JP4721825B2 - Power converter for superconducting coils - Google Patents

Power converter for superconducting coils Download PDF

Info

Publication number
JP4721825B2
JP4721825B2 JP2005244099A JP2005244099A JP4721825B2 JP 4721825 B2 JP4721825 B2 JP 4721825B2 JP 2005244099 A JP2005244099 A JP 2005244099A JP 2005244099 A JP2005244099 A JP 2005244099A JP 4721825 B2 JP4721825 B2 JP 4721825B2
Authority
JP
Japan
Prior art keywords
excitation
positive
negative
diode
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005244099A
Other languages
Japanese (ja)
Other versions
JP2007060833A (en
Inventor
恒二 大串
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2005244099A priority Critical patent/JP4721825B2/en
Publication of JP2007060833A publication Critical patent/JP2007060833A/en
Application granted granted Critical
Publication of JP4721825B2 publication Critical patent/JP4721825B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inverter Devices (AREA)

Description

本発明は交流系統に連系して直流電源から交流電力を供給する超電導コイル用電力変換装置に関する。   The present invention relates to a power converter for a superconducting coil that is connected to an AC system and supplies AC power from a DC power source.

近年、超電導状態に保持されたコイルに電流を還流させて蓄え、このエネルギーを電力変換装置を介して交流電源系統と授受するように構成された分散電源システムが実用化されている。この電力変換装置は系統電圧との電圧差と位相差を制御して,無効電力補償やフリッカ抑制の負荷平準化を行うことが可能となる。また、落雷等による瞬時停電時に,需用家への交流電力の供給を維持することが可能となる。   In recent years, a distributed power supply system configured to recirculate and store current in a coil held in a superconducting state and exchange this energy with an AC power supply system via a power converter has been put into practical use. This power conversion device can control the voltage difference and phase difference from the system voltage, and can perform reactive power compensation and load leveling for flicker suppression. In addition, it is possible to maintain the supply of AC power to consumers during an instantaneous power failure due to lightning strikes and the like.

超電導コイル用電力変換装置は、コイルにエネルギーを蓄える励磁(充電)モード、エネルギーが蓄えられた状態で保持する還流モード及びコイルからのエネルギーを取り出す放電モードがある。これ等の3種類のモードの選択が可能なように、電圧型インバータとコイルに対して正側及び負側の2組のチョッパ回路を用い、比較的簡単に超電導コイル用電力変換装置を構成する提案が為されている(例えば特許文献1参照。)。
特許第2543336号公報(第1−3頁、第1図)
The superconducting coil power conversion device has an excitation (charge) mode for storing energy in the coil, a reflux mode for holding the energy in a stored state, and a discharge mode for extracting the energy from the coil. A power converter for a superconducting coil is configured relatively easily using two sets of positive and negative chopper circuits for the voltage type inverter and coil so that these three types of modes can be selected. Proposals have been made (see, for example, Patent Document 1).
Japanese Patent No. 2543336 (page 1-3, FIG. 1)

特許文献1に示された手法によれば、従来のサイリスタ変換器に代えて自励式電圧型変換器を用いることにより、コイル電流の大小に拘らず交流系統への融通電力に応じた定格容量の装置構成とすることができ、更に同一回路を用いてコイルへの放電と励磁が可能であるという特長がある。しかしながら、この方式ではコイルの電位が充電と放電で極性が逆となるためコイルおよび電力変換装置の必要耐圧が直流電圧の約2倍となり、コイルの容量を大きくすることが困難であるという欠点があった。これに対し、放電回路と励磁回路を別構成とすることも考えられるが、回路を別構成とした分電力変換装置の外形が大きくなるばかりでなく、コイルへの充放電容量を大きくするために並列構成を用いたときに部分的に過大な電流が流れてしまう等の問題があった。
According to the technique disclosed in Patent Document 1, a self-excited voltage type converter is used in place of the conventional thyristor converter, so that the rated capacity according to the interchangeable power to the AC system can be obtained regardless of the magnitude of the coil current. The apparatus configuration can be obtained, and furthermore, the coil can be discharged and excited using the same circuit. However, in this method, since the polarity of the coil potential is reversed between charging and discharging , the required withstand voltage of the coil and the power conversion device is about twice that of the DC voltage, and it is difficult to increase the coil capacity. there were. On the other hand, it is conceivable that the discharge circuit and the excitation circuit are configured separately, but not only the external shape of the power conversion device with a separate circuit configuration is increased, but also the charge / discharge capacity to the coil is increased. When using a parallel configuration, there is a problem that an excessive current partially flows.

本発明は、上記の問題点に鑑みて為されたものであり、比較的簡単な回路構成で大電力を出力することが可能な超電導コイル用電力変換装置を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a power converter for a superconducting coil capable of outputting large power with a relatively simple circuit configuration.

上記前記目的を達成する為、本発明の超電導コイル用電力変換装置は、正側超電導コイルの正極からアノード端子に配線接続された正側放電ダイオードと、前記正側超電導コイルと接地されたコイル中点を介して直列接続された負側超電導コイルの負極からアノード端子に配線接続された負側放電ダイオードと、前記コイル中点から分岐点までは共通に配線し、分岐点から正側及び負側各々に分岐するように配線した共通配線手段と、前記正側放電ダイオードのアノード端と前記正側共通配線の間に接続され、低圧の励磁電圧出力手段と正側チョッパ用半導体スイッチから成る直列回路と、前記負側放電ダイオードのアノード端と前記負側共通配線の間に接続され、低圧の励磁電圧出力手段と前記正側チョッパ用半導体スイッチとは逆極性の負側チョッパ用半導体スイッチから成る直列回路と、前記正側及び負側放電ダイオードのカソード端と前記正側及び負側共通配線の間に夫々接続された正側及び負側の平滑コンデンサと、前記正側及び負側の平滑コンデンサに印加される直流電圧を夫々交流電圧に変換する正側及び負側の電圧型インバータと、前記正側及び負側の電圧型インバータの出力を電源系統に連系する系統連系変圧器とを備え、前記正側及び負側超電導コイルの励磁モードにおいては、前記正側及び負側チョッパ用半導体スイッチをオンし、前記励磁電圧出力手段によって前記正側及び負側超電導コイルを励磁し、前記正側及び負側超電導コイルの還流モードにおいては、前記正側及び負側チョッパ用半導体スイッチをオンし、前記励磁電圧出力手段の出力をゼロとして、前記コイル中点から前記分岐点までの共通配線に流れる電流が正側及び負側で打ち消しあうように還流させ、前記正側及び負側超電導コイルの放電モードにおいては、前記励磁電圧出力手段の出力をゼロとし、前記正側及び負側チョッパ用半導体スイッチを昇圧チョッパとしてオンオフ動作させ、前記正側及び負側の電圧型インバータ及び前記系統連系変圧器を介して電源系統に電力を供給するようにしたことを特徴としている。   In order to achieve the above object, a power converter for a superconducting coil according to the present invention includes a positive discharge diode connected to the anode terminal from the positive electrode of the positive superconducting coil, and a coil grounded to the positive superconducting coil. The negative discharge diode connected in series from the negative electrode of the negative superconducting coil connected in series through the point to the anode terminal, and the coil from the middle point to the branch point are wired in common, from the branch point to the positive side and the negative side A series circuit comprising a common wiring means wired so as to branch to each other, and a low voltage excitation voltage output means and a semiconductor switch for the positive chopper connected between the anode end of the positive discharge diode and the positive common wiring And an anode terminal of the negative-side discharge diode and the negative-side common line, and the low-voltage excitation voltage output means and the positive-side chopper semiconductor switch have opposite polarities. A series circuit composed of a semiconductor switch for the side chopper, a positive-side and negative-side smoothing capacitor connected between the cathode ends of the positive-side and negative-side discharge diodes and the positive-side and negative-side common wires, respectively, The positive and negative voltage type inverters for converting the DC voltage applied to the smoothing capacitors on the negative side and negative side to AC voltage, respectively, and the outputs of the positive and negative voltage type inverters are connected to the power supply system. In the excitation mode of the positive and negative superconducting coils, the positive and negative chopper semiconductor switches are turned on in the excitation mode of the positive and negative superconducting coils, and the positive and negative superconductivity are output by the excitation voltage output means. In the reflux mode of the positive and negative superconducting coils, the positive and negative chopper semiconductor switches are turned on and the excitation voltage output means outputs zero. The excitation voltage output means in the discharge mode of the positive side and negative side superconducting coils is caused to return so that the current flowing in the common wiring from the coil middle point to the branch point cancels out on the positive side and the negative side. The positive and negative chopper semiconductor switches are turned on and off as step-up choppers, and power is supplied to the power supply system via the positive and negative voltage type inverters and the grid interconnection transformer. It is characterized by doing so.

本発明によれば、比較的簡単な回路構成で大電力を出力することが可能な超電導コイル用電力変換装置を提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the power converter device for superconducting coils which can output large electric power with a comparatively simple circuit structure.

以下、図面を参照して本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

以下、図1乃至図3を参照して本発明の実施例1に係る超電導コイル用電力変換装置について説明する。図1は本発明の実施例1に係る超電導コイル用電力変換装置の回路構成図である。   Hereinafter, a superconducting coil power converter according to Embodiment 1 of the present invention will be described with reference to FIGS. 1 to 3. 1 is a circuit configuration diagram of a power converter for a superconducting coil according to Embodiment 1 of the present invention.

超電導コイル1A及び1Bは直列に接続され、超電導コイル1Aの正極側は放電・励磁回路2A1及び2A2を介して平滑コンデンサ3Aに接続されている。平滑コンデンサ3Aには電圧型インバータ4Aの直流端が接続され、電圧型インバータ4Aの3相交流端は系統連系変圧器5を介して電源系統に接続されている。同様に、超電導コイル1Bの負極側は放電・励磁回路2B1及び2B2を介して平滑コンデンサ3Bに接続されて、平滑コンデンサ3Bには電圧型インバータ4Bの直流端が接続され、電圧型インバータ4Bの3相交流端は系統連系変圧器5を介して電源系統に接続されている。   Superconducting coils 1A and 1B are connected in series, and the positive electrode side of superconducting coil 1A is connected to smoothing capacitor 3A via discharge / excitation circuits 2A1 and 2A2. The smoothing capacitor 3A is connected to the DC terminal of the voltage type inverter 4A, and the three-phase AC terminal of the voltage type inverter 4A is connected to the power supply system via the grid interconnection transformer 5. Similarly, the negative electrode side of the superconducting coil 1B is connected to the smoothing capacitor 3B via the discharge / excitation circuits 2B1 and 2B2, and the DC terminal of the voltage type inverter 4B is connected to the smoothing capacitor 3B. The phase AC terminal is connected to the power supply system via the grid interconnection transformer 5.

超電導コイル1A及び1Bの中点は、接地インピーダンス6を介して接地され、平滑コンデンサ3A及び電圧型インバータ4Aの直流端の負側及び平滑コンデンサ3B及び電圧型インバータ4Bの直流端の正側に接続されている。この部分の配線は正側と負側の共通ラインを形成しているが、超電導コイル1A及び1Bの中点から分岐点Pまでは配線を共通にし、分岐点Pからは正側と負側に分岐して配線している。   The midpoints of the superconducting coils 1A and 1B are grounded via the ground impedance 6 and connected to the negative side of the DC end of the smoothing capacitor 3A and the voltage type inverter 4A and to the positive side of the DC end of the smoothing capacitor 3B and the voltage type inverter 4B. Has been. The wiring of this part forms a common line on the positive side and the negative side, but the wiring is shared from the midpoint of the superconducting coils 1A and 1B to the branch point P, and from the branch point P to the positive side and the negative side. Branch and wire.

尚、超電導コイル1A及び1Bの周辺には、過電流保護用の遮断器や過電圧保護用の短絡器等が設けられているが、ここではその図示を省略している。   In addition, although the circuit breaker for overcurrent protection, the short circuit for overvoltage protection, etc. are provided in the circumference | surroundings of the superconducting coils 1A and 1B, the illustration is abbreviate | omitted here.

放電・励磁回路2A1と放電・励磁回路2A2は並列回路を形成している。同様に放電・励磁回路2B1と放電・励磁回路2B2は並列回路を形成している。従って放電・励磁回路2A1と放電・励磁回路2B1の構成について以下説明する。   The discharge / excitation circuit 2A1 and the discharge / excitation circuit 2A2 form a parallel circuit. Similarly, the discharge / excitation circuit 2B1 and the discharge / excitation circuit 2B2 form a parallel circuit. Therefore, the configurations of the discharge / excitation circuit 2A1 and the discharge / excitation circuit 2B1 will be described below.

放電・励磁回路2A1は超電導コイル1Aの正極側に直列に接続されたバランスリアクトル21Aと、このバランスリアクトル21Aと直列に接続され、平滑コンデンサ3Aの正極側に電流を流す方向に接続された放電用ダイオード22Aと、バランスリアクトル21Aと放電用ダイオード22Aの中点から共通ラインに向かって接続された励磁回路23Aとこの励磁回路23Aに直列に接続されたチョッパ用半導体スイッチ24Aとで構成されている。上記構成において、バランスリアクトル21Aは、放電・励磁回路2A1とこれと並列に接続された放電・励磁回路2A2の電流バランスを維持するために設けられたものである。従って、並列接続を行なわず、放電・励磁回路2Aを単独で用いる場合はこれを省くことが可能である。   The discharge / excitation circuit 2A1 is a balance reactor 21A connected in series to the positive electrode side of the superconducting coil 1A, and connected to the balance reactor 21A in series, and connected to the positive electrode side of the smoothing capacitor 3A in the direction of current flow. A diode 22A, a balance reactor 21A, an excitation circuit 23A connected from the midpoint of the discharge diode 22A toward the common line, and a chopper semiconductor switch 24A connected in series to the excitation circuit 23A. In the above configuration, the balance reactor 21A is provided to maintain a current balance between the discharge / excitation circuit 2A1 and the discharge / excitation circuit 2A2 connected in parallel therewith. Therefore, it is possible to omit this when the discharge / excitation circuit 2A is used alone without parallel connection.

同様に、放電・励磁回路2B1も超電導コイル1Aの正極側からバランスリアクトル21B、放電用ダイオード22Bを介して平滑コンデンサ3Bの負側に接続し、バランスリアクトル21Bと放電用ダイオード22Bの中点から共通ラインに向かって接続された励磁回路23Bとこの励磁回路23Bに直列に接続されたチョッパ用半導体スイッチ24Bを有している。ここで、チョッパ用半導体スイッチ21Aとチョッパ用半導体スイッチ21Bは共通ラインに対して逆極性となっている。このことは、チョッパ用半導体スイッチと放電用ダイオード等を含むスタックを構成する場合、正側のスタックと負側のスタックが共通ラインに対して勝手違いの構造となることを示している。   Similarly, the discharge / excitation circuit 2B1 is also connected from the positive side of the superconducting coil 1A to the negative side of the smoothing capacitor 3B via the balance reactor 21B and the discharge diode 22B, and is common from the middle point of the balance reactor 21B and the discharge diode 22B. An excitation circuit 23B connected toward the line and a chopper semiconductor switch 24B connected in series to the excitation circuit 23B are provided. Here, the chopper semiconductor switch 21A and the chopper semiconductor switch 21B have opposite polarities with respect to the common line. This indicates that when a stack including a chopper semiconductor switch, a discharge diode, and the like is configured, the positive side stack and the negative side stack have different structures with respect to the common line.

以下、励磁回路23Aの内部構成について、図1及び図2を参照して説明する。図2は励磁回路23Aの回路構成図である。   Hereinafter, the internal configuration of the excitation circuit 23A will be described with reference to FIGS. FIG. 2 is a circuit configuration diagram of the excitation circuit 23A.

図1におけるバランスリアクトル21Aと放電用ダイオード22Aの中点から共通ラインに向かって励磁回路23A内の還流ダーオード231とチョッパ用半導体スイッチ24Aで構成された直列回路が接続されている。そして、還流ダーオード231の両端には、以下のように励磁電圧が印加される。   A series circuit composed of a reflux diode 231 and a chopper semiconductor switch 24A in the excitation circuit 23A is connected from the midpoint of the balance reactor 21A and the discharge diode 22A in FIG. 1 toward the common line. An excitation voltage is applied to both ends of the reflux diode 231 as follows.

励磁電源からの交流を励磁用変圧器222で降圧し、その2次出力をダイオードコンバータ233に供給する。ダイオードコンバータ233の直流出力は、励磁用平滑コンデンサ234で平滑され、励磁用半導体スイッチ235を介して還流ダーオード231の両端に励磁電圧を印加する。ここで、還流ダイオー231の極性は、チョッパ用半導体スイッチ21Aをオンしたときに電流が流れる方向の極性となっている。ここではこれを同極性と呼ぶ。   The alternating current from the excitation power source is stepped down by the excitation transformer 222 and the secondary output is supplied to the diode converter 233. The direct current output of the diode converter 233 is smoothed by the excitation smoothing capacitor 234, and an excitation voltage is applied to both ends of the reflux diode 231 via the excitation semiconductor switch 235. Here, the polarity of the reflux diode 231 is such that the current flows when the chopper semiconductor switch 21A is turned on. Here, this is called the same polarity.

尚上記において励磁用変圧器222は並列に用いられる放電・励磁回路の励磁用変圧器と1次巻線を共通にして一体化しても良い。   In the above description, the excitation transformer 222 may be integrated with the excitation transformer of the discharge / excitation circuit used in parallel with the primary winding.

以下、図3を参照して本発明の超電導コイル用電力変換装置の動作について説明する。   The operation of the superconducting coil power converter according to the present invention will be described below with reference to FIG.

図3(a)は励磁(充電)モードの動作説明図である。励磁回路23Aは図示の電圧eを励磁用半導体スイッチ235のオンオフ動作により調整して還流ダイオード231の両端に励磁電圧を印加する。このとき、チョッパ用半導体スイッチ24Aをオン状態にしておけば、図1(a)に矢印で示したルートで超電導コイル1Aに電流が流れ、超電導コイル1Aは励磁される。尚、ここで励磁に要する時間は、多重雷等の影響を考慮しても、比較的長い時間で行っても問題ないので、低圧電源を用いて励磁を行うことが可能となる。   FIG. 3A is a diagram for explaining the operation in the excitation (charging) mode. The exciting circuit 23 </ b> A adjusts the illustrated voltage e by the on / off operation of the exciting semiconductor switch 235 and applies the exciting voltage to both ends of the reflux diode 231. At this time, if the chopper semiconductor switch 24A is turned on, current flows through the superconducting coil 1A along the route indicated by the arrow in FIG. 1A, and the superconducting coil 1A is excited. Here, the time required for excitation can be performed using a low-voltage power source because there is no problem even if the time required for excitation is considered to be relatively long even if the influence of multiple lightning or the like is taken into consideration.

図3(b)は還流モードの動作説明図である。この還流モードにおいては、超電導コイル1Aの電流は、還流ダイオード231及びチョッパ用半導体スイッチ24Aを介して図3(b)に矢印で示したループを還流する。このとき、励磁回路の励磁用半導体スイッチ235はオフ状態にあり、チョッパ用半導体スイッチ24Aはオン状態を維持している。   FIG. 3B is an operation explanatory diagram of the reflux mode. In this reflux mode, the current in the superconducting coil 1A flows back through the loop indicated by the arrow in FIG. 3B via the reflux diode 231 and the chopper semiconductor switch 24A. At this time, the exciting semiconductor switch 235 of the exciting circuit is in the off state, and the chopper semiconductor switch 24A is maintained in the on state.

図3(b)は、正側の放電・励磁回路2A1における還流モードの説明図であるが、負側の放電・励磁回路2B1の還流モードを合わせて考える。前述したように、放電・励磁回路2B1においては、チョッパ用半導体スイッチ24Bが共通ラインに対して逆極性となるように構成されている。従って、超電導コイル1Bに流れる還流電流は、図3(b)の方向とは逆方向となる。このことは、図1に示した共通ラインの分岐点P点から超電導コイル1A及び1Bの中点に流れ込む電流が互いに打ち消しあってゼロとなることを示している。従って、分岐点Pを構造上適切な位置に選定すれは、還流モードにおいて大電流が流れる電流経路の長さを最短にすることが可能となる。   FIG. 3B is an explanatory diagram of the recirculation mode in the positive-side discharge / excitation circuit 2A1, and the recirculation mode of the negative-side discharge / excitation circuit 2B1 is considered together. As described above, the discharge / excitation circuit 2B1 is configured such that the chopper semiconductor switch 24B has a reverse polarity with respect to the common line. Therefore, the reflux current flowing through the superconducting coil 1B is in the direction opposite to the direction of FIG. This indicates that the currents flowing from the branch point P of the common line shown in FIG. 1 to the midpoint of the superconducting coils 1A and 1B cancel each other and become zero. Therefore, if the branch point P is selected at an appropriate position in the structure, the length of the current path through which a large current flows in the return mode can be minimized.

図3(c)は放電モードの動作説明図である。励磁用半導体スイッチ235がオフ状態で、チョッパ用半導体スイッチ24Aをオンオフ動作させると、超電導コイル1Aの両端の電圧は昇圧されて平滑コンデンサ3Aを充電する。そして、電圧型インバータ4Aを動作させることによって、超電導コイル1Aに蓄えられていたエネルギーは電圧型インバータ4Aを介して電源系統に回生される。   FIG. 3C is an operation explanatory diagram of the discharge mode. When the semiconductor switch for excitation 235 is turned off and the chopper semiconductor switch 24A is turned on and off, the voltage across the superconducting coil 1A is boosted to charge the smoothing capacitor 3A. Then, by operating the voltage type inverter 4A, the energy stored in the superconducting coil 1A is regenerated to the power supply system via the voltage type inverter 4A.

以上の各運転モードにおいて、超電導コイル1A、チョッパ用半導体スイッチ24A励及び励磁用半導体スイッチ235は何れも高圧の片極性であるため、双極性の構成を有する超電導コイル用電力変換装置に対して電圧定格を小さくすることが可能となる。また、共通ラインに対し、正側及び負側が逆極性となるように構成したので、対地耐圧を大きくとる必要がない。従って本発明の超電導コイル用電力変換装置は大容量化に好適である。   In each of the above operation modes, the superconducting coil 1A, the chopper semiconductor switch 24A excitation, and the excitation semiconductor switch 235 are all high-voltage unipolar, so that the voltage is applied to the power converter for the superconducting coil having a bipolar configuration. The rating can be reduced. In addition, since the positive and negative sides have opposite polarities with respect to the common line, it is not necessary to increase the withstand voltage against ground. Therefore, the superconducting coil power converter of the present invention is suitable for increasing the capacity.

図4に本発明の実施例2に係る超電導コイル用電力変換装置の励磁回路の回路構成図を示す。この実施例2の各部について、図2の実施例1に係る超電導コイル用電力変換装置の励磁回路の回路構成図の各部と同一部分は同一符号で示し、その説明は省略する。この実施例2が実施例1と異なる点は、還流ダイオード231及び励磁用半導体スイッチ235を省いた点、また、励磁用変圧器232の入力側にACスイッチ236を設けた点である。   FIG. 4 shows a circuit configuration diagram of an excitation circuit of the superconducting coil power converter according to the second embodiment of the present invention. The same parts as those in the circuit configuration diagram of the excitation circuit of the superconducting coil power converter according to the first embodiment shown in FIG. 2 are denoted by the same reference numerals, and the description thereof is omitted. The second embodiment differs from the first embodiment in that the free wheel diode 231 and the exciting semiconductor switch 235 are omitted, and an AC switch 236 is provided on the input side of the exciting transformer 232.

図2における励磁用半導体スイッチ235は、低圧の直流部に設けられているが、回路電圧は低圧ではないため回路の絶縁耐圧は大きい。これに対し、本実施例のように、励磁電流を、励磁用変圧器232の1次側で調整し、この1次側の電圧を低圧に選定しておけば、ACスイッチ236の絶縁耐圧を低く抑えることが可能となる。また、ダイオードコンバータ233が還流ダイオードの機能を兼ねることができるので、還流ダイオード231を省くことが可能となる。   The excitation semiconductor switch 235 in FIG. 2 is provided in the low-voltage direct current section, but the circuit voltage is not low, so that the withstand voltage of the circuit is large. On the other hand, if the excitation current is adjusted on the primary side of the excitation transformer 232 and the voltage on the primary side is selected to be a low voltage as in this embodiment, the withstand voltage of the AC switch 236 is reduced. It can be kept low. Further, since the diode converter 233 can also function as a freewheeling diode, the freewheeling diode 231 can be omitted.

図5に本発明の実施例3に係る超電導コイル用電力変換装置の励磁回路の回路構成図を示す。この実施例3の各部について、図2の実施例1に係る超電導コイル用電力変換装置の励磁回路の回路構成図の各部と同一部分は同一符号で示し、その説明は省略する。この実施例3が実施例1と異なる点は、ダイオードコンバータ233に代えサイリスタコンバータ237を設けた点、これに伴い、励磁用平滑コンデンサ234及び励磁用半導体スイッチ235を省いた点である。   FIG. 5 shows a circuit configuration diagram of an excitation circuit of the power converter for a superconducting coil according to the third embodiment of the present invention. The same parts as those in the circuit configuration diagram of the excitation circuit of the superconducting coil power converter according to the first embodiment shown in FIG. 2 are denoted by the same reference numerals in the third embodiment, and the description thereof is omitted. The third embodiment is different from the first embodiment in that a thyristor converter 237 is provided instead of the diode converter 233, and accordingly, the exciting smoothing capacitor 234 and the exciting semiconductor switch 235 are omitted.

このようにダイオードコンバータ233に代え、励磁電流の制御が可能なサイリスタコンバータ237を適用することにより、励磁用平滑コンデンサ234及び励磁用半導体スイッチ235を省くことが可能となり、回路構成が簡単となる。   Thus, by applying the thyristor converter 237 capable of controlling the excitation current in place of the diode converter 233, the excitation smoothing capacitor 234 and the excitation semiconductor switch 235 can be omitted, and the circuit configuration is simplified.

図6に本発明の実施例4に係る超電導コイル用電力変換装置の励磁回路の回路構成図を示す。この実施例4の各部について、図5の実施例3に係る超電導コイル用電力変換装置の励磁回路の回路構成図の各部と同一部分は同一符号で示し、その説明は省略する。この実施例4が実施例3と異なる点は、サイリスタコンバータ237に代え、自励式電流型コンバータ238を設けた点である。   FIG. 6 shows a circuit configuration diagram of an excitation circuit of a superconducting coil power converter according to a fourth embodiment of the present invention. The same parts as those of the circuit configuration diagram of the excitation circuit of the superconducting coil power converter according to the third embodiment of FIG. 5 are denoted by the same reference numerals in the fourth embodiment, and the description thereof is omitted. The fourth embodiment is different from the third embodiment in that a self-excited current type converter 238 is provided instead of the thyristor converter 237.

実施例3に示したサイリスタコンバータ237を用いた励磁回路の場合、励磁電流が微小となったときの制御性は必ずしも良いとは言えない。これに対し、本実施例のように自励式のコンバータを用いれば、必要となる励磁電流範囲において制御特性が改善される。   In the case of the excitation circuit using the thyristor converter 237 shown in the third embodiment, it cannot be said that the controllability when the excitation current becomes small is necessarily good. On the other hand, if a self-excited converter is used as in this embodiment, the control characteristics are improved in the necessary excitation current range.

図7に本発明の実施例5に係る超電導コイル用電力変換装置の励磁回路の回路構成図を示す。この実施例5の各部について、図5の実施例3に係る超電導コイル用電力変換装置の励磁回路の回路構成図の各部と同一部分は同一符号で示し、その説明は省略する。この実施例5が実施例3と異なる点は、サイリスタコンバータ237に代え、自励式電圧型コンバータ239及び励磁用平滑コンデンサ234を設けた点である。   FIG. 7 shows a circuit configuration diagram of an excitation circuit of a superconducting coil power converter according to a fifth embodiment of the present invention. The same parts as those of the circuit configuration diagram of the excitation circuit of the superconducting coil power converter according to the third embodiment of FIG. 5 are denoted by the same reference numerals in the fifth embodiment, and the description thereof is omitted. The fifth embodiment differs from the third embodiment in that a self-excited voltage type converter 239 and an exciting smoothing capacitor 234 are provided in place of the thyristor converter 237.

この実施例によれば、実施例4の場合と同様に制御特性が改善されるばかりでなく、自励式電圧型コンバータ239は、モータ駆動装置などに広く使用されている標準化されたインバータ装置等を流用することが可能となる。また、自励式電圧型コンバータ239に用いられるフライホイールダイオードの容量を適切に選定すれば、還流ダイオード231を省くことも可能である。   According to this embodiment, not only the control characteristics are improved as in the case of the fourth embodiment, but the self-excited voltage type converter 239 is replaced with a standardized inverter device or the like widely used for a motor drive device or the like. It can be diverted. Further, if the capacity of the flywheel diode used in the self-excited voltage type converter 239 is appropriately selected, the free wheel diode 231 can be omitted.

本発明の実施例1に係る超電導コイル用電力変換装置の回路構成図。The circuit block diagram of the power converter device for superconducting coils which concerns on Example 1 of this invention. 本発明の実施例1に係る超電導コイル用電力変換装置の励磁回路の回路構成図。The circuit block diagram of the excitation circuit of the power converter device for superconducting coils which concerns on Example 1 of this invention. 本発明の実施例1に係る超電導コイル用電力変換装置の動作説明図。Operation | movement explanatory drawing of the power converter device for superconducting coils which concerns on Example 1 of this invention. 本発明の実施例2に係る超電導コイル用電力変換装置の励磁回路の回路構成図。The circuit block diagram of the excitation circuit of the power converter device for superconducting coils which concerns on Example 2 of this invention. 本発明の実施例3に係る超電導コイル用電力変換装置の励磁回路の回路構成図。The circuit block diagram of the excitation circuit of the power converter device for superconducting coils which concerns on Example 3 of this invention. 本発明の実施例4に係る超電導コイル用電力変換装置の励磁回路の回路構成図。The circuit block diagram of the excitation circuit of the power converter device for superconducting coils which concerns on Example 4 of this invention. 本発明の実施例5に係る超電導コイル用電力変換装置の励磁回路の回路構成図。The circuit block diagram of the excitation circuit of the power converter device for superconducting coils which concerns on Example 5 of this invention.

符号の説明Explanation of symbols

1A、1B 超電導コイル
2A1、2A2、2B1、2B2 放電・励磁回路
3A、3B 平滑コンデンサ
4A、4B 電圧型インバータ
5 系統連系変圧器
6 接地インピーダンス

21A、21B バランスリアクトル
22A、22B 放電用ダイオード
23A、23B 励磁回路
24A、24B チョッパ用半導体スイッチ

231 還流ダイオード
232 励磁用変圧器
233 ダイオードコンバータ
234 励磁用平滑コンデンサ
235 励磁用半導体スイッチ
236 AC半導体スイッチ
237 サイリスタコンバータ
238 自励式電流型コンバータ
239 自励式電圧型コンバータ
1A, 1B Superconducting coil 2A1, 2A2, 2B1, 2B2 Discharge / excitation circuit 3A, 3B Smoothing capacitor 4A, 4B Voltage type inverter 5 System interconnection transformer 6 Ground impedance

21A, 21B Balance reactor 22A, 22B Discharging diode 23A, 23B Excitation circuit 24A, 24B Semiconductor switch for chopper

231 free-wheeling diode 232 exciting transformer 233 diode converter 234 exciting smoothing capacitor 235 exciting semiconductor switch 236 AC semiconductor switch 237 thyristor converter 238 self-excited current type converter 239 self-excited voltage type converter

Claims (7)

正側超電導コイルの正極からアノード端子に配線接続された正側放電ダイオードと、
前記正側超電導コイルと接地されたコイル中点を介して直列接続された負側超電導コイルの負極からアノード端子に配線接続された負側放電ダイオードと、
前記コイル中点から分岐点までは共通に配線し、分岐点から正側及び負側各々に分岐するように配線した共通配線手段と、
前記正側放電ダイオードのアノード端と前記正側共通配線の間に接続され、低圧の励磁電圧出力手段と正側チョッパ用半導体スイッチから成る直列回路と、
前記負側放電ダイオードのアノード端と前記負側共通配線の間に接続され、低圧の励磁電圧出力手段と前記正側チョッパ用半導体スイッチとは逆極性の負側チョッパ用半導体スイッチから成る直列回路と、
前記正側及び負側放電ダイオードのカソード端と前記正側及び負側共通配線の間に夫々接続された正側及び負側の平滑コンデンサと、
前記正側及び負側の平滑コンデンサに印加される直流電圧を夫々交流電圧に変換する正側及び負側の電圧型インバータと、
前記正側及び負側の電圧型インバータの出力を電源系統に連系する系統連系変圧器と
を備え、
前記正側及び負側超電導コイルの励磁モードにおいては、前記正側及び負側チョッパ用半導体スイッチをオンし、前記励磁電圧出力手段によって前記正側及び負側超電導コイルを励磁し、
前記正側及び負側超電導コイルの還流モードにおいては、前記正側及び負側チョッパ用半導体スイッチをオンし、前記励磁電圧出力手段の出力をゼロとして、前記コイル中点から前記分岐点までの共通配線に流れる電流が正側及び負側で打ち消しあうように還流させ、
前記正側及び負側超電導コイルの放電モードにおいては、前記励磁電圧出力手段の出力をゼロとし、前記正側及び負側チョッパ用半導体スイッチを昇圧チョッパとしてオンオフ動作させ、前記正側及び負側の電圧型インバータ及び前記系統連系変圧器を介して電源系統に電力を供給するようにしたことを特徴とする超電導コイル用電力変換装置。
A positive-side discharge diode wired from the positive electrode of the positive-side superconducting coil to the anode terminal;
A negative-side discharge diode connected to the anode terminal from the negative electrode of the negative-side superconducting coil connected in series via the positive-side superconducting coil and a grounded coil middle point;
Common wiring means wired in common from the coil middle point to the branch point, and wired so as to branch from the branch point to each of the positive side and the negative side;
A series circuit connected between the anode end of the positive-side discharge diode and the positive-side common wiring, and comprising a low-voltage excitation voltage output means and a positive-side chopper semiconductor switch;
A series circuit composed of a negative chopper semiconductor switch having a polarity opposite to that of the low voltage excitation voltage output means and the positive chopper semiconductor switch, connected between the anode end of the negative discharge diode and the negative common wiring. ,
Smoothing capacitors on the positive and negative sides respectively connected between the cathode ends of the positive and negative discharge diodes and the positive and negative common wires;
A positive-side and negative-side voltage type inverter that converts a DC voltage applied to the positive-side and negative-side smoothing capacitors into an AC voltage, respectively;
A grid interconnection transformer that links the outputs of the positive side and negative side voltage type inverters to a power system;
In the excitation mode of the positive and negative superconducting coils, the positive and negative chopper semiconductor switches are turned on, and the positive and negative superconducting coils are excited by the excitation voltage output means,
In the return mode of the positive and negative superconducting coils, the semiconductor switches for the positive and negative choppers are turned on, the output of the excitation voltage output means is set to zero, and the common from the coil middle point to the branch point Reflux so that the current flowing in the wiring cancels out on the positive and negative sides,
In the discharge mode of the positive and negative superconducting coils, the output of the excitation voltage output means is set to zero, the positive and negative chopper semiconductor switches are turned on and off as boost choppers, and the positive and negative choppers are turned on and off. A power converter for a superconducting coil, wherein power is supplied to a power supply system via a voltage-type inverter and the grid-connected transformer.
前記正側及び負側超電導コイルと前記正側及び負側放電ダイオードの間にバランスリアクトルを設け、
前記バランスリアクトル、前記放電ダイオード、前記励磁電圧出力手段及び前記チョッパ用半導体スイッチで構成される放電・励磁回路を正負夫々複数個並列接続したことを特徴とする請求項1に記載の超電導コイル用電力変換装置。
A balance reactor is provided between the positive and negative superconducting coils and the positive and negative discharge diodes,
2. The superconducting coil power according to claim 1, wherein a plurality of discharge / excitation circuits composed of the balance reactor, the discharge diode, the excitation voltage output means, and the chopper semiconductor switch are connected in parallel. Conversion device.
前記励磁電圧出力手段は、
励磁用交流電源から給電される励磁用変圧器と、
この励磁用変圧器の出力を整流するダイオードコンバータと、
このダイオードコンバータの出力を平滑する励磁用平滑コンデンサと、
この励磁用平滑コンデンサの直流出力をオンオフ制御する励磁用半導体スイッチと、
前記励磁用平滑コンデンサ及び前記励磁用半導体スイッチの出力側に接続され、前記チョッパ用半導体スイッチと同極性を有する還流ダイオード
を具備し、
前記還流ダイオードの両端をその出力としたことを特徴とする請求項1に記載の超電導コイル用電力変換装置。
The excitation voltage output means includes
An excitation transformer fed from an excitation AC power supply;
A diode converter that rectifies the output of the excitation transformer;
A smoothing capacitor for smoothing the output of the diode converter;
An excitation semiconductor switch for controlling on / off of the DC output of the smoothing capacitor for excitation;
Connected to an output side of the exciting smoothing capacitor and the exciting semiconductor switch, and comprising a free-wheeling diode having the same polarity as the chopper semiconductor switch,
The power converter for a superconducting coil according to claim 1, wherein both ends of the reflux diode are used as outputs.
前記励磁電圧出力手段は、
励磁用交流電源からAC半導体スイッチを介して給電される励磁用変圧器と、
この励磁用変圧器の出力を整流するダイオードコンバータと、
このダイオードコンバータの出力を平滑する励磁用平滑コンデンサと、
を具備し、
前記励磁用平滑コンデンサの両端をその出力としたことを特徴とする請求項1に記載の超電導コイル用電力変換装置。
The excitation voltage output means includes
An excitation transformer fed from an excitation AC power source via an AC semiconductor switch;
A diode converter that rectifies the output of the excitation transformer;
A smoothing capacitor for smoothing the output of the diode converter;
Comprising
2. The superconducting coil power converter according to claim 1, wherein both ends of the exciting smoothing capacitor are output.
前記励磁電圧出力手段は、
励磁用交流電源から給電される励磁用変圧器と、
この励磁用変圧器の出力を制御して直流を出力するサイリスタコンバータと、
このサイリスタコンバータの出力側に並列に接続され、前記チョッパ用半導体スイッチと同極性を有する還流ダイオード
を具備し、
前記還流ダイオードの両端をその出力としたことを特徴とする請求項1に記載の超電導コイル用電力変換装置。
The excitation voltage output means includes
An excitation transformer fed from an excitation AC power supply;
A thyristor converter for controlling the output of the excitation transformer and outputting a direct current;
A free-wheeling diode connected in parallel to the output side of the thyristor converter and having the same polarity as the semiconductor switch for chopper,
The power converter for a superconducting coil according to claim 1, wherein both ends of the reflux diode are used as outputs.
前記励磁電圧出力手段は、
励磁用交流電源から給電される励磁用変圧器と、
この励磁用変圧器の出力を制御して直流を出力する自励電流型コンバータと、
この自励電流型コンバータの出力側に並列に接続され、前記チョッパ用半導体スイッチと同極性を有する還流ダイオード
を具備し、
前記還流ダイオードの両端をその出力としたことを特徴とする請求項1に記載の超電導コイル用電力変換装置。
The excitation voltage output means includes
An excitation transformer fed from an excitation AC power supply;
A self-excited current type converter that controls the output of the excitation transformer and outputs a direct current;
A free-wheeling diode connected in parallel to the output side of the self-excited current type converter and having the same polarity as the semiconductor switch for chopper,
The power converter for a superconducting coil according to claim 1, wherein both ends of the reflux diode are used as outputs.
前記励磁電圧出力手段は、
励磁用交流電源から給電される励磁用変圧器と、
この励磁用変圧器の出力を制御して直流を出力する自励電圧型コンバータと、
この自励電圧型コンバータの出力を平滑する励磁用平滑コンデンサと
を具備し、
前記励磁用平滑コンデンサの両端をその出力としたことを特徴とする請求項1に記載の超電導コイル用電力変換装置。

The excitation voltage output means includes
An excitation transformer fed from an excitation AC power supply;
A self-excited voltage type converter that outputs direct current by controlling the output of the excitation transformer;
An excitation smoothing capacitor that smoothes the output of the self-excited voltage type converter,
2. The superconducting coil power converter according to claim 1, wherein both ends of the exciting smoothing capacitor are output.

JP2005244099A 2005-08-25 2005-08-25 Power converter for superconducting coils Active JP4721825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005244099A JP4721825B2 (en) 2005-08-25 2005-08-25 Power converter for superconducting coils

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005244099A JP4721825B2 (en) 2005-08-25 2005-08-25 Power converter for superconducting coils

Publications (2)

Publication Number Publication Date
JP2007060833A JP2007060833A (en) 2007-03-08
JP4721825B2 true JP4721825B2 (en) 2011-07-13

Family

ID=37923786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005244099A Active JP4721825B2 (en) 2005-08-25 2005-08-25 Power converter for superconducting coils

Country Status (1)

Country Link
JP (1) JP4721825B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009044785A (en) * 2007-08-06 2009-02-26 Toshiba Corp Superconducting coil energy storage device and superconducting coil energy storage method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62272835A (en) * 1986-05-16 1987-11-27 株式会社日立製作所 Method of controlling superconducting energy storage apparatus
JPH02228007A (en) * 1989-03-01 1990-09-11 Hitachi Ltd Superconducting magnet apparatus
JPH05244725A (en) * 1992-02-26 1993-09-21 Hitachi Ltd Power generating device and operating method thereof, composite system of solar light power generating device and superconductive energy storage device, and operating method thereof
JPH09308139A (en) * 1996-05-08 1997-11-28 Electric Power Dev Co Ltd Superconducting coil system using self-exciting converter
JP2004343869A (en) * 2003-05-14 2004-12-02 Toshiba Corp Superconductive coil energy storing circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62272835A (en) * 1986-05-16 1987-11-27 株式会社日立製作所 Method of controlling superconducting energy storage apparatus
JPH02228007A (en) * 1989-03-01 1990-09-11 Hitachi Ltd Superconducting magnet apparatus
JPH05244725A (en) * 1992-02-26 1993-09-21 Hitachi Ltd Power generating device and operating method thereof, composite system of solar light power generating device and superconductive energy storage device, and operating method thereof
JPH09308139A (en) * 1996-05-08 1997-11-28 Electric Power Dev Co Ltd Superconducting coil system using self-exciting converter
JP2004343869A (en) * 2003-05-14 2004-12-02 Toshiba Corp Superconductive coil energy storing circuit

Also Published As

Publication number Publication date
JP2007060833A (en) 2007-03-08

Similar Documents

Publication Publication Date Title
EP2784925B1 (en) Power conversion device
US6804127B2 (en) Reduced capacitance AC/DC/AC power converter
US8929112B2 (en) Circuit arrangement having a boost converter, and inverter circuit having such a circuit arrangement
JP5546685B2 (en) Charger
CN109874377B (en) System and method for operating a system
JP6272438B1 (en) Power converter
WO2014083980A1 (en) Power conversion system and method for controlling same
JP6440923B1 (en) Power converter
JP2017192286A (en) Power conversion device
JP5288178B2 (en) Motor drive system
JP2011101568A (en) Power feed system
JP2017103880A (en) Power conversion device
US9042145B2 (en) Circuit configuration with a step-up converter, and inverter circuit having such a circuit configuration
JP2010119239A (en) Smes apparatus, interface device for smes, and driving method therefor
JP6397872B2 (en) Power system
JP6211545B2 (en) Method for discharging at least one capacitor of an electrical circuit
JP4721825B2 (en) Power converter for superconducting coils
JP6397871B2 (en) Power system
US9806550B2 (en) Load current regenerating circuit and electrical device having load current regenerating circuit
JP2016123193A (en) Power supply system, vehicle and voltage control method
EP4108507A1 (en) System for charging vehicle battery using motor driving system
JP2019213321A (en) Power control system
JP5546052B2 (en) Power converter
CN110217125B (en) Drive apparatus, drive system, and method with switching function
JP2005341723A (en) Direct current high-voltage power source device for electron beam irradiating equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4721825

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250