such an application example, the load 2a is unrelated to the voltage control system or the power converter l (two-load current flow), or the voltage command of the voltage control system may be determined by the operation method of the load 2a. It can be said that the state inside the power converter is determined by the load 2a. This means that the output voltage of the power converter l is influenced by the load 2a, but the power The characteristics of the main current control system 13 in the converter l have been improved and it has the same current response characteristic in all conditions, so the response of the voltage control system, which is in a minor loop, is also It can be made faster and the load (due to the increase in summer movement) can be lowered.

〔発明の効果〕〔Effect of the invention〕

本発明の電力変換装置によれば、サイリスク変換器に〃
すれる電流が連続するか断続Tるかの制御条件により非
線形特性?有する制御要素(位相制御装置とサイリスク
変換器)や、負荷電流の大きさく:より定数が変わる非
線形特性乞有Tる制御要素(飽和特性ンもつりアクドル
)乞制御系内に持った場合、その制御系内の状態変数と
、制御系を線形要素で模擬した模擬制御系内の状態変数
とを比較して得られた信号で補償することにより、非線
形特性によって生じた伝達利得の変化分ン補償して、電
力変換装置の電流制御応答が大きく液化し7Lいよ5(
ニした電力変換装置ン提供することができる。従がって
、低電流においても特別の補償をしなくても高性能な電
力変換装置であり、さらC二本発明イニよる電力変換装
置をマイナーループ系とするような構成で適用するなら
ば、そのメジャーループ系の特性改善も可能となる電力
変換装置である。
According to the power conversion device of the present invention, the
Nonlinear characteristics depending on control conditions such as whether the passing current is continuous or intermittent? Control elements (phase controllers and silicate converters) that have non-linear characteristics whose constants change depending on the magnitude of the load current (saturation characteristics and torque handles) Compensate for changes in transfer gain caused by nonlinear characteristics by compensating with a signal obtained by comparing the state variables in the control system and the state variables in a simulated control system that simulates the control system using linear elements. As a result, the current control response of the power converter greatly liquefies and the current control response of the power converter becomes 7L.
It is possible to provide a power conversion device with two types. Therefore, it is a high-performance power converter even at low currents without special compensation, and furthermore, if the power converter according to the present invention is applied in a configuration such as a minor loop system. This is a power conversion device that can also improve the characteristics of its major loop system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による電力変換装置乞メッキ等の電流制
御に適用した実施例を示した構成図、第2図は直流から
交流C″−電力変換するインバータ装置の直流電圧供給
装置g二連用された本発明の他の実施例乞示した構成図
である。 ■・・・電力変換装置 2・・・負荷 3・・・サイリスク変換器 4・・・平?11回路5・
・・リアクトル 6・・コンデンツ−7・・・位相制御
装置 8・・・電流検出器9・・・電流指令値 10・
・・電流制御増幅器11・・・第1の位相制御信号 」2・・・第2の位相制御信号 13・・・主電流制御系 14・・・模擬平滑回路15
・・・比例増幅器 16・・・模擬電流検出器17・・
・模擬電流制御増幅器 18・・・模擬電流制御系 19・・・負荷電流検出器
20・・・電圧検出器 21・・・補償増幅器22・・
・模擬リアクトル お・・・模擬コンデンサ24・・・
電圧制御増幅器 区 派 (7317)代理人 弁理士 則 近 憲 佑(ほか1
名)
Fig. 1 is a configuration diagram showing an embodiment of the power conversion device according to the present invention applied to current control such as plating, and Fig. 2 is a DC voltage supply device g dual use of an inverter device that converts DC to AC C″-power. It is a configuration diagram showing another embodiment of the present invention.■...Power conversion device 2...Load 3...Sirisk converter 4...Hei?11 circuit 5.
・・Reactor 6・・Contents 7・・Phase control device 8・・Current detector 9・・Current command value 10・
...Current control amplifier 11...First phase control signal"2...Second phase control signal 13...Main current control system 14...Simulation smoothing circuit 15
... Proportional amplifier 16 ... Simulated current detector 17 ...
- Simulated current control amplifier 18... Simulated current control system 19... Load current detector 20... Voltage detector 21... Compensation amplifier 22...
・Simulated reactor O...Simulated capacitor 24...
Voltage Control Amplifier Kuha (7317) Agent Patent Attorney Noriyuki Chika (and 1 others)
given name)

Claims (1)

【特許請求の範囲】[Claims] サイリスタ変換器とりアクドル及びコンデンサから成る
平滑回路を具備して負荷に電力乞供給し、前記サイリス
タ変換器のチイリスタ点弧タイミング乞制御Tる位相制
御装置と前記サイリスタ変換器5二流れる電流ン検出す
る電流検出器と、電流指令値から前記電流検出器出力信
号乞減罪して得られる偏差信号を増幅する主電流制御増
幅器とン具備し、前記主電流制御増幅器出力信号が、前
記位相制御装置の第1の位相制御信号となるように電流
制御系が構成された電力変換装置−二おいて、前記平滑
回路の出力である負荷電流音検出、あるいは演算によっ
てめる負荷電流検出器と、前記サイリスタ変換器、平滑
回路ン含めて前記主電流制御系を模擬した模擬電流制御
系と、前記電力変換装置の出力電圧C二対応した出力電
圧信号?得る電圧検出回路と、前記模擬電流制御系から
得られる出力模擬電圧信号から前記電圧検出回路によっ
て検出された出力電圧信号ン減算して得られる偏差信号
を増幅する補償増幅器とを具備し、前記模擬電流制御系
の直流出力模擬端子に、前記負荷電流検出器を接続して
前記模擬電流制御系からの模擬負荷電流信号とし、前記
補償増幅器の出力信号ン第2の位相制御信号とし、前記
第1の位相制御信号と第2の位相制御信号とを加算して
前記位相制御装置の入力信号としたことン特徴とした電
力変換装置。
The thyristor converter is equipped with a smoothing circuit consisting of an accelerator and a capacitor to supply power to the load, and a phase control device for controlling the firing timing of the thyristor converter and detecting the current flowing through the thyristor converter 5. The main current control amplifier includes a current detector and a main current control amplifier that amplifies a deviation signal obtained by subtracting the current detector output signal from the current command value, and the main current control amplifier output signal is controlled by the phase control device. In a power conversion device-2 in which a current control system is configured to provide a first phase control signal, a load current detector which detects a load current sound which is the output of the smoothing circuit or is detected by calculation, and a load current detector which is detected by a calculation, A simulated current control system that simulates the main current control system including a converter and a smoothing circuit, and an output voltage signal corresponding to the output voltage C2 of the power converter? and a compensation amplifier that amplifies a deviation signal obtained by subtracting the output voltage signal detected by the voltage detection circuit from the output simulated voltage signal obtained from the simulated current control system, The load current detector is connected to a DC output simulation terminal of the current control system to provide a simulated load current signal from the simulated current control system, the output signal of the compensation amplifier is used as a second phase control signal, and the output signal of the compensation amplifier is used as a second phase control signal. A power conversion device characterized in that the phase control signal and the second phase control signal are added and used as an input signal of the phase control device.
JP59060791A 1984-03-30 1984-03-30 Power converter Granted JPS60207455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59060791A JPS60207455A (en) 1984-03-30 1984-03-30 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59060791A JPS60207455A (en) 1984-03-30 1984-03-30 Power converter

Publications (2)

Publication Number Publication Date
JPS60207455A true JPS60207455A (en) 1985-10-19
JPH0568946B2 JPH0568946B2 (en) 1993-09-30

Family

ID=13152477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59060791A Granted JPS60207455A (en) 1984-03-30 1984-03-30 Power converter

Country Status (1)

Country Link
JP (1) JPS60207455A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6352696A (en) * 1986-08-21 1988-03-05 Mitsubishi Electric Corp Ac variable speed device in dc bus system
JPH02212783A (en) * 1989-02-13 1990-08-23 Sony Tektronix Corp Variable direct current voltage generating circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6352696A (en) * 1986-08-21 1988-03-05 Mitsubishi Electric Corp Ac variable speed device in dc bus system
JPH02212783A (en) * 1989-02-13 1990-08-23 Sony Tektronix Corp Variable direct current voltage generating circuit

Also Published As

Publication number Publication date
JPH0568946B2 (en) 1993-09-30

Similar Documents

Publication Publication Date Title
WO2021179709A1 (en) Three phase dual active bridge direct current converter control system and control method
US5355299A (en) Circuit device for preventing saturation of the transformer in a dc/ac converter having a feedback-regulated inverter
JPS60207455A (en) Power converter
JPH06233530A (en) Variable-gain voltage control system of dc/dc converter using detection of load current
US5331535A (en) Power conversion control apparatus
JPS61142961A (en) Controlling method of chopper unit
JP2913889B2 (en) Predictive instantaneous value control method for PWM inverter
JPS6343975B2 (en)
JPS5872377A (en) Controlling method for pwm control converter
JP3284613B2 (en) Control circuit of PWM converter
Hajian et al. Input-output feedback linearization of sensorless IM drives with stator and rotor resistances estimation
JPH03124266A (en) Power converter controller through neutral network
JPS619189A (en) Power supplying device of linear motor
JPS60125136A (en) Power converter
JPH0432633B2 (en)
JPS62138911A (en) Control method for reactive power compensating device
JPH0559671B2 (en)
JP3228033B2 (en) Control method of DC intermediate voltage of reactive power compensator
JPS60257765A (en) Stationary power converter
JPH0530752A (en) Direct current voltage controller for inverter input circuit
JPH0767281B2 (en) Control device for PWM converter
JPH0389860A (en) Power converter
JPH027872A (en) Method of controlling system tie inverter
JPS62189976A (en) Circulating current-type cycloconverter equipment
JPH04261366A (en) Controller of multiple inverter