JPH09308139A - Superconducting coil system using self-exciting converter - Google Patents

Superconducting coil system using self-exciting converter

Info

Publication number
JPH09308139A
JPH09308139A JP11384996A JP11384996A JPH09308139A JP H09308139 A JPH09308139 A JP H09308139A JP 11384996 A JP11384996 A JP 11384996A JP 11384996 A JP11384996 A JP 11384996A JP H09308139 A JPH09308139 A JP H09308139A
Authority
JP
Japan
Prior art keywords
self
converter
superconducting coil
excited
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11384996A
Other languages
Japanese (ja)
Other versions
JP3724876B2 (en
Inventor
Yoshiaki Nagai
義昭 永井
Kazuto Shimada
一人 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Toshiba Corp
Original Assignee
Electric Power Development Co Ltd
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Toshiba Corp filed Critical Electric Power Development Co Ltd
Priority to JP11384996A priority Critical patent/JP3724876B2/en
Publication of JPH09308139A publication Critical patent/JPH09308139A/en
Application granted granted Critical
Publication of JP3724876B2 publication Critical patent/JP3724876B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • Y02E40/67

Landscapes

  • Control Of Electrical Variables (AREA)
  • Rectifiers (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase an operation efficiency of the entire system and obtain a high reliability of the system. SOLUTION: This coil system is provided with a superconducting coil 1, a current-type self-exciting converter 2 which converts AC power to DC power and magnetizes and demagnetizes the superconducting coil 1, a DC reactor connected to a DC-side output terminal of the self-exciting converter 2, a superconducting coil shorting circuit which is parallelly connected to the superconducting coil 1 and has a switch 8 for power-on, a converter shorting circuit 12 which is parallelly connected to the DC-side of the self-exciting converter 1 and has a switch 11 for power-on, and a DC cut-off switch 10 which is provided in a DC main circuit constituted of the superconducting coil 1 and the self-exciting converter 2. As for the DC reactor 5, such a DC reactor as to make a reactive power-controlled operation of the self-exciting converter 2 with the converter shorting circuit 12 used as a load is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、システム全体の運
用効率が高く、かつ信頼性の高い自励式変換器を用いた
超電導コイルシステムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting coil system using a self-excited converter which has high operation efficiency and high reliability of the entire system.

【0002】[0002]

【従来の技術】一般に、GTO素子等を用いた自励式変
換器は、素子のスイッチングを任意に制御できるため、
力率を任意に制御できるという特性を有する。例えば、
負荷を超電導コイルとした場合には、超電導コイルが極
低温において電気抵抗が零となる特性を利用し、電気エ
ネルギーを磁気エネルギーとして高効率で貯蔵すると共
に、自励式変換器により、系統の有効電力と無効電力と
を同時かつ高速に制御することが可能となる。
2. Description of the Related Art Generally, a self-excited converter using a GTO element or the like can control the switching of the element arbitrarily,
It has the characteristic that the power factor can be controlled arbitrarily. For example,
When the load is a superconducting coil, the characteristic that the superconducting coil has zero electric resistance at cryogenic temperature is used to store electric energy with high efficiency as magnetic energy, and the self-excited converter is used to reduce the effective power of the grid. And the reactive power can be controlled simultaneously and at high speed.

【0003】このため、最近では、以上のような特性を
活かし、系統の負荷平準化、負荷変動補償、周波数調
整、安定度向上、および停電対策等への応用に期待され
てきている。
Therefore, recently, it has been expected to be applied to the load leveling of the system, load variation compensation, frequency adjustment, stability improvement, power failure countermeasures, etc. by taking advantage of the above characteristics.

【0004】図3は、この種の従来の電流型自励式変換
器を適用した超電導コイルシステムの主回路構成例を示
す図である。図3において、超電導コイル1は、電流型
の自励式変換器2によって励消磁される。自励式変換器
2は、一般的に高調波抑制の観点から、変換器用変圧器
4を介して多並列に接続された複数の単位変換器3から
構成される。
FIG. 3 is a diagram showing an example of the main circuit configuration of a superconducting coil system to which this type of conventional current type self-exciting converter is applied. In FIG. 3, the superconducting coil 1 is excited and demagnetized by a current type self-exciting converter 2. The self-excited converter 2 is generally composed of a plurality of unit converters 3 connected in multiple parallel via a converter transformer 4 from the viewpoint of suppressing harmonics.

【0005】この場合、各単位変換器3間の電流をバラ
ンスさせるために、直流リアクトル5が設けられてい
る。なお、この変換器用変圧器4を省略して自励式変換
器2を構成する場合もある。
In this case, a DC reactor 5 is provided in order to balance the current between the unit converters 3. The transformer 4 may be omitted to configure the self-excited converter 2.

【0006】自励式変換器2は、外部からの電力基準に
応じて、系統へ任意の有効電力および無効電力を同時に
供給することができる。一方、超電導コイル1、および
自励式変換器2からなる直流主回路には、システム異常
時に超電導コイル1に蓄積されたエネルギーを急速に吸
収する目的で、保護抵抗投入用スイッチ6と保護抵抗7
とから構成される超電導コイル短絡回路(保護抵抗回
路)が設けられている。
[0006] The self-excited converter 2 can simultaneously supply arbitrary active power and reactive power to the system according to an external power reference. On the other hand, the DC main circuit including the superconducting coil 1 and the self-excited converter 2 has a protective resistance switching switch 6 and a protective resistance 7 for the purpose of rapidly absorbing the energy accumulated in the superconducting coil 1 when the system is abnormal.
A superconducting coil short circuit (protection resistance circuit) is provided.

【0007】また、超電導コイル1、および自励式変換
器2からなる直流主回路には、超電導コイル1に十分蓄
積されたエネルギーを減衰させることなく保持するため
に、永久電流スイッチ8から構成される超電導コイル短
絡回路(永久電流回路)が設けられている。
The DC main circuit consisting of the superconducting coil 1 and the self-excited converter 2 comprises a permanent current switch 8 in order to hold the energy sufficiently accumulated in the superconducting coil 1 without attenuating it. A superconducting coil short circuit (permanent current circuit) is provided.

【0008】さらに、超電導コイル1、および自励式変
換器2からなる直流主回路には、保護抵抗回路もしくは
永久電流回路を投入する場合に、超電導コイル1と自励
式変換器2とを切り離すための直流遮断スイッチ10が
設けられている。
Furthermore, when a protective resistance circuit or a permanent current circuit is applied to the DC main circuit consisting of the superconducting coil 1 and the self-exciting converter 2, the superconducting coil 1 and the self-exciting converter 2 are separated from each other. A DC cutoff switch 10 is provided.

【0009】しかしながら、このような回路構成の超電
導コイルシステムでは、超電導コイル1が故障した時に
は、システム全体の運転を停止しなければならない。例
えば、超電導コイル1がクエンチ(常電導化)したよう
な場合には、保護抵抗回路を投入して、超電導コイル1
に蓄積されたエネルギーを急速に保護抵抗7で吸収し、
自励式変換器2を停止する。このため、超電導コイル1
の点検、復帰の期間は、システム全体の運転が停止する
ことになる。
However, in the superconducting coil system having such a circuit configuration, when the superconducting coil 1 fails, the operation of the entire system must be stopped. For example, when the superconducting coil 1 is quenched (normal conductivity), the protection resistance circuit is turned on to make the superconducting coil 1
The energy stored in is rapidly absorbed by the protective resistor 7,
The self-excited converter 2 is stopped. Therefore, the superconducting coil 1
During the period of inspection and restoration, the operation of the entire system will be stopped.

【0010】一方、変換器として自励式変換器2を用い
た場合、有効電力の制御は、超電導コイル1に蓄積され
たエネルギーを系統とやりとりすることで実現すること
ができる。
On the other hand, when the self-excited converter 2 is used as the converter, control of active power can be realized by exchanging energy stored in the superconducting coil 1 with the system.

【0011】また、無効電力の制御は、自励式変換器2
による位相制御で実現することができるため、超電導コ
イル1に蓄積されたエネルギーは変化しない。これは、
主回路構成を工夫することにより、超電導コイル1が故
障した時でも、自励式変換器2が健全であれば、超電導
コイル1を切り離して自励式変換器2単独で無効電力の
制御が可能であることを意味している。
The reactive power is controlled by the self-exciting converter 2
The energy stored in the superconducting coil 1 does not change because it can be realized by the phase control by. this is,
By devising the main circuit configuration, even if the superconducting coil 1 fails, if the self-exciting converter 2 is healthy, the superconducting coil 1 can be disconnected and the self-exciting converter 2 alone can control the reactive power. It means that.

【0012】さらに、変換器として多並列構成の電流型
の自励式変換器2を適用した場合には、従来では、1台
でも単位変換器3に異常が生じると、自励式変換器2全
体を停止させてシステム全体の運転を停止している。
Further, in the case where the current type self-exciting converter 2 having a multi-parallel configuration is applied as the converter, when even one unit converter 3 is abnormal in the prior art, the entire self-exciting converter 2 is changed. The operation of the entire system is stopped by stopping it.

【0013】[0013]

【発明が解決しようとする課題】以上のように、従来の
超電導コイルシステムにおいては、システム全体の運用
効率が低いという問題があった。本発明の目的は、シス
テム全体の運用効率が高く、かつ信頼性の高い自励式変
換器を用いた超電導コイルシステムを提供することにあ
る。
As described above, the conventional superconducting coil system has a problem that the operation efficiency of the entire system is low. It is an object of the present invention to provide a superconducting coil system using a self-exciting converter with high reliability and high operating efficiency of the entire system.

【0014】[0014]

【課題を解決するための手段】上記の目的を達成するた
めに、まず、請求項1に対応する発明の自励式変換器を
用いた超電導コイルシステムは、超電導コイルと、変換
器用変圧器を介して入力される交流電力を直流に変換
し、超電導コイルを励消磁する電流型の自励式変換器
と、自励式変換器の直流側出力端に設けられた直流リア
クトルと、超電導コイルに並列に接続され、投入用のス
イッチを有する超電導コイル短絡回路と、自励式変換器
の直流側に並列に接続され、投入用のスイッチを有する
変換器短絡回路と、超電導コイルおよび自励式変換器か
らなる直流主回路に設けられた直流遮断スイッチとを備
え、かつ上記直流リアクトルとして、変換器短絡回路を
負荷として自励式変換器の無効電力制御運転を可能とす
る直流リアクトルを選定するようにしている。
In order to achieve the above object, first, a superconducting coil system using a self-exciting converter according to the first aspect of the present invention includes a superconducting coil and a transformer for a transformer. Connected to the superconducting coil in parallel with the current type self-exciting converter that converts the input AC power into DC and demagnetizes the superconducting coil, the DC reactor installed at the DC end of the self-exciting converter And a DC main circuit consisting of a superconducting coil short circuit with a closing switch and a converter short circuit with a closing switch connected in parallel to the DC side of the self-exciting converter and a superconducting coil and a self-exciting converter. A DC cutoff switch provided in the circuit, and as the DC reactor, select a DC reactor that enables the reactive power control operation of the self-excited converter with the converter short circuit as the load. It is way.

【0015】ここで、特に上記超電導コイル短絡回路
は、例えば請求項2に記載したように、超電導コイルに
蓄積されたエネルギーを減衰させることなく保持するた
めの永久電流スイッチから構成されることが好ましい。
Here, in particular, it is preferable that the superconducting coil short-circuiting circuit is composed of a permanent current switch for holding the energy accumulated in the superconducting coil without attenuating it. .

【0016】また、上記超電導コイル短絡回路は、例え
ば請求項3に記載したように、超電導コイル異常時に当
該超電導コイルに蓄積されたエネルギーを吸収するため
の保護抵抗と、当該保護抵抗投入用のスイッチとから構
成されることが好ましい。
In the superconducting coil short circuit, for example, as described in claim 3, a protective resistor for absorbing energy accumulated in the superconducting coil when the superconducting coil is abnormal, and a switch for turning on the protective resistor. It is preferably composed of

【0017】さらに、上記変換器短絡回路は、例えば請
求項4に記載したように、自励式変換器異常時に当該自
励式変換器に流れ込む主回路電流をバイパスして自励式
変換器を保護するための短絡スイッチから構成されるこ
とが好ましい。
Further, the converter short-circuit circuit protects the self-excited converter by bypassing the main circuit current flowing into the self-excited converter when the self-excited converter is abnormal as described in claim 4, for example. Preferably, it is composed of a short-circuiting switch.

【0018】なお、以上は、上記変換器用変圧器をを省
略した場合にも実現可能である。一方、請求項5に対応
する発明の自励式変換器を用いた超電導コイルシステム
は、超電導コイルと、複数の単位変換器を並列接続して
なり、変換器用変圧器を介さずに入力される交流電力を
直流に変換し、超電導コイルを励消磁する電流型の自励
式変換器と、各単位変換器の直流側出力端にそれぞれ設
けられた直流リアクトルと、自励式変換器を構成する各
単位変換器の交流側にそれぞれ設けられた交流側開閉用
スイッチと、自励式変換器を構成する各単位変換器の直
流側にそれぞれ設けられた直流側開閉用スイッチと、自
励式変換器を構成する各単位変換器を制御の切り替えに
より任意の並列段数で制御可能な制御手段とを備えて成
る。
The above can be realized even when the transformer for the converter is omitted. On the other hand, a superconducting coil system using the self-exciting converter of the invention according to claim 5 comprises a superconducting coil and a plurality of unit converters connected in parallel, and an alternating current input without a converter transformer is used. A current type self-exciting converter that converts electric power to direct current and excites the superconducting coil, a DC reactor that is provided at the DC side output end of each unit converter, and each unit converter that constitutes the self-exciting converter. AC side opening / closing switches respectively provided on the AC side of the converter, DC side opening / closing switches respectively provided on the DC side of each unit converter constituting the self-excited converter, and each constituting the self-excited converter The unit converter is provided with control means capable of controlling the number of parallel stages by switching the control.

【0019】さらに、請求項6に対応する発明の自励式
変換器を用いた超電導コイルシステムは、上記請求項5
に対応する発明の自励式変換器を用いた超電導コイルシ
ステムにおいて、超電導コイルに並列に接続され、投入
用のスイッチを有する超電導コイル短絡回路と、自励式
変換器の直流側に並列に接続され、投入用のスイッチを
有する変換器短絡回路と、超電導コイルおよび自励式変
換器からなる直流主回路に設けられた直流遮断スイッチ
とを付加して成る。
Further, a superconducting coil system using the self-excited converter of the invention corresponding to claim 6 is the above-mentioned claim 5.
In a superconducting coil system using the self-exciting converter of the invention corresponding to, connected in parallel to the superconducting coil, a superconducting coil short circuit having a switch for closing, and connected in parallel to the DC side of the self-exciting converter, A converter short circuit having a closing switch and a DC cutoff switch provided in a DC main circuit composed of a superconducting coil and a self-exciting converter are added.

【0020】ここで、特に上記超電導コイル短絡回路
は、例えば請求項7に記載したように、超電導コイルに
蓄積されたエネルギーを減衰させることなく保持するた
めの永久電流スイッチから構成されることが好ましい。
Here, in particular, it is preferable that the superconducting coil short-circuiting circuit is composed of a permanent current switch for holding the energy stored in the superconducting coil without attenuating it. .

【0021】また、上記超電導コイル短絡回路は、例え
ば請求項8に記載したように、超電導コイル異常時に当
該超電導コイルに蓄積されたエネルギーを吸収するため
の保護抵抗と、当該保護抵抗投入用のスイッチとから構
成されることが好ましい。
In the superconducting coil short-circuit circuit, for example, as described in claim 8, a protective resistor for absorbing the energy accumulated in the superconducting coil when the superconducting coil is abnormal, and a switch for turning on the protective resistor. It is preferably composed of

【0022】さらに、上記変換器短絡回路は、例えば請
求項9に記載したように、自励式変換器異常時に当該自
励式変換器に流れ込む主回路電流をバイパスして自励式
変換器を保護するための短絡スイッチから構成されるこ
とが好ましい。
Further, the converter short-circuit circuit protects the self-excited converter by bypassing the main circuit current flowing into the self-excited converter when the self-excited converter is abnormal, as described in claim 9, for example. Preferably, it is composed of a short-circuiting switch.

【0023】従って、まず、請求項1乃至請求項4に対
応する発明の自励式変換器を用いた超電導コイルシステ
ムにおいては、投入用のスイッチを有する変換器短絡回
路を、自励式変換器の直流側に並列に設け、かつ自励式
変換器の直流側出力端に設ける直流リアクトルとして、
変換器短絡回路を負荷として自励式変換器の無効電力制
御運転を可能なように選定することにより、超電導コイ
ルが故障した場合、もしくは無効電力および高調波の制
御のみを行なう場合に、超電導コイルを自励式変換器か
ら切り離し、自励式変換器単独でSVC(静止型無効電
力補償装置)、もしくは高調波補償用としてシステムを
継続して運転することができる。
Therefore, first, in the superconducting coil system using the self-exciting converter according to the inventions corresponding to claims 1 to 4, the converter short circuit having the switch for closing is connected to the DC of the self-exciting converter. Side in parallel, and as a DC reactor installed at the DC side output end of the self-excited converter,
If the superconducting coil fails or if only the reactive power and harmonics are controlled, the superconducting coil is selected by using the converter short circuit as a load so that the reactive power control operation of the self-exciting converter can be performed. The system can be continuously operated for SVC (static var compensator) or for harmonic compensation by separating from the self-exciting converter and using the self-exciting converter alone.

【0024】これにより、システム全体の運用効率が高
く、かつ信頼性の高い自励式変換器を用いた超電導コイ
ルシステムを実現することが可能となる。一方、請求項
5乃至請求項9に対応する発明の自励式変換器を用いた
超電導コイルシステムにおいては、自励式変換器を構成
する各単位変換器の交流側および直流側にそれぞれ交流
側開閉用スイッチおよび直流側開閉用スイッチを設け、
かつ自励式変換器を構成する各単位変換器を制御の切り
替えによって任意の並列段数で制御することにより、自
励式変換器を構成する単位変換器が故障した場合に、故
障した単位変換器を切り離して、残りの健全な単位変換
器でシステムを継続して運転することができる。これに
より、システム全体の運用効率が高く、かつ信頼性の高
い自励式変換器を用いた超電導コイルシステムを実現す
ることが可能となる。
As a result, it is possible to realize a superconducting coil system using a self-exciting converter with high operation efficiency and high reliability of the entire system. On the other hand, in the superconducting coil system using the self-excited converter of the inventions corresponding to claims 5 to 9, the AC side opening and closing are performed on the AC side and the DC side of each unit converter constituting the self-exciting converter. Provided with a switch and a switch for opening and closing the DC side,
In addition, by controlling each unit converter that constitutes the self-excited converter with an arbitrary number of parallel stages by switching the control, if the unit converter that constitutes the self-excited converter fails, the failed unit converter is disconnected. And the remaining healthy unit converters can continue to operate the system. As a result, it is possible to realize a superconducting coil system using a self-exciting converter with high reliability and high operation efficiency of the entire system.

【0025】[0025]

【発明の実施の形態】以下、本発明の実施形態について
図面を参照して詳細に説明する。 (第1の実施形態)図1は、本実施形態による電流型の
自励式変換器を用いた超電導コイルシステムの構成例を
示す回路構成図であり、図3と同一部分には同一符号を
付してその説明を省略し、ここでは異なる部分について
のみ述べる。
Embodiments of the present invention will be described below in detail with reference to the drawings. (First Embodiment) FIG. 1 is a circuit configuration diagram showing a configuration example of a superconducting coil system using a current type self-exciting converter according to the present embodiment. The same parts as those in FIG. The description thereof will be omitted, and only different parts will be described here.

【0026】すなわち、本実施形態の自励式変換器を用
いた超電導コイルシステムは、図1に示すように、図3
における自励式変換器2の直流側に並列に、自励式変換
器2異常時に当該自励式変換器2に流れ込む主回路電流
をバイパスして自励式変換器2を保護するための投入用
スイッチである短絡スイッチ11を有する変換器短絡回
路12を接続した構成としている。
That is, as shown in FIG. 1, the superconducting coil system using the self-excited converter according to the present embodiment has the structure shown in FIG.
In parallel with the direct-current side of the self-excited converter 2, the bypass switch for protecting the self-excited converter 2 by bypassing the main circuit current flowing into the self-excited converter 2 when the self-excited converter 2 is abnormal. A converter short circuit 12 having a short circuit switch 11 is connected.

【0027】さらに、前記直流リアクトル5として、変
換器短絡回路12を負荷として自励式変換器2の無効電
力制御運転を可能とする直流リアクトルを選定するよう
にしている。
Further, as the DC reactor 5, a DC reactor which enables the reactive power control operation of the self-excited converter 2 with the converter short circuit 12 as a load is selected.

【0028】次に、以上のように構成した本実施形態の
自励式変換器を用いた超電導コイルシステムの作用につ
いて説明する。まず、通常運転時には、直流遮断スイッ
チ10が閉極、保護抵抗投入用スイッチ6、および永久
電流スイッチ8が開極しており、電流は自励式変換器2
→直流遮断スイッチ10→超電導コイル1→自励式変換
器2のパスで流れる。そして、この状態では、系統から
の要求に応じて、有効電力と無効電力とを同時に制御す
ることが可能である。
Next, the operation of the superconducting coil system using the self-exciting converter of the present embodiment having the above-described structure will be described. First, during normal operation, the DC cutoff switch 10 is closed, the protective resistance input switch 6 and the permanent current switch 8 are open, and the current is the self-excited converter 2.
→ DC cutoff switch 10 → Superconducting coil 1 → Self-excited converter 2 Then, in this state, it is possible to simultaneously control active power and reactive power in response to a request from the grid.

【0029】次に、このような状態から、いま超電導コ
イル1に異常が発生した場合の無効電力制御について述
べる。すなわち、超電導コイル1の異常検出後、自励式
変換器2をバイパスペアとし、交流回路と直流回路とを
切り離す。
Next, the reactive power control when an abnormality occurs in the superconducting coil 1 from such a state will be described. That is, after detecting an abnormality in the superconducting coil 1, the self-exciting converter 2 is used as a bypass pair to disconnect the AC circuit and the DC circuit.

【0030】次に、保護抵抗投入用スイッチ6を閉極、
直流遮断スイッチ10を開極し、変換器2をゲートブロ
ックする。こうすることにより、超電導コイル1と自励
式変換器2とは切り離される。
Next, the protective resistance closing switch 6 is closed,
The DC cutoff switch 10 is opened and the converter 2 is gate-blocked. By doing so, the superconducting coil 1 and the self-excited converter 2 are separated.

【0031】その後、超電導コイル1を切り離した状態
で、短絡スイッチ11を閉極し、自励式変換器2の運転
を再開してSVC運転を行なう。そして、超電導コイル
1が復帰した段階で、再び超電導コイル1と自励式変換
器2とを接続して通常運転を再開する。
After that, with the superconducting coil 1 disconnected, the short-circuit switch 11 is closed, the operation of the self-excited converter 2 is restarted, and the SVC operation is performed. Then, when the superconducting coil 1 is restored, the superconducting coil 1 and the self-excited converter 2 are connected again to resume normal operation.

【0032】次に、永久電流モードを用いた無効電力補
償について述べる。夜間等、系統電力が過剰な状況で超
電導コイル1の蓄積エネルギーが最大となり系統と有効
電力の授受を行なわない場合には、永久電流スイッチ8
を閉極し、直流遮断スイッチ10を開極することによ
り、永久電流モードに移行し、蓄積エネルギーを無損失
で長時間保持する。
Next, the reactive power compensation using the persistent current mode will be described. If the stored energy in the superconducting coil 1 is maximized and active power is not transferred to and from the grid in a situation where the grid power is excessive, such as at night, the permanent current switch 8
Is closed and the DC cutoff switch 10 is opened to shift to the permanent current mode, and the stored energy is retained for a long time without loss.

【0033】この時、短絡スイッチ11を閉極し、自励
式変換器2の運転を再開して、SVC運転を行なうこと
が可能となる。上述したように、本実施形態の自励式変
換器を用いた超電導コイルシステムは、超電導コイル1
と、変換器用変圧器4を介して入力される交流電力を直
流に変換し、多並列に接続された複数の単位変換器3か
らなり、超電導コイル1を励消磁する電流型の自励式変
換器2と、自励式変換器2の直流側出力端に設けられた
直流リアクトル5と、超電導コイル1に並列に接続さ
れ、超電導コイル1に蓄積されたエネルギーを減衰させ
ることなく保持するための永久電流スイッチ8からなる
超電導コイル短絡回路(永久電流回路)と、超電導コイ
ル1異常時に当該超電導コイル1に蓄積されたエネルギ
ーを吸収するための保護抵抗7と当該保護抵抗投入用の
スイッチ6とからなる超電導コイル短絡回路(保護抵抗
回路)と、自励式変換器2の直流側に並列に接続され、
自励式変換器2異常時に当該自励式変換器2に流れ込む
主回路電流をバイパスして自励式変換器2を保護するた
めの短絡スイッチ11からなる変換器短絡回路12と、
超電導コイル1および自励式変換器2からなる直流主回
路に設けられた直流遮断スイッチ10とから構成し、か
つ上記直流リアクトル5として、変換器短絡回路12を
負荷として自励式変換器2の無効電力制御運転を可能と
する直流リアクトルを選定するようにしたものである。
At this time, the short-circuit switch 11 is closed, the operation of the self-excited converter 2 is restarted, and the SVC operation can be performed. As described above, the superconducting coil system using the self-exciting converter of the present embodiment is the superconducting coil 1
And a current type self-excited converter that converts the AC power input via the transformer for converter 4 into a DC, and is composed of a plurality of unit converters 3 connected in multiple parallels to excite and demagnetize the superconducting coil 1. 2, a DC reactor 5 provided at the DC-side output end of the self-exciting converter 2, and a permanent current that is connected in parallel to the superconducting coil 1 and holds the energy stored in the superconducting coil 1 without attenuating it. A superconducting circuit including a superconducting coil short circuit (a permanent current circuit) including a switch 8, a protective resistor 7 for absorbing energy accumulated in the superconducting coil 1 when the superconducting coil 1 is abnormal, and a switch 6 for turning on the protective resistor. The coil short circuit (protection resistor circuit) and the DC side of the self-excited converter 2 are connected in parallel,
A converter short circuit 12 including a short circuit switch 11 for protecting the self-excited converter 2 by bypassing the main circuit current flowing into the self-excited converter 2 when the self-excited converter 2 is abnormal,
And a DC cutoff switch 10 provided in a DC main circuit composed of a superconducting coil 1 and a self-excited converter 2, and the reactive power of the self-excited converter 2 using the converter short circuit 12 as a load as the DC reactor 5. The DC reactor that enables controlled operation is selected.

【0034】従って、超電導コイル1が異常な場合、も
しくは無効電力制御のみを行なう場合に、超電導コイル
1を自励式変換器2から切り離し、自励式変換器2単独
でSVC(静止型無効電力補償装置)、もしくは高調波
補償用としてシステムを継続して運転することが可能と
なる。
Therefore, when the superconducting coil 1 is abnormal, or when only reactive power control is performed, the superconducting coil 1 is separated from the self-exciting converter 2, and the self-exciting converter 2 alone is used for SVC (static var compensator). ), Or the system can be continuously operated for harmonic compensation.

【0035】これにより、システム全体の運転効率が高
く、かつ信頼性の高い自励式変換器を用いた超電導コイ
ルシステムを実現することができる。 (第2の実施形態)図2は、本実施形態による電流型の
自励式変換器を用いた超電導コイルシステムの構成例を
示す回路構成図であり、図3と同一部分には同一符号を
付してその説明を省略し、ここでは異なる部分について
のみ述べる。
As a result, it is possible to realize a superconducting coil system using a self-exciting converter with high operating efficiency of the entire system and high reliability. (Second Embodiment) FIG. 2 is a circuit configuration diagram showing a configuration example of a superconducting coil system using a current type self-exciting converter according to the present embodiment, and the same parts as those in FIG. The description thereof will be omitted, and only different parts will be described here.

【0036】すなわち、本実施形態の自励式変換器を用
いた超電導コイルシステムは、図2に示すように、図3
における保護抵抗7と当該保護抵抗投入用のスイッチ6
とからなる超電導コイル短絡回路(保護抵抗回路)を省
略し、また自励式変換器として、複数の単位変換器3を
並列接続してなり、前記変換器用変圧器を介さずに入力
される交流電力を直流に変換し、超電導コイル1を励消
磁する電流型の自励式変換器2を備え、さらに自励式変
換器2を構成する各単位変換器3の交流側に交流側開閉
用スイッチ13をそれぞれ設けると共に、自励式変換器
2を構成する各単位変換器3の直流側に直流側開閉用ス
イッチ14をそれぞれ設け、さらにまた自励式変換器2
を構成する各単位変換器3を制御の切り替えにより(制
御ソフトの切り替えにより)任意の並列段数で制御可能
な制御装置15を備えた構成としている。
That is, as shown in FIG. 2, the superconducting coil system using the self-excited converter according to the present embodiment has the structure shown in FIG.
Protection resistor 7 and switch 6 for turning on the protection resistor
The superconducting coil short circuit (protection resistance circuit) consisting of is omitted, and a plurality of unit converters 3 are connected in parallel as a self-exciting converter, and AC power is input without passing through the converter transformer. Is provided with a current-type self-exciting converter 2 that excites and demagnetizes the superconducting coil 1. Further, an AC-side opening / closing switch 13 is provided on the AC side of each unit converter 3 that constitutes the self-exciting converter 2. In addition to the provision, the DC side opening / closing switch 14 is provided on the DC side of each unit converter 3 constituting the self-exciting converter 2, and further the self-exciting converter 2
Each of the unit converters 3 constituting the above is provided with a control device 15 capable of controlling the number of parallel stages by switching the control (by switching the control software).

【0037】次に、以上のように構成した本実施形態の
自励式変換器を用いた超電導コイルシステムの作用につ
いて説明する。まず、通常運転時には、直流遮断スイッ
チ10が閉極、保護抵抗投入用スイッチ6、および永久
電流スイッチ8が開極しており、電流は自励式変換器2
→直流遮断スイッチ10→超電導コイル1→自励式変換
器2のパスで流れる。
Next, the operation of the superconducting coil system using the self-excited converter of the present embodiment having the above-mentioned structure will be described. First, during normal operation, the DC cutoff switch 10 is closed, the protective resistance input switch 6 and the permanent current switch 8 are open, and the current is the self-excited converter 2.
→ DC cutoff switch 10 → Superconducting coil 1 → Self-excited converter 2

【0038】次に、このような状態から、いま例えば単
位変換器3が故障した場合には、永久電流スイッチ8を
閉極し、直流遮断スイッチ10を開極することにより、
超電導コイル1に蓄積されたエネルギーを、永久電流ス
イッチ8からなる超電導コイル短絡回路(永久電流回
路)にバイパスさせる。
Next, from such a state, if the unit converter 3 fails, for example, the permanent current switch 8 is closed and the DC cutoff switch 10 is opened.
The energy stored in the superconducting coil 1 is bypassed to the superconducting coil short circuit (permanent current circuit) including the permanent current switch 8.

【0039】次に、自励式変換器2の運転を停止し、故
障した単位変換器3の交流側および直流側の開閉スイッ
チ13および14を開極して、故障した単位変換器3を
切り離す。
Next, the operation of the self-exciting converter 2 is stopped, the open / close switches 13 and 14 on the AC side and the DC side of the failed unit converter 3 are opened, and the failed unit converter 3 is disconnected.

【0040】その後、制御装置15により制御ソフトを
切り替え、任意の並列段数の健全な単位変換器3による
運転を行なう。なお、上記において、保護抵抗7と当該
保護抵抗投入用のスイッチ6とからなる超電導コイル短
絡回路(保護抵抗回路)は、あえて省略する必要はな
い。
After that, the control software is switched by the control device 15, and operation is performed by the sound unit converter 3 having an arbitrary number of parallel stages. In the above, the superconducting coil short circuit (protection resistance circuit) including the protection resistance 7 and the switch 6 for turning on the protection resistance need not be omitted.

【0041】上述したように、本実施形態の自励式変換
器を用いた超電導コイルシステムは、超電導コイル1
と、複数の単位変換器3を並列接続してなり、変換器用
変圧器を介さずに入力される交流電力を直流に変換し、
超電導コイル1を励消磁する電流型の自励式変換器2
と、各自励式変換器2の直流側出力端にそれぞれ設けら
れた直流リアクトル5と、超電導コイル1に並列に接続
され、超電導コイル1に蓄積されたエネルギーを減衰さ
せることなく保持するための永久電流スイッチ8からな
る超電導コイル短絡回路(永久電流回路)と、超電導コ
イル1および自励式変換器2からなる直流主回路に設け
られた直流遮断スイッチ10と、自励式変換器2を構成
する各単位変換器3の交流側にそれぞれ設けられた交流
側開閉用スイッチ13と、自励式変換器2を構成する各
単位変換器3の直流側にそれぞれ設けられた直流側開閉
用スイッチ14とから構成したものである。
As described above, the superconducting coil system using the self-excited converter according to the present embodiment is the superconducting coil 1
And a plurality of unit converters 3 are connected in parallel, and convert the AC power input without going through the converter transformer to DC,
Current type self-exciting converter 2 for demagnetizing superconducting coil 1
And a DC reactor 5 provided at the DC output side of each self-excited converter 2, and a permanent current that is connected in parallel to the superconducting coil 1 and holds the energy stored in the superconducting coil 1 without attenuating it. A superconducting coil short circuit (persistent current circuit) composed of a switch 8, a DC cutoff switch 10 provided in a DC main circuit composed of a superconducting coil 1 and a self-excited converter 2, and unit conversions constituting the self-excited converter 2. AC side opening / closing switch 13 provided on the AC side of the converter 3, and a DC side opening / closing switch 14 provided on the DC side of each unit converter 3 constituting the self-exciting converter 2. Is.

【0042】従って、自励式変換器2を構成する単位変
換器3が故障した場合にも、故障した単位変換器3を切
り離して、残りの健全な単位変換器3により継続してシ
ステムの運転を行なうことが可能となる。これにより、
システム全体の運転効率が高く、かつ信頼性の高い自励
式変換器を用いた超電導コイルシステムを実現すること
ができる。
Therefore, even when the unit converter 3 constituting the self-excited converter 2 fails, the failed unit converter 3 is separated and the remaining healthy unit converter 3 continues the operation of the system. It becomes possible to do it. This allows
It is possible to realize a superconducting coil system using a self-excited converter with high operating efficiency of the entire system and high reliability.

【0043】[0043]

【発明の効果】以上説明したように、請求項1乃至請求
項4に対応する発明によれば、超電導コイルと、交流電
力を直流に変換し、超電導コイルを励消磁する電流型の
自励式変換器と、自励式変換器の直流側出力端に設けら
れた直流リアクトルと、超電導コイルに並列に接続さ
れ、投入用のスイッチを有する超電導コイル短絡回路
(超電導コイルに蓄積されたエネルギーを減衰させるこ
となく保持するための永久電流スイッチ、もしくは超電
導コイル異常時に当該超電導コイルに蓄積されたエネル
ギーを吸収するための保護抵抗と、当該保護抵抗投入用
のスイッチとから構成される)と、自励式変換器の直流
側に並列に接続され、投入用のスイッチを有する変換器
短絡回路(自励式変換器異常時に当該自励式変換器に流
れ込む主回路電流をバイパスして自励式変換器を保護す
るための短絡スイッチから構成される)と、超電導コイ
ルおよび自励式変換器からなる直流主回路に設けられた
直流遮断スイッチとを備え、かつ上記直流リアクトルと
して、変換器短絡回路を負荷として自励式変換器の無効
電力制御運転を可能とする直流リアクトルを選定するよ
うにしたので、超電導コイルが故障した場合、もしくは
無効電力および高調波の制御のみを行なう場合に、超電
導コイルを自励式変換器から切り離し、自励式変換器単
独でSVC(静止型無効電力補償装置)、もしくは高調
波補償用としてシステムを継続して運転することがで
き、もってシステム全体の運用効率が高く、かつ信頼性
の高い自励式変換器を用いた超電導コイルシステムが提
供できる。
As described above, according to the inventions corresponding to claims 1 to 4, the superconducting coil and the current type self-excited conversion for converting the alternating current power into the direct current and demagnetizing the superconducting coil. Device, a DC reactor installed at the DC output side of the self-exciting converter, and a superconducting coil short circuit that is connected in parallel with the superconducting coil and has a switch for closing (attenuating the energy stored in the superconducting coil. Permanent current switch for holding the same, or a protection resistor for absorbing the energy stored in the superconducting coil when the superconducting coil is abnormal, and a switch for turning on the protection resistor), and a self-exciting converter. The converter short-circuit connected in parallel to the DC side of the converter and equipped with a switch for closing (the main circuit current flowing into the self-excited converter when the self-excited converter fails) A short-circuit switch for protecting the self-excited converter by passing), and a DC cutoff switch provided in the DC main circuit consisting of the superconducting coil and the self-excited converter, and as the DC reactor, Since the DC reactor that enables the reactive power control operation of the self-excited converter with the converter short circuit as the load was selected, it is possible to control the reactive power and harmonics only when the superconducting coil fails. , The superconducting coil can be separated from the self-excited converter, and the self-excited converter alone can continue to operate the system for SVC (static var compensator) or for harmonic compensation, thus the operating efficiency of the entire system. It is possible to provide a superconducting coil system using a self-exciting converter having high reliability and high reliability.

【0044】一方、請求項5乃至請求項9に対応する発
明によれば、超電導コイルと、複数の単位変換器を並列
接続してなり、変換器用変圧器を介さずに入力される交
流電力を直流に変換し、超電導コイルを励消磁する電流
型の自励式変換器と、各単位変換器の直流側出力端にそ
れぞれ設けられた直流リアクトルと、自励式変換器を構
成する各単位変換器の交流側にそれぞれ設けられた交流
側開閉用スイッチと、自励式変換器を構成する各単位変
換器の直流側にそれぞれ設けられた直流側開閉用スイッ
チと、自励式変換器を構成する各単位変換器を制御の切
り替えにより任意の並列段数で制御可能な制御手段とを
備え、さらに必要に応じて、各単位変換器の直流側出力
端にそれぞれ設けられた直流リアクトルと、超電導コイ
ルに並列に接続され、投入用のスイッチを有する超電導
コイル短絡回路と、自励式変換器の直流側に並列に接続
され、投入用のスイッチを有する変換器短絡回路と、超
電導コイルおよび自励式変換器からなる直流主回路に設
けられた直流遮断スイッチとを備えるようにしたので、
自励式変換器を構成する単位変換器が故障した場合に、
故障した単位変換器を切り離して、残りの健全な単位変
換器でシステムを継続して運転することができ、もって
システム全体の運用効率が高く、かつ信頼性の高い自励
式変換器を用いた超電導コイルシステムが提供できる。
On the other hand, according to the inventions corresponding to claims 5 to 9, the superconducting coil and a plurality of unit converters are connected in parallel, and the AC power input without passing through the converter transformer is used. A current type self-exciting converter that converts to DC and excites the superconducting coil, a DC reactor that is provided at the DC side output end of each unit converter, and a unit converter that constitutes the self-exciting converter. AC side opening / closing switches respectively provided on the AC side, DC side opening / closing switches respectively provided on the DC side of each unit converter that constitutes the self-excited converter, and each unit conversion that constitutes the self-excited converter Equipped with a control means that can control the converter at any number of parallel stages by switching the control, and if necessary, connect it in parallel to the DC reactor provided at the DC output side of each unit converter and the superconducting coil. It , A DC main circuit consisting of a superconducting coil short circuit having a closing switch and a converter short circuit connected in parallel to the DC side of the self-exciting converter and having a closing switch and a superconducting coil and a self-exciting converter Since it is equipped with a DC cutoff switch provided in
If the unit converter that composes the self-excited converter fails,
The faulty unit converter can be separated, and the remaining healthy unit converter can continue to operate the system. Therefore, the operation efficiency of the entire system is high and the superconductivity using the self-excited converter is highly reliable. A coil system can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による自励式変換器を用いた超電導コイ
ルシステムの第1の実施形態を示す回路構成図。
FIG. 1 is a circuit configuration diagram showing a first embodiment of a superconducting coil system using a self-excited converter according to the present invention.

【図2】本発明による自励式変換器を用いた超電導コイ
ルシステムの第2の実施形態を示す回路構成図。
FIG. 2 is a circuit configuration diagram showing a second embodiment of a superconducting coil system using a self-excited converter according to the present invention.

【図3】従来の自励式変換器を用いた超電導コイルシス
テムを示す主回路構成図。
FIG. 3 is a main circuit configuration diagram showing a conventional superconducting coil system using a self-excited converter.

【符号の説明】[Explanation of symbols]

1…超電導コイル、 2…変換器、 3…単位変換器、 4…変換器用変圧器、 5…直流リアクトル、 6…保護抵抗投入用スイッチ、 7…保護抵抗回路、 8…永久電流スイッチ、 10…直流遮断スイッチ、 11…短絡スイッチ、 12…変換器短絡回路、 13…交流側開閉スイッチ、 14…直流側開閉スイッチ、 15…制御装置。 DESCRIPTION OF SYMBOLS 1 ... Superconducting coil, 2 ... Converter, 3 ... Unit converter, 4 ... Converter transformer, 5 ... DC reactor, 6 ... Protection resistance input switch, 7 ... Protection resistance circuit, 8 ... Permanent current switch, 10 ... DC cutoff switch, 11 ... Short circuit switch, 12 ... Converter short circuit, 13 ... AC side opening / closing switch, 14 ... DC side opening / closing switch, 15 ... Control device.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 超電導コイルと、 交流電力を直流に変換し、前記超電導コイルを励消磁す
る電流型の自励式変換器と、 前記自励式変換器の直流側出力端に設けられた直流リア
クトルと、 前記超電導コイルに並列に接続され、投入用のスイッチ
を有する超電導コイル短絡回路と、 前記自励式変換器の直流側に並列に接続され、投入用の
スイッチを有する変換器短絡回路と、 前記超電導コイルおよび自励式変換器からなる直流主回
路に設けられた直流遮断スイッチとを備え、 かつ前記直流リアクトルとして、前記変換器短絡回路を
負荷として自励式変換器の無効電力制御運転を可能とす
る直流リアクトルを選定するようにしたことを特徴とす
る自励式変換器を用いた超電導コイルシステム。
1. A superconducting coil, a current type self-exciting converter for converting AC power into direct current to excite the superconducting coil, and a DC reactor provided at a DC side output end of the self-exciting converter. A superconducting coil short circuit connected in parallel to the superconducting coil and having a closing switch; and a converter short circuit having a closing switch connected in parallel to the DC side of the self-exciting converter; A direct current cut-off switch provided in a direct current main circuit consisting of a coil and a self-excited converter, and a direct current enabling a reactive power control operation of the self-excited converter with the converter short circuit as a load as the DC reactor. A superconducting coil system using a self-excited converter characterized in that a reactor is selected.
【請求項2】 前記超電導コイル短絡回路は、超電導コ
イルに蓄積されたエネルギーを減衰させることなく保持
するための永久電流スイッチから構成されることを特徴
とする請求項1に記載の自励式変換器を用いた超電導コ
イルシステム。
2. The self-excited converter according to claim 1, wherein the superconducting coil short circuit is composed of a persistent current switch for holding the energy stored in the superconducting coil without attenuating it. Superconducting coil system using.
【請求項3】 前記超電導コイル短絡回路は、超電導コ
イル異常時に当該超電導コイルに蓄積されたエネルギー
を吸収するための保護抵抗と、当該保護抵抗投入用のス
イッチとから構成されることを特徴とする請求項1に記
載の自励式変換器を用いた超電導コイルシステム。
3. The superconducting coil short circuit comprises a protective resistor for absorbing energy accumulated in the superconducting coil when the superconducting coil is abnormal, and a switch for turning on the protective resistor. A superconducting coil system using the self-excited converter according to claim 1.
【請求項4】 前記変換器短絡回路は、自励式変換器異
常時に当該自励式変換器に流れ込む主回路電流をバイパ
スして自励式変換器を保護するための短絡スイッチから
構成されることを特徴とする請求項1に記載の自励式変
換器を用いた超電導コイルシステム。
4. The converter short circuit comprises a short circuit switch for protecting the self-excited converter by bypassing the main circuit current flowing into the self-excited converter when the self-excited converter is abnormal. A superconducting coil system using the self-excited converter according to claim 1.
【請求項5】 超電導コイルと、 複数の単位変換器を並列接続してなり、変換器用変圧器
を介さずに入力される交流電力を直流に変換し、前記超
電導コイルを励消磁する電流型の自励式変換器と、 前記各単位変換器の直流側出力端にそれぞれ設けられた
直流リアクトルと、 前記自励式変換器を構成する各単位変換器の交流側にそ
れぞれ設けられた交流側開閉用スイッチと、 前記自励式変換器を構成する各単位変換器の直流側にそ
れぞれ設けられた直流側開閉用スイッチと、 前記自励式変換器を構成する各単位変換器を制御の切り
替えにより任意の並列段数で制御可能な制御手段と、 を備えて成ることを特徴とする自励式変換器を用いた超
電導コイルシステム。
5. A current type device comprising a superconducting coil and a plurality of unit converters connected in parallel, which converts AC power input without passing through a converter transformer into direct current and excites and demagnetizes the superconducting coil. A self-excited converter, a DC reactor provided at the DC side output end of each unit converter, and an AC side opening / closing switch provided on the AC side of each unit converter that constitutes the self-excited converter. , A DC side opening / closing switch respectively provided on the DC side of each unit converter constituting the self-excited converter, and an arbitrary number of parallel stages by switching control of each unit converter constituting the self-excited converter A superconducting coil system using a self-exciting converter, characterized by comprising:
【請求項6】 前記請求項5に記載の自励式変換器を用
いた超電導コイルシステムにおいて、 前記超電導コイルに並列に接続され、投入用のスイッチ
を有する超電導コイル短絡回路と、前記自励式変換器の
直流側に並列に接続され、投入用のスイッチを有する変
換器短絡回路と、前記超電導コイルおよび自励式変換器
からなる直流主回路に設けられた直流遮断スイッチとを
付加して成ることを特徴とする自励式変換器を用いた超
電導コイルシステム。
6. A superconducting coil system using the self-exciting converter according to claim 5, wherein the superconducting coil short-circuit is connected in parallel to the superconducting coil and has a closing switch, and the self-exciting converter. Is connected in parallel to the DC side of the converter and has a converter short circuit having a closing switch and a DC cutoff switch provided in the DC main circuit composed of the superconducting coil and the self-exciting converter. A superconducting coil system using a self-excited converter.
【請求項7】 前記超電導コイル短絡回路は、超電導コ
イルに蓄積されたエネルギーを減衰させることなく保持
するための永久電流スイッチから構成されることを特徴
とする請求項6に記載の自励式変換器を用いた超電導コ
イルシステム。
7. The self-excited converter according to claim 6, wherein the superconducting coil short circuit is composed of a persistent current switch for holding the energy stored in the superconducting coil without attenuating it. Superconducting coil system using.
【請求項8】 前記超電導コイル短絡回路は、超電導コ
イル異常時に当該超電導コイルに蓄積されたエネルギー
を吸収するための保護抵抗と、当該保護抵抗投入用のス
イッチとから構成されることを特徴とする請求項6に記
載の自励式変換器を用いた超電導コイルシステム。
8. The superconducting coil short circuit comprises a protective resistor for absorbing energy accumulated in the superconducting coil when the superconducting coil is abnormal, and a switch for turning on the protective resistor. A superconducting coil system using the self-excited converter according to claim 6.
【請求項9】 前記変換器短絡回路は、自励式変換器異
常時に当該自励式変換器に流れ込む主回路電流をバイパ
スして自励式変換器を保護するための短絡スイッチから
構成されることを特徴とする請求項6に記載の自励式変
換器を用いた超電導コイルシステム。
9. The converter short circuit comprises a short circuit switch for protecting the self-excited converter by bypassing the main circuit current flowing into the self-excited converter when the self-excited converter is abnormal. A superconducting coil system using the self-excited converter according to claim 6.
JP11384996A 1996-05-08 1996-05-08 Superconducting coil system using self-excited transducer. Expired - Fee Related JP3724876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11384996A JP3724876B2 (en) 1996-05-08 1996-05-08 Superconducting coil system using self-excited transducer.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11384996A JP3724876B2 (en) 1996-05-08 1996-05-08 Superconducting coil system using self-excited transducer.

Publications (2)

Publication Number Publication Date
JPH09308139A true JPH09308139A (en) 1997-11-28
JP3724876B2 JP3724876B2 (en) 2005-12-07

Family

ID=14622611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11384996A Expired - Fee Related JP3724876B2 (en) 1996-05-08 1996-05-08 Superconducting coil system using self-excited transducer.

Country Status (1)

Country Link
JP (1) JP3724876B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007060833A (en) * 2005-08-25 2007-03-08 Toshiba Mitsubishi-Electric Industrial System Corp Power converter for superconducting coil

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007060833A (en) * 2005-08-25 2007-03-08 Toshiba Mitsubishi-Electric Industrial System Corp Power converter for superconducting coil
JP4721825B2 (en) * 2005-08-25 2011-07-13 東芝三菱電機産業システム株式会社 Power converter for superconducting coils

Also Published As

Publication number Publication date
JP3724876B2 (en) 2005-12-07

Similar Documents

Publication Publication Date Title
Kawabata et al. Parallel operation of voltage source inverters
AU2009342065B2 (en) A modular voltage source converter
CA2436163C (en) Inverter drive system
KR101030048B1 (en) Power converter circuitry
US9553441B2 (en) Method and apparatus for protecting an intermediate circuit capacitor in a power converter
US6075349A (en) Compensation device and power transmission system using a compensation device
JPH04325832A (en) Multifunction power converting system
CN102939714A (en) Voltage inverter and method of controlling such an inverter
JPH0156621B2 (en)
JPH0919052A (en) Protective device of converter
CA2519394C (en) Power converter
JP2997782B1 (en) Power supply equipment by quality
KR20190116474A (en) Power distribution system
RU2577031C1 (en) Direct current power source for power unit
KR20210051491A (en) A sts(static transfer switch) and an ups(uninterruptible power supply) module with the sts
JP3724876B2 (en) Superconducting coil system using self-excited transducer.
RU2122273C1 (en) Device for balancing phase-failure conditions
WO2000013290A1 (en) Parallel operation device
Sang et al. Fault tolerant design for cascaded H-bridge multi-level converter based electronic power transformer
WO2024201595A1 (en) Power conversion device
JP2001078470A (en) Ac-dc converter, apparatus for controlling the same and dc power transmission system
JPH11299103A (en) System interlinkage device
JP2023141037A (en) Power conversion device
JPH07245996A (en) Method of controlling variable-speed generating system
JP2003061241A (en) Protector of superconducting power storage system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050920

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080930

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees