WO2000013290A1 - Parallel operation device - Google Patents

Parallel operation device Download PDF

Info

Publication number
WO2000013290A1
WO2000013290A1 PCT/JP1999/004695 JP9904695W WO0013290A1 WO 2000013290 A1 WO2000013290 A1 WO 2000013290A1 JP 9904695 W JP9904695 W JP 9904695W WO 0013290 A1 WO0013290 A1 WO 0013290A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
switch
output
parallel operation
voltage
Prior art date
Application number
PCT/JP1999/004695
Other languages
French (fr)
Japanese (ja)
Inventor
Nariisa Imoto
Original Assignee
Nariisa Imoto
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nariisa Imoto filed Critical Nariisa Imoto
Priority to AU54459/99A priority Critical patent/AU5445999A/en
Publication of WO2000013290A1 publication Critical patent/WO2000013290A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/6871Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors the output circuit comprising more than one controlled field-effect transistor
    • H03K17/6874Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors the output circuit comprising more than one controlled field-effect transistor in a symmetrical configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers

Definitions

  • the present invention provides a power failure countermeasure device or a cogeneration system that can continue to supply power to a load without a momentary power failure even when a power failure such as a power failure due to a natural disaster or man-made disaster occurs by parallel operation of a plurality of power supplies.
  • Wind power generation, solar power generation, engine power generation, in-house power generation and other various power generation equipment hereinafter abbreviated as special power supply
  • battery power supply inverter power supply
  • UPS uninterruptible power supply
  • the present invention relates to a high-efficiency parallel operation device or an economical parallel operation device using an arbitrary combination of a plurality of power sources, or a parallel operation device for increasing the electric capacity.
  • UPS Uninterruptible Power Supply
  • CVCF Volt Control Function
  • the mainstream of the conventional UPS technology system is the “always-inverter power supply system”, but when the UPS is configured according to the present invention, it becomes the “new always-on commercial power supply system”, and the power consumption of the main unit during operation, reactive power, Power supply harmonic current, battery utilization, electromagnetic interference, noise, etc. can be remarkably improved, and low-cost, high-efficiency, high-performance UPS that switches to sine wave voltage output, power outage, over voltage, and low voltage without interruption. It is possible. Disclosure of the invention
  • the power supply having the higher selected voltage becomes the main power and is consumed preferentially, and the burden on other power supplies (standby power supply and backup power supply) is reduced.
  • economical operation of multiple power supply parallel operation equipment or combined power supply equipment that enables continuous power supply by a standby power supply without any momentary power outage and enables non-stop operation of important equipment
  • a common load (hereinafter abbreviated as a load) is provided through an AC switch (hereinafter, referred to as a bidirectional switch) capable of controlling a plurality of power supplies in a conduction direction. ).
  • each power supply can provide a diode-OR of a DC voltage in the positive region and the negative region, respectively.
  • Circuit diode OR circuit
  • the two-way switch connected to the main power supply is normally turned on (conducting state) in both directions, and all other power supplies are synchronized with the compressive polarity or current polarity of the main power supply. Controls the conduction direction of the two-way switch, and if an abnormality occurs in the main power supply, turns off the conduction control of the two-way switch connected to the main power supply (non-conduction state) The same effect can be obtained even if.
  • the two-way switch connected to the abnormal power supply By setting the conduction control to the 0FF state, the abnormal power supply can be cut off from the parallel operation and the parallel operation device can be protected.
  • the power supply having the highest voltage is used as the main power supply, and the main power supply is connected to the load only through the protection switch without passing through the bidirectional switch. All power sources are connected to a load through a bidirectional switch.
  • each power supply is normally controlled by closing the protection switch and controlling the conduction direction of each bidirectional switch in synchronization with the voltage polarity or current polarity of the selected main power supply.
  • the main power having a high voltage is preferentially supplied to the load, and the same effect as the first invention can be obtained when the output side of the main power is disconnected other than a short circuit or equivalent failure.
  • a parallel operation device is the parallel operation device according to the first aspect of the invention, in which a voltage regulator is incorporated between each power supply and each two-way switch as needed.
  • the parallel operation device is characterized in that a plurality of batteries charged by the main power supply or a storage device such as an electric double layer capacitor or a general capacitor (hereinafter referred to as a capacitor) is replaced by an arbitrary number of capacitors.
  • a back-up power supply is configured through a switch circuit, an inverter circuit for polarity reversal, and an AC filter configured so that they can be connected in series or in parallel in any combination, and the main power supply and the back-up power supply are respectively connected to two. It is connected to a load through a directional switch.
  • a function generating circuit can be configured by a combination of a plurality of capacitors and a series-parallel switch circuit, and a sine wave voltage having a lower voltage than the main power supply can be efficiently generated.
  • the output voltage is AC
  • the inverter circuit for polarity reversal is unnecessary.
  • the battery is charged through the charging circuit while consuming the main power preferentially. If the main power is abnormal, the same effect as in the first invention can be obtained because the power supply to the load is backed up without any instantaneous interruption.
  • the number of dragons is n, the number of battery combinations is two.
  • a street can be generated voltage of 2 [pi as the control of the series-parallel sweep rate Tutsi circuit.
  • the parallel operation device is characterized in that the inverter (DC-AC converter) power supply and the main power supply, which are charged by the main power supply, are built-in through a bidirectional switch. It is connected to a load.
  • a sine wave can be generated by PWM (Pulse Width Modulation) control or PAM (Pulse Amplitude Modulation) control of the inverter, and the same effect as the fourth invention can be obtained.
  • PWM Pulse Width Modulation
  • PAM Pulse Amplitude Modulation
  • the parallel operation device is such that a backup power supply for generating a predetermined voltage by a battery is connected to the load through a two-way switch, and the main power supply is connected to the load through the overload protection device and the two-way switch.
  • an overvoltage protection device such as a surge absorber connected between the output side of the overload protection device and the main power supply.
  • FIG. 1 is a main electric circuit block diagram and an explanatory diagram of a preferred parallel operation device according to the first invention.
  • FIG. 2 is a block diagram of a main electric circuit of a parallel operation apparatus showing another embodiment according to the first invention.
  • FIG. 3 is a main electric circuit block diagram of a preferred parallel operation device according to the second invention.
  • FIG. 4 is a block diagram of a main electric circuit of a parallel operation device showing another embodiment according to the first invention.
  • Fig. 5 shows the main electric circuit of the preferred parallel operation system according to the fourth invention.
  • FIG. 6 is a block diagram of a main electric circuit of a parallel operation device showing another embodiment according to the fourth invention.
  • FIG. 7 is a voltage waveform diagram of an embodiment according to the fourth invention.
  • FIG. 8 is a main electric circuit block diagram of a preferred parallel operation device according to the fifth invention.
  • FIG. 9- (a) is a block diagram of a main electric circuit of a preferred parallel operation device according to the third invention.
  • FIG. 9- (b) is a main electric circuit block diagram of a parallel operation device showing another embodiment according to the third invention.
  • Fig. 9-(c) is a block diagram of a main electric circuit of a preferred parallel operation device according to the sixth invention.
  • FIG. 1 (a) is a block diagram of a main circuit of a preferred parallel operation device according to the first invention, which is the basis of the entire present invention.
  • the FET switch SW1 in order to operate the main power supply e1 and the standby power supply e2 in parallel so that the higher voltage power supply e1 is consumed preferentially, the FET switch SW1 is used. And the respective source terminals S1 and S2 of the FET switch SW2 are connected to each other, and the bidirectional switch 1 having both the drain terminals D1 and D2 of SW1 and SW2 at both ends is connected to the input terminal of the power supply e1. Connect between the output terminals, and similarly connect the drain terminals D 3 and D4 of the bidirectional switch 2 between the input terminal and the output terminal of the spare pack e2, and connect both ends of the main power supply e1. Detection voltage input terminal of control unit 3
  • Gate terminals G 1, G 2, G 3, and G 4 for controlling the conduction direction of the bidirectional switches 1 and 2, respectively, are connected to the control output terminals of the control unit 3.
  • the power supplies el and e2 have voltage waveforms like e (t), respectively, and the gate G1 and the gate G3 while the voltage of el (t) is positive. Is in the active state, gates G2 and G4 are inactive, switch SW1 and switch SW3 are closed, and switch SW2 and switch SW4 are open.
  • the equivalent circuit in this case is shown in Fig. 1 (b).
  • the zero point of the main power supply compress el (t) is set as the first reference point
  • the reference point having the same cycle as the first reference point generated by the control unit 3 is set as the second reference point.
  • Switches SW 1, 2, 3, and 4 are switched by the signal of the logical sum of the first reference point and the second reference point. Therefore, when the first reference point does not come out due to the failure of the main power supply, the drive of the switches SW1, 2, 3, and 4 is automatically continued by the signal of the second reference point.
  • the generation of the second reference point can be realized by an analog circuit or a digital circuit, or by a computer and a software.
  • the bidirectional switch can be configured by a semiconductor switch such as a triac, an IGBT, a thyristor, a transistor, a SIT, and a GTO in addition to the FET semiconductor switch, and an embodiment thereof is shown in FIG. .
  • a semiconductor switch such as a triac, an IGBT, a thyristor, a transistor, a SIT, and a GTO in addition to the FET semiconductor switch, and an embodiment thereof is shown in FIG. .
  • FIG. 2 (a) the embodiment of FIG. 1 (a) is represented by a contact switch and a diode.
  • the contact switches SW1 and SW3 are switched on.
  • Fig. 2 (b) when three-phase power supplies are operated in parallel, two-way switches are connected to each phase, and each phase of the main power supply is connected. Each bidirectional switch is controlled in synchronization with the voltage or current of the switch.
  • FIG. 3 is a main electric circuit block diagram of a preferred parallel operation device according to the second invention.
  • Fig. 3 (a) connect the main power supply el to the protection switch 17 between the input terminal and the output terminal, and output the backup power supply e2 through the bidirectional switch 2.
  • the rain end of the main power supply e1 to the detection voltage input terminal of the control unit 3, and control the gate terminals G3 and G4 that control the conduction direction of the bidirectional switch 2.
  • the compress detector CT is installed on the main power supply line, and the output of the current detector CT is connected to the detection current input terminal of control section 3.
  • FIG. 9 (a) is a block diagram of a main electric circuit of a preferred parallel operation device according to the third invention. First block diagram of main electric circuit block diagram according to first invention
  • FIG. 9 (a) a series transformer Tr is inserted as a voltage regulator 13 between the standby power source e2 and the bidirectional switch 2. Since the voltage e2 can be set to e2-e5 by the series transformer Tr, and the voltage el> the voltage e2, the same effect as the first invention can be obtained.
  • FIG. 9 (b) of the first invention as shown in FIG. 9 (b), as shown in FIG. 9 (b), a series transformer is provided as a voltage regulator 13 between the standby power source e1 and the bidirectional switch 1.
  • the voltage e1 can be changed to e2 + e5 by the series transformer Tr, and the voltage e1> the voltage e2, so that the same effect as the first invention can be obtained. .
  • the six secondary windings of the transformer Tr1 with the primary winding connected to the main power supply e1 are connected to the six charging circuits 7, respectively, and the outputs of the charging circuit 7 Are connected to the capacitors C1 to C6, the capacitors C1 to C6 are connected to the input side of the switch circuit 5, the output of the switch circuit 5 is connected to the input side of the inverter circuit 4, Connect the output side of the inverter circuit 4 for polarity reversal to the input side of the filter F, connect the control output of the controller 9 to the gate terminal of each control switch, and control the el and e2 voltage detection signals.
  • Main power supply e1 and backup power supply e2 are the same as Fig. 1 of the first invention-(a) In parallel.
  • a main power supply e1 is connected through a charging circuit 7 to both ends of a series circuit of capacitors C1 to C6, and each of the capacitors C1 to C6 is connected.
  • the output of the switch circuit 6 can be varied in steps of VI from 0 to 6 XV 1 when the voltages V2 to V6 are all equal to VI, and can generate a sine wave with a resolution of 16 Can be.
  • FIG. 7 shows the voltage waveforms of the output e3 of the function generating circuit of the present invention and the output e2 of the filter F. Also, by installing three backup power supplies 15 and controlling the phase of each output voltage, it is possible to handle three-phase power supplies.
  • FIG. 8 is a main electric circuit block diagram of a preferred parallel operation device according to the fifth invention.
  • Fig. 8 As shown in (a), the main power supply e1 is connected to the input side of the charger C and the inverter circuit 12 through the rectifier circuit 10 and the charging circuit 11 and the inverter circuit 12 is connected. The output side is connected to the input side of the filter F, the control output of the control section 18 is connected to the charging circuit 11 and each switch control terminal of the inverter 12 and the voltage detection signals of el and e 2 are connected. Connects to the detection signal input terminal of the control unit 18 and has a built-in backup power supply with the output voltage of the filter F as e2.
  • FIG. 9 (c) is a block diagram of a main circuit of a preferred parallel operation device according to the sixth invention. Fig. 9—As shown in (c), the output e2 of the backup power supply 15 that generates a predetermined voltage by the capacitor is connected to the bidirectional switch 2.
  • An overvoltage protection device 14 such as a surge absorber is connected between the power supply el and the power supply el.
  • the overload protection device 16 When the overload protection device 16 performs the protection operation due to the operation of the overvoltage protection device 14 when an overvoltage occurs and the main power supply e1 is cut off, the power is supplied instantaneously by the backup power supply 15 to the first invention. This has the same effect as the first embodiment.
  • a switch that is opened due to an overcurrent such as a fuse, a thermal switch, a fuse breaker, or an earth leakage breaker is preferable.
  • the same effects are exhibited not only for single-phase power supply but also for single-phase three-wire power supply, three-phase power supply, three-phase four-wire power supply, multi-phase power supply, and DC power supply.
  • the alarm signal can be sent to an external device and an alarm signal can be sent to an external device, or data can be output to monitor the charge status of the battery, such as charge, voltage, current, and temperature. Can be remotely controlled.
  • the performance of each control switch can be improved by the parallel operation of the semiconductor switch and the contact switch.
  • reference numerals 1 and 2 in the figure are switches capable of two-way control or ⁇ NZ ⁇ FF control composed of a semiconductor switch or a contact switch, and 3, 9, and 18 are hardware.
  • An arithmetic and control device consisting of one or software
  • L is an electric load
  • 4, 5, and 6 are switch circuits consisting of semiconductor switches or contact switches
  • 7 is a rectifier or rectifier circuit, or voltage and current regulation.
  • 1 1 is a chopper circuit for voltage adjustment
  • 1 2 is an inverter composed of semiconductor switches such as transistors, IGBTs, SITs, thyristors, and GT 0.
  • 13 are various voltage regulators or stabilizing power supplies such as voltage conversion method using transformer, thyristor phase control method, switching method, inverter method, etc.
  • 14 is surge voltage absorption. Element or overvoltage protection device.
  • the present invention can reduce the electric energy consumption by 20 to 28% compared to the conventional system. Compared to the conventional method, there is much less loss, and all the loss is changed to heat. Therefore, it is possible to save only the difference in efficiency for cooling-related items. Battery use is also reduced.

Abstract

A parallel operation device, wherein, in order for a higher-voltage power source (e1) to be consumed preferentially in parallel-operating the main power source (e1) and an auxiliary power source (e2), respective source terminals (S1) and (S2) of an FET switch (SW1) and an FET switch (SW2) are interconnected, drain terminals (D3) and (D4) of a two-way switch (2) using as both ends thereof respective drain terminals (D1) and (D2) of SW1 and SW2 are connected between the input terminal and the output terminal of the auxiliary power source (e2), the both ends of the main power source (e1) are connected to a detection voltage input terminal of a control unit (3), and gate terminals (G1, G2, G3, G4) which control conduction directions of two-way switches (1, 2) are respectively connected to the control output terminal of the control unit (3).

Description

明 細 書 並列運転装置 技術分野  Description Parallel operation equipment Technical field
本発明は、 複数個の電源の並列運 ¾によって、 天災や人災による電源故 障等の電源障害発生時にも瞬時停電もなしに負荷への給電が続行できる電 源障害対策装置またはコージ ネ発電、 風力発電、 太陽電池発電、 ェンジ ン発電、 自家発電他の各種発電装置 (以後特殊電源装置と略称する) 、 バ ッテリ一電源、 インバ一タ電源、 U P S (無停電電源装置) 、 商用電源他 の複数電源の任意の組合せによる高効率並列運転装置または経済的並列運 転装置または電気容量の増大ゃバックアツプ用バッチリ一の長寿命化を目 的とする並列運転装置に関する。 背景技術  The present invention provides a power failure countermeasure device or a cogeneration system that can continue to supply power to a load without a momentary power failure even when a power failure such as a power failure due to a natural disaster or man-made disaster occurs by parallel operation of a plurality of power supplies. Wind power generation, solar power generation, engine power generation, in-house power generation and other various power generation equipment (hereinafter abbreviated as special power supply), battery power supply, inverter power supply, UPS (uninterruptible power supply), commercial power supply, etc. The present invention relates to a high-efficiency parallel operation device or an economical parallel operation device using an arbitrary combination of a plurality of power sources, or a parallel operation device for increasing the electric capacity. Background art
エレク トロニクス製品の トラブルの外的要因の一つとして電気の乱れが ある。 こう した電源の トラブルから完全にガー ドする装置が、 電源障害対 策装置としての無停電電源装置であり、 通常 U P Sと呼ばれている。 U P Sは Uniterruptible Power Systemの頭文字をとつたもので、 以前は C V C F電源装置と呼ばれ、 銀行などのオンラインシステムのような百キ Π Λトァン へ 'ァ以上の大容量のものが主流であった。 近年、 コンピュータのダウンサイ ジング化ゃネッ トワークによる分散システム化など、 その環境が急速に変 化し、 これに呼応する形で U P Sもコンピュータと同様容量のダウンサイ ジング化が進み、 特定企業から一般企業へと浸透しつつある。  One of the external causes of problems with electronics products is the disturbance of electricity. A device that completely guards against such power supply problems is an uninterruptible power supply as a power failure countermeasure, and is usually called a UPS. UPS is an acronym for Uniterruptible Power System, and was formerly called CVCF power supply. . In recent years, the environment has been rapidly changing, such as the downsizing of computers and the decentralized system using networks, and in response, UPS has been downsizing in the same way as computers, and from specific companies to general companies. Is infiltrating.
商用電力系統に発生する異常現象、 例えば落奮などによる瞬時低電圧と 瞬時停電、 災害や人的ミスによる停電、 周辺の負荷変動や電源事情による  Abnormal phenomena that occur in the commercial power system, such as instantaneous low voltage and instantaneous power outage due to falling down, power outage due to disaster or human error, fluctuation of peripheral load, and power supply situation
差替え用紙 (規則 26) 電圧変動、 ノィズなどさまざまな電源障害に対応する能力を有しており、 高度情報化社会では、 必要不可欠なものとなってきている。 Replacement form (Rule 26) It has the ability to cope with various power failures such as voltage fluctuations and noise, and is becoming essential in the advanced information society.
従来の U P Sの技術方式の主流は 「常時インバ一タ給電方式」 であるが、 本発明により U P Sを構成した場合は 「新常時商用給電方式」 となり、 運 転中の本体消費電力、 無効電力、 電源高調波電流、 バッテリーの利用率、 電磁障害、 騒音等を著しく改善でき、 正弦波電圧出力 , 停電 · 過電圧 · 低 電圧に無瞬断で切替わる低コス トで髙効率 · 高性能な U P Sが可能である。 発明の開示  The mainstream of the conventional UPS technology system is the “always-inverter power supply system”, but when the UPS is configured according to the present invention, it becomes the “new always-on commercial power supply system”, and the power consumption of the main unit during operation, reactive power, Power supply harmonic current, battery utilization, electromagnetic interference, noise, etc. can be remarkably improved, and low-cost, high-efficiency, high-performance UPS that switches to sine wave voltage output, power outage, over voltage, and low voltage without interruption. It is possible. Disclosure of the invention
本発明は、 正常時は選択された電圧の高い方の電源がメインとなって優 先的に消費されその他の電源 (予備電源やバックアップ電源) の負担を鞋 く し、 メインの電源が天災または人災により故障またはパワーダウンした ときには、 瞬時停電もなしに予備電源による給電を続行して重要設備のノ ンス トツプ運転を可能にする複数電源の並列運転装置または複合電源設備 を経済的に運 ¾するための複数電源の並列運転装置を提供しより多方面に 経済的効果をもたらす。  According to the present invention, during normal operation, the power supply having the higher selected voltage becomes the main power and is consumed preferentially, and the burden on other power supplies (standby power supply and backup power supply) is reduced. In the event of failure or power down due to man-made disaster, economical operation of multiple power supply parallel operation equipment or combined power supply equipment that enables continuous power supply by a standby power supply without any momentary power outage and enables non-stop operation of important equipment To provide a parallel operation device with multiple power supplies for the purpose of providing more economic benefits.
第 1発明に係わる並列運 ¾装置は、 複数個の電源を導通方向の制御が可 能な交流スィッチ (以後、 2方向性スィ ッチと称する) を通してそれぞれ 共通の負荷 (以後、 負荷と略称する) に接続して成るものである。  In the parallel operation device according to the first invention, a common load (hereinafter abbreviated as a load) is provided through an AC switch (hereinafter, referred to as a bidirectional switch) capable of controlling a plurality of power supplies in a conduction direction. ).
かかる構成においては、 メイン電源の電圧極性または電流極性に同期し て各 2方向性スィツチの導通方向を制御することによって、 各 ¾源は正の 領域と負の領域においてそれぞれ直流電圧のダイオードオア一回路 (ダイ オード論理和回路) による並列運転状態となり、 電圧の高い電源が優先的 に負荷に供給されて消費される。 例えば、 バッテリ内臓の予備電源電圧を メイン電源の電圧より小さくしておけば常にメイ ン電源の電圧が負荷に加 わり、 通常 (メイ ン電源が正常な時) はバッテリーは消費されない。 メイ  In such a configuration, by controlling the conduction direction of each bidirectional switch in synchronization with the voltage polarity or the current polarity of the main power supply, each power supply can provide a diode-OR of a DC voltage in the positive region and the negative region, respectively. Circuit (diode OR circuit) operates in parallel, and high-voltage power is preferentially supplied to the load and consumed. For example, if the backup power supply voltage inside the battery is set lower than the main power supply voltage, the main power supply voltage will always be applied to the load, and the battery will not be consumed normally (when the main power supply is normal). May
差替え用紙 (規則 26) ン電源が故障またはパワーダウンしてメインの電圧が予備電源の電圧よ り 小さ くなった時には自動的に予備鷺源の電圧が負荷に加わる。 結果として 無瞬断で電源のバックアツプをすることができ、 バッテリ一寿命も延びる。 また、 商用電源をメィ ン電源とすれば停電時に無瞬断でバッ ク アツプがで きる常時商用紿電方式の無停電電源装置が構成できる。 また、 前記特殊電 源装置をメ イン電源と し商用電源装置を予備電源とした場合は前記特殊鼋 源装置が優先的に消費されるので通常の商用電源の消费量が減少し電気料 金の経費節減になる。 また、 メイン電源に接続されている 2方向性スイ ツ チを通常は 2方向共に O N状態 (導通状態) にして、 他の電源はすべて、 メィン電源の罨圧極性または電流極性に同期して各 2方向性スィ ッチの導 通方向を制御し、 メイ ン電源に異常が生じた場合は、 メイン電源に接続さ れている 2方向性スィ ッチの導通制御を O F F状態 (非導通状態) にして も同様の効果が得られる。 また、 前記複数電源の各電圧または電流を制御 部て検出することによって過電圧や異常波形または異常周波数他の異常状 態が発生した場合は、 該異常電源に接続されている 2方向性スィ ツチの導 通制御を 0 F F状態にすることによつて該異常電源を並列運 ¾から切り雜 して並列運転装置を保護することができる。 Replacement form (Rule 26) When the mains voltage is lower than the voltage of the backup power supply due to the power supply failure or power down, the voltage of the backup power supply is automatically applied to the load. As a result, the power supply can be backed up without any interruption, and the life of the battery is extended. In addition, if the commercial power supply is used as the main power supply, an uninterruptible power supply of the always commercial power supply type that can perform backup without interruption in case of power failure can be constructed. Further, when the special power supply is used as a main power supply and the commercial power supply is used as a standby power supply, the special power supply is consumed preferentially, so that the amount of power consumption of a normal commercial power supply is reduced and electric power is reduced. Cost savings. In addition, the two-way switch connected to the main power supply is normally turned on (conducting state) in both directions, and all other power supplies are synchronized with the compressive polarity or current polarity of the main power supply. Controls the conduction direction of the two-way switch, and if an abnormality occurs in the main power supply, turns off the conduction control of the two-way switch connected to the main power supply (non-conduction state) The same effect can be obtained even if. Further, when an overvoltage, an abnormal waveform, an abnormal frequency, or another abnormal state occurs by detecting each voltage or current of the plurality of power supplies by the control unit, the two-way switch connected to the abnormal power supply By setting the conduction control to the 0FF state, the abnormal power supply can be cut off from the parallel operation and the parallel operation device can be protected.
また、 第 2発明に係わる並列運転装置は、 電圧の最も高い電源をメイ ン 電源として、 メ イン電源を 2方向性スィ ッチを通さずに保護スィ ッチのみ を通して負荷に接続し、 他の電源はすべて 2方向性スィ ツチを通して負荷 に接続して成るものである。  In the parallel operation device according to the second invention, the power supply having the highest voltage is used as the main power supply, and the main power supply is connected to the load only through the protection switch without passing through the bidirectional switch. All power sources are connected to a load through a bidirectional switch.
かかる構成においては、 通常は保護スィ ツチを閉成状態にして選択され たメイン電源の電圧極性または電流極性に同期して各 2方向性スィ ツチの 導通方向を制御することによって、 各電源は正の領域と負の領域において 電圧の高いメイ ン電源が優先的に負荷に供給され、 メイ ン電源の出力側が 短絡以外の断線か同等の故障時には第 1発明と同様の効果が得られる。 ま  In such a configuration, each power supply is normally controlled by closing the protection switch and controlling the conduction direction of each bidirectional switch in synchronization with the voltage polarity or current polarity of the selected main power supply. In the negative region and the negative region, the main power having a high voltage is preferentially supplied to the load, and the same effect as the first invention can be obtained when the output side of the main power is disconnected other than a short circuit or equivalent failure. Ma
差替え用紙 (規貝 IJ26) た、 メイン電源の出力側が短絡か同等の故障時には、 メイン電源の電圧信 号または電流信号を制御部で検出することによって保護スィ ッチを自動的 に開放状態にしてメイン電源を並列回路から切り離すことができるので第 1発明と同様の効果が得られる。 Replacement paper (Kaikai IJ26) When the output side of the main power supply is short-circuited or equivalent failure, the protection switch is automatically opened by detecting the voltage signal or current signal of the main power supply by the control unit, and the main power supply is disconnected from the parallel circuit. Therefore, the same effect as the first invention can be obtained.
また、 第 3発明に係わる並列運転装置は、 第 1発明の構成において、 各 電源と各 2方向性スイ ツチの間に必要に応じて電圧調整器をそれぞれ揮入 して成るものである。  Further, a parallel operation device according to a third aspect of the present invention is the parallel operation device according to the first aspect of the invention, in which a voltage regulator is incorporated between each power supply and each two-way switch as needed.
かかる構成においては、 挿入した電圧調整器によって各電源の電圧の大 きさに差を設けることができるので電源の使用上の優先順位を与え、 既製 の複数電源の並列運転において第 1発明と同様の効果が得られる。  In such a configuration, a difference in the magnitude of the voltage of each power supply can be provided by the inserted voltage regulator, so priority is given to the use of the power supply, and in the parallel operation of a plurality of off-the-shelf power supplies, the same as in the first invention The effect of is obtained.
また、 第 4発明に係わる並列運転装置は、 メイン電源によって充電され る複数の電池または電気二重層コンデンサまたは一般のコンデンサ等の蓄 電装置 (以後、 蓄電器と略称する) を、 任意の蓄電器の数だけ任意の組合 せで直列または並列に接続できるように構成したスイ ツチ回路と極性反転 用のィンバ一タ回路及び交流フィルタを通してバックアツプ電源を構成し、 前記メイン電源と前記バックアツプ電源をそれぞれ 2方向性スィツチを通 して負荷に接続して成るものである。  In addition, the parallel operation device according to the fourth invention is characterized in that a plurality of batteries charged by the main power supply or a storage device such as an electric double layer capacitor or a general capacitor (hereinafter referred to as a capacitor) is replaced by an arbitrary number of capacitors. A back-up power supply is configured through a switch circuit, an inverter circuit for polarity reversal, and an AC filter configured so that they can be connected in series or in parallel in any combination, and the main power supply and the back-up power supply are respectively connected to two. It is connected to a load through a directional switch.
かかる構成においては、 複数の蓄電器と直並列スィツチ回路の組合せに よって関数発生回路が構成でき、 メイン電源よりも ¾圧の低い正弦波電圧 を効率よく発生させることができ、 前記直並列スィツチ回路の出力電圧が 交流の場合は極性反転用のインバータ回路は不用である。 通常はメイン電 源を優先的に消費しながら充鷺回路を通して蓄電器を充電し、 メイン電源 が異常の場合は無瞬断で負荷への紿竜をバックアップするので第 1発明と 同様の効果が得られる。 また、 蓄竜器の数を nとすると蓄電器の組合せ数 は 2。通りであり、 前記直並列スィ ツチ回路の制御によって 2 Π通りの電圧 を発生させることができる。 In such a configuration, a function generating circuit can be configured by a combination of a plurality of capacitors and a series-parallel switch circuit, and a sine wave voltage having a lower voltage than the main power supply can be efficiently generated. When the output voltage is AC, the inverter circuit for polarity reversal is unnecessary. Normally, the battery is charged through the charging circuit while consuming the main power preferentially. If the main power is abnormal, the same effect as in the first invention can be obtained because the power supply to the load is backed up without any instantaneous interruption. Can be If the number of dragons is n, the number of battery combinations is two. A street can be generated voltage of 2 [pi as the control of the series-parallel sweep rate Tutsi circuit.
差替え用紙 (規貝 IJ26) また、 第 5発明に係わる並列運転装置は、 メイン電源で充電される蓄電 器内臓のインバ一タ (直流一交流変換器) 電源と前記メ イ ン電源をそれぞ れ 2方向性スィ ッチを通して負荷に接続して成るものである。 Replacement paper (Kaikai IJ26) In addition, the parallel operation device according to the fifth invention is characterized in that the inverter (DC-AC converter) power supply and the main power supply, which are charged by the main power supply, are built-in through a bidirectional switch. It is connected to a load.
かかる構成においては、 インバ一タの P W M ( Pul se Width Modul ation) 制御または P A M ( Pulse Amplitude Modul ation) 制御によって正弦波を 発生させることができ、 第 4発明と同様の効果が得られる。  In such a configuration, a sine wave can be generated by PWM (Pulse Width Modulation) control or PAM (Pulse Amplitude Modulation) control of the inverter, and the same effect as the fourth invention can be obtained.
また、 第 6発明に係わる並列運転装置は、 蓄電器によって所定の電圧を 発生するバックァップ電源を 2方向性スィツチを通して負荷に接続し、 メ ィン電源を過負荷保護装置と 2方向性スィツチを通して負荷に接続し、 前 記過負荷保護装置の出力側とメィン電源との間にサージアブソ一バ等の過 電圧保護装置を接続して成るものである。  Further, the parallel operation device according to the sixth invention is such that a backup power supply for generating a predetermined voltage by a battery is connected to the load through a two-way switch, and the main power supply is connected to the load through the overload protection device and the two-way switch. And an overvoltage protection device such as a surge absorber connected between the output side of the overload protection device and the main power supply.
かかる構成においては、 奮サージなどでメィンの罨源ラインに過電圧が 発生した場合、 過電圧保護装置の動作によって過負荷保護装置に過電流が 流れ、 該過負荷保護装置の保護動作で該異常電源ラインを遮断することが できる。 図面の簡単な説明  In such a configuration, when an overvoltage occurs in the main compress line due to a surge or the like, an overcurrent flows through the overload protection device by the operation of the overvoltage protection device, and the abnormal power supply line is generated by the protection operation of the overload protection device. Can be shut off. BRIEF DESCRIPTION OF THE FIGURES
第 1図は第 1発明にかかわる好ましい並列運転装置の主要電気回路プロ ック図と説明図である。  FIG. 1 is a main electric circuit block diagram and an explanatory diagram of a preferred parallel operation device according to the first invention.
第 2図は第 1発明にかかわるその他の実施例を示す並列運転装置の主要 電気回路プロック図である。  FIG. 2 is a block diagram of a main electric circuit of a parallel operation apparatus showing another embodiment according to the first invention.
第 3図は第 2発明にかかわる好ましい並列運転装置の主要電気回路プロ ック図である。  FIG. 3 is a main electric circuit block diagram of a preferred parallel operation device according to the second invention.
第 4図は第 1発明にかかわるその他の実施例を示す並列運転装置の主要 電気回路プロック図である。  FIG. 4 is a block diagram of a main electric circuit of a parallel operation device showing another embodiment according to the first invention.
第 5図は第 4発明にかかわる好ましい並列運転装置の主要電気回路プロ  Fig. 5 shows the main electric circuit of the preferred parallel operation system according to the fourth invention.
差替え用紙 (規則 26) ック図である。 Replacement form (Rule 26) FIG.
第 6図は第 4発明にかかわるその他の実施例を示す並列運転装置の主要 電気回路プロック図である。  FIG. 6 is a block diagram of a main electric circuit of a parallel operation device showing another embodiment according to the fourth invention.
第 7図は第 4発明にかかわる実施例の電圧波形図である。  FIG. 7 is a voltage waveform diagram of an embodiment according to the fourth invention.
第 8図は第 5発明にかかわる好ましい並列運転装置の主要電気回路プロ ック図である。  FIG. 8 is a main electric circuit block diagram of a preferred parallel operation device according to the fifth invention.
第 9図— (a ) は第 3発明にかかわる好ましい並列運転装置の主要電気 回路ブロック図である。  FIG. 9- (a) is a block diagram of a main electric circuit of a preferred parallel operation device according to the third invention.
第 9図— (b ) は第 3発明にかかわるその他の実施例を示す並列運転装 置の主要電気回路ブロック図である。  FIG. 9- (b) is a main electric circuit block diagram of a parallel operation device showing another embodiment according to the third invention.
第 9図— (c ) は第 6発明にかかわる好ましい並列運転装置の主要電気 回路ブロック図である。 発明を実施するための最良の形態  Fig. 9-(c) is a block diagram of a main electric circuit of a preferred parallel operation device according to the sixth invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明をより詳細に説述するために、 添付の図面に従ってこれを説明す る。 なお、 以下に説明する部材、 S3置等は本発明を限定するものではなく、 本発明の趣旨の範囲内で種々改変することができるものである。  The present invention will be described in more detail with reference to the accompanying drawings. The members, S3 arrangements, and the like described below do not limit the present invention, and can be variously modified within the scope of the present invention.
第 1図一 (a ) は本発明全体の基本となる第 1発明にかかわる好ましい 並列運転装置の主要鼇気回路ブロック図である。 第 1図一 ( a ) に示すよ うに、 メイン電源 e 1と予備電源 e 2を並列運転して電圧の高い方の電源 e 1が優先的に消費されるようにするために、 FETスィッチ SW1と F E Tスィ ッチ SW2のそれぞれのソース端子 S 1と S 2を互いに接続し、 SW1と SW2のそれぞれのドレイン端子 D 1と D2を両端とする 2方向 性スィッチ 1を電源 e 1の入力端子と出力端子の間に接続し、 同様に 2方 向性スィッチ 2の ドレイ ン端子 D 3と D4を予備罨源 e 2の入力端子と出 力端子の間に接続し、 メイン電源 e 1の両端を制御部 3の検出電圧入力端  FIG. 1 (a) is a block diagram of a main circuit of a preferred parallel operation device according to the first invention, which is the basis of the entire present invention. As shown in Fig. 1 (a), in order to operate the main power supply e1 and the standby power supply e2 in parallel so that the higher voltage power supply e1 is consumed preferentially, the FET switch SW1 is used. And the respective source terminals S1 and S2 of the FET switch SW2 are connected to each other, and the bidirectional switch 1 having both the drain terminals D1 and D2 of SW1 and SW2 at both ends is connected to the input terminal of the power supply e1. Connect between the output terminals, and similarly connect the drain terminals D 3 and D4 of the bidirectional switch 2 between the input terminal and the output terminal of the spare pack e2, and connect both ends of the main power supply e1. Detection voltage input terminal of control unit 3
差替え用紙 (規則 26) 子に接続し、 2方向性スィ ッチ 1と 2の導通方向を制御するゲー ト端子 G 1、 G2、 G 3、 G 4をそれぞれ制御部 3の制御出力端子に接続して成る。 第 1図一 (d ) に示すように電源 e l、 e 2はそれぞれ e ( t ) のよう な電圧波形であり、 e l ( t ) の電圧が正の間はゲー ト G 1とゲー ト G 3 は躯動状態、 ゲー ト G 2とゲー ト G4は非能動状態となりスィ ッチ SW1 とスィ ッチ SW3を閉成状態に、 スィ ッチ SW2、 スィ ッチ SW4を開放 状態にする。 この場合の等価回路を第 1図一 (b) に示す。 e l (t ) の 電圧が負の間はゲ一 ト G 1とゲ一 ト G 3は非駆動状態、 ゲー ト G 2とゲ一 ト G 4は能動状態となり スィ ッチ SW1とスィ ッチ SW 3を開放状態に、 スイ ッチ SW2、 スィ ッチ SW4を閉成状態にする。 この場合の等価回路 を第 1図一 (c) に示す。 スィ ッチ SW1、 2、 3、 4の切換えタイ ミ ン グは、 第 1図一 (d) に示すよう にメイ ン電源電圧 e 1 ( t ) の電圧また は電流の極性とゼロ点に同期させる。 具体的には、 例えばメイ ン電源罨圧 e l (t ) のゼロ点を第 1基準点とし制御部 3で生成する第 1基準点と同 じ周期の基準点を第 2基準点と して、 この第 1基準点と第 2基準点の論理 和の信号でスィ ッチ SW 1、 2、 3、 4を切換える。 したがって、 メイ ン 電源の故障によ り第 1基準点が出なく なったときは自動的に第 2基準点の 信号によってスィ ッチ S W 1、 2、 3、 4の駆動が続行される。 また、 第 2基準点の生成はアナ口グ回路またはディ ジタル回路またはコンピュータ とソフ トゥ ァ一によ り実現することができる。 また、 2方向性スィ ッチ は F E T半導体スィ ッチの他に トライアツク、 I GBT、 サイ リスタ、 ト ランジスタ、 S I T、 GTO他の半導体スィ ッチによっても構成できその 実施例を第 4図に示す。 Replacement form (Rule 26) Gate terminals G 1, G 2, G 3, and G 4 for controlling the conduction direction of the bidirectional switches 1 and 2, respectively, are connected to the control output terminals of the control unit 3. As shown in FIG. 1 (d), the power supplies el and e2 have voltage waveforms like e (t), respectively, and the gate G1 and the gate G3 while the voltage of el (t) is positive. Is in the active state, gates G2 and G4 are inactive, switch SW1 and switch SW3 are closed, and switch SW2 and switch SW4 are open. The equivalent circuit in this case is shown in Fig. 1 (b). While the voltage of el (t) is negative, the gate G1 and the gate G3 are in the non-driving state, the gate G2 and the gate G4 are in the active state, and the switch SW1 and the switch SW 3 is open, and switch SW2 and switch SW4 are closed. The equivalent circuit in this case is shown in Fig. 1 (c). The switching timing of switches SW1, 2, 3, and 4 is synchronized with the polarity of the voltage or current of the main power supply voltage e1 (t) and the zero point as shown in Fig. 1 (d). Let it. Specifically, for example, the zero point of the main power supply compress el (t) is set as the first reference point, and the reference point having the same cycle as the first reference point generated by the control unit 3 is set as the second reference point. Switches SW 1, 2, 3, and 4 are switched by the signal of the logical sum of the first reference point and the second reference point. Therefore, when the first reference point does not come out due to the failure of the main power supply, the drive of the switches SW1, 2, 3, and 4 is automatically continued by the signal of the second reference point. The generation of the second reference point can be realized by an analog circuit or a digital circuit, or by a computer and a software. In addition, the bidirectional switch can be configured by a semiconductor switch such as a triac, an IGBT, a thyristor, a transistor, a SIT, and a GTO in addition to the FET semiconductor switch, and an embodiment thereof is shown in FIG. .
他の実施例と して、 第 2図— (a) に示すよう に第 1図— (a) の実施 例を接点スィ ッチとダイオー ドで表わしている。 第 2図一 ( a ) において、 e 1 ( t ) の罨圧が正の間は接点スィ ッチ SW 1と接点スィ ッチ SW3を  As another embodiment, as shown in FIG. 2 (a), the embodiment of FIG. 1 (a) is represented by a contact switch and a diode. In FIG. 2 (a), while the compressing pressure of e1 (t) is positive, the contact switches SW1 and SW3 are switched on.
差替え用紙 (規則 26) 閉にし、 接点スィ ッチ S W 2と接点スィ ッチ S W4を開にする。 この場合 の等価回路を第 1図— (b ) に示す。 e (t ) の電圧が負の間はスィ ッチ SW 1の接点とスィ ッチ SW3の接点を開にし、 スィ ッチ SW2の接点と スィ ッチ SW4の接点を閉にする。 この場合の等価回路を第 1図一 (c) に示す。 スィ ッチ S W 1〜 S W4の切り換えタイ ミ ングは例えば e 1 ( t ) のゼロ点検出による。 スィ ッチ S W 1〜 S W4の接点は トライアツ ク、 F E T、 I GBT、 サイ リスタ、 トランジスタ、 S I T、 G TO等の半導体 スィ ツチや無接点スィ ツチで置き換えても同様の効果が得られる。 Replacement form (Rule 26) Close and open contact switch SW2 and contact switch SW4. The equivalent circuit in this case is shown in Fig. 1- (b). While the voltage of e (t) is negative, the contacts of switch SW1 and switch SW3 are opened, and the contacts of switch SW2 and switch SW4 are closed. The equivalent circuit in this case is shown in Fig. 1 (c). The switching timing of the switches SW1 to SW4 is based on, for example, detecting the zero point of e1 (t). The same effect can be obtained by replacing the contacts of switches SW1 to SW4 with semiconductor switches such as triacs, FETs, IGBTs, thyristors, transistors, SITs, GTOs, and non-contact switches.
他の実施例と して第 2図— (b ) に示すよう に、 三相電源を並列運転す る場合は各相に 2方向性スィ ッチをそれぞれ接続し、 メインとなる電源の 各相の電圧または電流と同期して各 2方向性スィ ッチを制御する。  As another embodiment, as shown in Fig. 2 (b), when three-phase power supplies are operated in parallel, two-way switches are connected to each phase, and each phase of the main power supply is connected. Each bidirectional switch is controlled in synchronization with the voltage or current of the switch.
第 3図は第 2発明にかかわる好ましい並列運転装置の主要電気回路プロ ッ ク図である。 第 3図一 ( a) に示すように、 メイン電源 e lを接続する 入力端子と出力端子の間に保護スィ ッチ 1 7を接続し、 予備電源 e 2を 2 方向性スィ ッチ 2を通して出力端子に接続し、 メイン電源 e 1の雨端を制 御部 3の検出電圧入力端子に接続し、 2方向性スィ ッチ 2の導通方向を制 御するゲー ト端子 G 3、 G4をそれぞれ制御部 3の制御出力端子に接続し、 罨流検出器 CTをメイ ン電源ライ ンに設置し、 電流検出器 CTの出力を制 御部 3の検出電流入力端子に接続して成る。  FIG. 3 is a main electric circuit block diagram of a preferred parallel operation device according to the second invention. As shown in Fig. 3 (a), connect the main power supply el to the protection switch 17 between the input terminal and the output terminal, and output the backup power supply e2 through the bidirectional switch 2. Connect the rain end of the main power supply e1 to the detection voltage input terminal of the control unit 3, and control the gate terminals G3 and G4 that control the conduction direction of the bidirectional switch 2. It is connected to the control output terminal of section 3, the compress detector CT is installed on the main power supply line, and the output of the current detector CT is connected to the detection current input terminal of control section 3.
通常は保護スィ ッチ 1 7を閉成状態にしてメイ ン電源 e lを優先的に使 用し、 電源 e lの電圧や電流の異常を検出した時は保護スィ ッチ 1 7を開 放状態にすると第 1発明と同様の効果が得られる。 保護スィ ッチ 1 7と し ては第 4図に示す交流スィ ツチや無接点リ レーや電磁開閉器が使用できる。 通常の運転状態の等価回路を第 3図一 (b) と第 3図一 (c ) に示す。 第 9図一 (a ) は第 3発明にかかわる好ま しい並列運転装置の主要電気 回路ブロ ッ ク図である。 第 1発明に係わる主要電気回路ブロ ッ ク図の第 1  Normally, the protection switch 17 is closed and the main power supply el is used preferentially.When an abnormality in the voltage or current of the power supply el is detected, the protection switch 17 is opened. Then, the same effect as the first invention is obtained. As the protection switch 17, an AC switch, a contactless relay or an electromagnetic switch shown in Fig. 4 can be used. The equivalent circuits under normal operating conditions are shown in Fig. 3 (b) and Fig. 3 (c). FIG. 9 (a) is a block diagram of a main electric circuit of a preferred parallel operation device according to the third invention. First block diagram of main electric circuit block diagram according to first invention
差替え用紙 (規則 26) 図一 (a ) において、 第 9図— ( a ) に示すように予備電源 e 2と 2方向 性スィッチ 2の間に電圧調整器 1 3として直列変庄器 T rを挿入して成る。 電圧 e 2を直列変圧器 T rによって e 2 — e 5にして、 電圧 e l >電圧 e 2とすることができるので第 1発明と同様の効果が得られる。 Replacement form (Rule 26) In FIG. 1 (a), as shown in FIG. 9 (a), a series transformer Tr is inserted as a voltage regulator 13 between the standby power source e2 and the bidirectional switch 2. Since the voltage e2 can be set to e2-e5 by the series transformer Tr, and the voltage el> the voltage e2, the same effect as the first invention can be obtained.
他の実施例として第 1発明の第 1図一 (a ) において第 9図一 (b ) に 示すように予備電源 e 1と 2方向性スィッチ 1の間に電圧調整器 1 3とし て直列変圧器 T rを挿入した場合は、 電圧 e 1を直列変圧器 T rによって e 2 + e 5にして、 電圧 e 1〉電圧 e 2とすることができるので第 1発明 と同様の効果が得られる。  As another embodiment, in FIG. 1 (a) of the first invention, as shown in FIG. 9 (b), as shown in FIG. 9 (b), a series transformer is provided as a voltage regulator 13 between the standby power source e1 and the bidirectional switch 1. When the transformer Tr is inserted, the voltage e1 can be changed to e2 + e5 by the series transformer Tr, and the voltage e1> the voltage e2, so that the same effect as the first invention can be obtained. .
第 5図は蓄電器の数が 6個 (n = 6 ) の場合の実施例としてつく られた、 第 4発明にかかわる好ましい並列運転装置の主要電気回路プロック図であ る。 第 5図に示すように 1次卷線をメィン電源 e 1に接続した変圧器 T r 1の 6個の 2次卷線を 6個の充電回路 7にそれぞれ接続し、 充電回路 7の 各出力を蓄電器 C 1〜C 6に接続し、 蓄電器 C 1〜C 6をスィ ッチ回路 5 の入力側に接続し、 スィ ツチ回路 5の出力をイ ンバ一タ回路 4の入力側に 接続し、 極性反転用イ ンバータ回路 4の出力側をフィルタ Fの入力側に接 続し、 制御部 9の制御出力を各制御スィ ッチのゲート端子へ接続し、 e l と e 2の電圧検出信号を制御部 9の検出信号入力端子に接続し、 フィルタ Fの出力電圧を e 2とする予備電源を内臓し、 メイン電源 e 1 と予備電源 e 2を第 1発明の第 1図— (a ) と同様に並列接続して成る。  FIG. 5 is a block diagram of a main electric circuit of a preferred parallel operation device according to the fourth invention, which is made as an embodiment when the number of capacitors is six (n = 6). As shown in Fig. 5, the six secondary windings of the transformer Tr1 with the primary winding connected to the main power supply e1 are connected to the six charging circuits 7, respectively, and the outputs of the charging circuit 7 Are connected to the capacitors C1 to C6, the capacitors C1 to C6 are connected to the input side of the switch circuit 5, the output of the switch circuit 5 is connected to the input side of the inverter circuit 4, Connect the output side of the inverter circuit 4 for polarity reversal to the input side of the filter F, connect the control output of the controller 9 to the gate terminal of each control switch, and control the el and e2 voltage detection signals. Connects to the detection signal input terminal of section 9, and has a built-in backup power supply with the output voltage of filter F as e2. Main power supply e1 and backup power supply e2 are the same as Fig. 1 of the first invention-(a) In parallel.
6個の蓄電器の直列接続の組合せ数は 2 s ( = 6 4 ) 通りで、 V 2 = 2 X V I、 V 3 = 4 X V 1、 V 4 = 8 X V 1、 V 5 = 1 6 X V 1, V 6 = 3 2 X V I、 とした場合のスィ ツチ回路 5の出力は 0〜 6 3 X V 1まで V Iの ステツプで可変でき、 1ノ 6 3の分解能で正弦波を生成することができ、 無効電力が非常に小さくなり交流フィルタも非常に小さ く各蓄電器の利用 率も改良される。 蓄電器の数は必要に応じて決めることができ、 充電回路 There are 2 s (= 6 4) combinations of 6 capacitors in series connection, V 2 = 2 XVI, V 3 = 4 XV 1, V 4 = 8 XV 1, V 5 = 16 XV 1, V When 6 = 3 2 XVI, the output of the switch circuit 5 can be varied in steps of VI from 0 to 63 XV1 to generate a sine wave with a resolution of 1 to 63, and the reactive power is reduced. The size is very small, the AC filter is very small, and the utilization of each capacitor is improved. The number of capacitors can be determined as needed, the charging circuit
差替え用紙 (規則 26) 7によって蓄電器の充電が制御される。 Replacement form (Rule 26) 7 controls the charging of the battery.
他の実施例と して第 6図に示すようにメイ ン電源 e 1を充電回路 7を通 して蓄電器 C 1〜C 6の直列回路の両端に接続し、 各蓄電器 C 1〜C 6を スィ ッチ回路 6の入力側に接続し、 スィ ッチ回路 6の出力を極性反転用ィ ンバ一タ 4の入力側に接続し、 他は本発明の実施例と同様に構成した場合 でも同様の効果があり、 スィ ッチ回路 6の出力は、 電圧 V2〜V 6がすべ て V Iに等しいとき 0〜 6 XV 1まで V Iのステップで可変でき、 1 6 の分解能で正弦波を生成することができる。  As another embodiment, as shown in FIG. 6, a main power supply e1 is connected through a charging circuit 7 to both ends of a series circuit of capacitors C1 to C6, and each of the capacitors C1 to C6 is connected. The same applies to the case where the input of the switch circuit 6 is connected to the input side of the switch circuit 6 and the output of the switch circuit 6 is connected to the input side of the polarity inverting inverter 4. The output of the switch circuit 6 can be varied in steps of VI from 0 to 6 XV 1 when the voltages V2 to V6 are all equal to VI, and can generate a sine wave with a resolution of 16 Can be.
本発明の関数発生回路の出力 e 3とフ ィルタ Fの出力 e 2の電圧波形を 第 7図に示す。 また、 予備電源 1 5を 3台設置し各出力電圧の位相を制御 することによって三相電源にも対応できる。  FIG. 7 shows the voltage waveforms of the output e3 of the function generating circuit of the present invention and the output e2 of the filter F. Also, by installing three backup power supplies 15 and controlling the phase of each output voltage, it is possible to handle three-phase power supplies.
第 8図は第 5発明にかかわる好ましい並列運転装置の主要電気回路プロ ッ ク図である。 第 8図— ( a ) に示すようにメイ ン電源 e 1を整流回路 1 0と充罨回路 1 1を通して充電器 Cとインバ一タ回路 1 2の入力側に接続 しインバ一タ回路 12の出力側をフィルタ Fの入力側に接続し、 制御部 1 8の制御出力を充電回路 1 1とイ ンバ一タ 1 2の各スィッチ制御端子へ接 続し、 e lと e 2の電圧検出信号を制御部 1 8の検出信号入力端子に接続 し、 フィルタ Fの出力電圧を e 2とする予備電源を内臓し、 メイン電源 e 1と予備電源 e 2を第 1発明の第 1図— (a ) と同様に並列接続して成る。 充電回路 1 1によって蓄電器 Cの充電が制御され、 イ ンバ一タ回路 1 2 の制御によって電圧と周波数の調整が行われる。 また、 整流回路 1 0をサ イ リスタで構成した場合は電圧調整器 1 1を省略しても蓄電器 Cの充電電 流を調整することができる。 第 8図一 (b) は三相の場合の実施例である。 第 9図一 (c ) は第 6発明にかかわる好ま しい並列運転装置の主要鼇気 回路ブロッ ク図である。 第 9図— (c ) に示すよに蓄電器によって所定の 電圧を発生するバックアツプ電源 1 5の出力 e 2を 2方向性スィ ッチ 2を  FIG. 8 is a main electric circuit block diagram of a preferred parallel operation device according to the fifth invention. Fig. 8—As shown in (a), the main power supply e1 is connected to the input side of the charger C and the inverter circuit 12 through the rectifier circuit 10 and the charging circuit 11 and the inverter circuit 12 is connected. The output side is connected to the input side of the filter F, the control output of the control section 18 is connected to the charging circuit 11 and each switch control terminal of the inverter 12 and the voltage detection signals of el and e 2 are connected. Connects to the detection signal input terminal of the control unit 18 and has a built-in backup power supply with the output voltage of the filter F as e2. The main power supply e1 and the backup power supply e2 are shown in Fig. 1 of the first invention. And connected in parallel as in The charging of the battery C is controlled by the charging circuit 11, and the voltage and frequency are adjusted by the control of the inverter circuit 12. Further, when the rectifier circuit 10 is constituted by a thyristor, the charging current of the capacitor C can be adjusted even if the voltage regulator 11 is omitted. Fig. 8 (b) shows an embodiment in the case of three phases. FIG. 9 (c) is a block diagram of a main circuit of a preferred parallel operation device according to the sixth invention. Fig. 9—As shown in (c), the output e2 of the backup power supply 15 that generates a predetermined voltage by the capacitor is connected to the bidirectional switch 2.
差替え用紙 (規貝 IJ26) 通して出力端子に接続し、 メイ ン ¾源 e 1の入力端子から過負荷保護装置 1 6 と 2方向性スィ ッチ 1 を通して出力端子に接続し、 過負荷保護装置 1 6の出力側とメイ ン電源 e l との間にサージアブソ一バ等の過電圧保護装 置 1 4を接続して成るものである。 Replacement paper (Kaikai IJ26) To the output terminal through the overload protection device 16 and the bidirectional switch 1 from the input terminal of the main power source e1, and to the output side of the overload protection device 16 An overvoltage protection device 14 such as a surge absorber is connected between the power supply el and the power supply el.
過電圧発生時の過電圧保護装置 1 4の動作によって過負荷保護装置 1 6 が保護動作しメィ ン電源 e 1が遮断された場合、 バッ クアツプ電源 1 5に よって無瞬断に給電され、 第 1発明の第 1実施例と同様の効果がある。 過 負荷保護装置 1 6 としてはヒューズゃサーマルスイ ッチゃノ一ヒューズブ レー力や漏電ブレーカ等の過電流によって開放状態になるスィ ッチが良い。 本発明全体を通して、 単相電源に限らず単相三線式電源や三相電源や三 相四線式や多相方式や直流電源にも同様の効果を発揮し、 電源障害が発生 したとき無瞬断でバッ クアップすると同時にアラーム信号で外部機器に知 らせたり、 蓄電器の電荷残童や電圧や電流や温度等の充電状況をモニタ一 するためのデータを出力することもでき、 充電や並列運転を リモ一 トコン トロールすることも可能である。 また、 半導体スィ ッチと接点スィ ッチの 並列運転によって各制御スィ ッチを性能アップすることもできる。 また、 図中の符号 1、 2は半導体スィ ッチまたは接点スィ ッチから成る 2方向制 御または〇 N Z〇 F F制御が可能なスィ ッチで、 3、 9、 1 8はハ一 ドウ エア一またはソフ トウエアーから成る演算 · 制御装置で、 Lは電気負荷で、 4、 5、 6は半導体スィ ッチまたは接点スィ ッチから成るスィッチ回路で、 7は整流器または整流回路または電圧や電流調整可能な充電回路で、 1 1 は電圧調整用のチョ ッパー回路で、 1 2は 〇 3— £ 1:、 トランジスタ、 I G B T、 S I T, サイ リスタ、 G T 0等の半導体スィ ッチから成るイ ン バ一タ回路で、 1 3は変圧器による電圧変換方式やサイ リスタ位相制御方 式ゃスィ ッチング方式、 ィ ンバ一タ方式等の各種電圧調整器または安定化 電源装置で、 1 4はサージ電圧吸収素子または過電圧保護装置。  When the overload protection device 16 performs the protection operation due to the operation of the overvoltage protection device 14 when an overvoltage occurs and the main power supply e1 is cut off, the power is supplied instantaneously by the backup power supply 15 to the first invention. This has the same effect as the first embodiment. As the overload protection device 16, a switch that is opened due to an overcurrent such as a fuse, a thermal switch, a fuse breaker, or an earth leakage breaker is preferable. Throughout the present invention, the same effects are exhibited not only for single-phase power supply but also for single-phase three-wire power supply, three-phase power supply, three-phase four-wire power supply, multi-phase power supply, and DC power supply. At the same time as backup, the alarm signal can be sent to an external device and an alarm signal can be sent to an external device, or data can be output to monitor the charge status of the battery, such as charge, voltage, current, and temperature. Can be remotely controlled. In addition, the performance of each control switch can be improved by the parallel operation of the semiconductor switch and the contact switch. In addition, reference numerals 1 and 2 in the figure are switches capable of two-way control or {NZ} FF control composed of a semiconductor switch or a contact switch, and 3, 9, and 18 are hardware. An arithmetic and control device consisting of one or software, L is an electric load, 4, 5, and 6 are switch circuits consisting of semiconductor switches or contact switches, 7 is a rectifier or rectifier circuit, or voltage and current regulation. Possible charging circuits, 1 1 is a chopper circuit for voltage adjustment, 1 2 is an inverter composed of semiconductor switches such as transistors, IGBTs, SITs, thyristors, and GT 0. 13 are various voltage regulators or stabilizing power supplies such as voltage conversion method using transformer, thyristor phase control method, switching method, inverter method, etc., and 14 is surge voltage absorption. Element or overvoltage protection device.
差替え用紙 (規則 26) 産業上の利用可能性 Replacement form (Rule 26) Industrial applicability
以上のように、 本発明にかかわる並列運転装置は電源障害対策装置とし て利用した場合、 従来方式と比較して電気エネルギー消費童が 2 0 - 2 8 %削減できる発明である。 従来方式に比べ格段にロスが少なく、 またロス 分はすべて熱童に変化するため、 効率差分だけ別途冷房関係费用の節減も 可能。 電池使用 も減少する。  As described above, when the parallel operation device according to the present invention is used as a power failure countermeasure device, the present invention can reduce the electric energy consumption by 20 to 28% compared to the conventional system. Compared to the conventional method, there is much less loss, and all the loss is changed to heat. Therefore, it is possible to save only the difference in efficiency for cooling-related items. Battery use is also reduced.
今や人類共通の課題である環境改善、 資源有効利用の観点からエネルギ —の使用合理化は非常に重要であり、 インタ一ネッ ト ' マルチメディア社 会のコンピュータシステム ♦情報通信システム · 医療設備 · 工場の高精度 設備 ·研究設備においては高信頼 '低ランニングコス トの U P Sが電源障 害対策装置として要求され、 前記特殊電源装置と商用電源との複数電源の 任意の組合せによる高効率並列運転装置または経済的並列運転装置の要求 も髙まっている。 また、 環境問題から電池類の使用量低減の要求も高く、 産業界においてより多方面に経済的効果をもたらすことができる。  Nowadays, the rationalization of energy use is very important from the viewpoint of environmental improvement and effective use of resources, which are issues common to all humankind. High-precision equipmentResearch equipment requires a highly reliable UPS with low running cost as a power failure countermeasure device, and a high-efficiency parallel operation device or economical system using any combination of the special power supply and commercial power supply There is also a growing need for intelligent parallel operation equipment. Also, due to environmental issues, there is a high demand for the reduction of the amount of batteries used, which can bring economic effects to a wider range of industries.
差替え用紙 (規則 26) Replacement form (Rule 26)

Claims

請 求 の 範 囲 The scope of the claims
1. 第 1発明として、 2台以上の複数の電源を並列運転して電圧の高い電 源が優先的に使用されるようにするために、 2個の F E T半導体スィッチ を互いに逆向きに直列接続して導通方向の制御が可能な交流スィツチ ( 2 方向性スィッチ) を構成し、 前記複数電源と同数の 2方向性スィッチを入 力端子と、 負荷を接続するための共通出力端子 (以後、 出力端子と称する) との間にそれぞれ接続し、 前記複数電源の中から選択された電源 (以後、 メィン鼋源と称する) の電圧信号または電流信号を制御部の信号検出入力 端子に接続し、 前記制御部の制御出力を前記 2方向性スィツチの導通方向 制御入力端子に接続して成ることを特徴とする並列運 ¾装置。 1. As the first invention, two FET semiconductor switches are connected in series in the opposite direction to each other in order to operate two or more power supplies in parallel and use the power supply with the higher voltage preferentially. To form an AC switch (bidirectional switch) capable of controlling the conduction direction. The same number of bidirectional switches as the plurality of power supplies are used as input terminals and a common output terminal (hereinafter referred to as output) for connecting a load. And a voltage signal or a current signal of a power supply selected from the plurality of power supplies (hereinafter referred to as a main power supply) is connected to a signal detection input terminal of a control unit. A parallel operation device comprising a control output of a control unit connected to a conduction direction control input terminal of the two-way switch.
2. 第 2発明として、 第 1発明の並列運転装置の構成において、 電圧の最 も高い電源は入力端子から 2方向性スィ ッチを通さずに保護スィツチのみ を通して出力端子に接続し、 他の電源はすべて 2方向性スィ ッチを通して 出力端子に接続して成ることを特徴とする第 1発明の並列運転装置。  2. As a second invention, in the configuration of the parallel operation device of the first invention, the power supply having the highest voltage is connected from the input terminal to the output terminal only through the protection switch without passing through the two-way switch, and The parallel operation device according to the first invention, wherein all power supplies are connected to output terminals through two-way switches.
3. 第 3発明として、 複数の電源の並列運転時に各電源の電圧の大きさに 差を設けて鴛源の使用上の優先順位を与えるために、 各電源を接続する入 力端子から電圧調整器と 2方向性スィッチを通して出力端子に接続して成 ることを特徴とする第 1発明または第 2発明の並列運 ¾装置。  3. As a third invention, in order to provide a difference in the magnitude of the voltage of each power supply during parallel operation of a plurality of power supplies and to give priority to the use of the Oshi source, the voltage is adjusted from the input terminal to which each power supply is connected. The parallel operation device according to the first invention or the second invention, characterized in that the parallel operation device is connected to an output terminal through a switch and a bidirectional switch.
4. 第 4発明として、 メイン電源によって充電される複数の鴛池または電 気二重層コンデンサまたは一般のコンデンサ (以後、 蓄電器と称する) を 任意の数だけ任意の組合せで直列または並列に接続できるように構成した スィ ツチ回路の入力側を前記蓄電器に接続し、 前記スィッチ回路の出力側 を極性反転用のィンバータ回路の入力側に接続し、 前記インバ一タの出力 側を交流フ ィルタの入力側に接続し、 前記スィ ッチ回路と前記インバータ 回路を構成するスィ ッチの制御端子を制御部の制御出力端子に接続し、 メ  4. As the fourth invention, an arbitrary number of Oshiike or electric double-layer capacitors or general capacitors (hereinafter referred to as capacitors) charged by the main power supply can be connected in series or parallel in any combination in any number. The input side of the switch circuit is connected to the capacitor, the output side of the switch circuit is connected to the input side of an inverter circuit for inverting the polarity, and the output side of the inverter is the input side of an AC filter. And the control terminals of the switches constituting the switch circuit and the inverter circuit are connected to the control output terminal of the control unit.
差替え用紙 (規貝26) イ ン電源と前記交流フ ィルタの出力側の電圧信号または電流信号を前記制 御部の信号検出入力端子に接続してバッ クアツプ電源を構成し、 前記交流 フ ィルタの出力 (バッ クアップ電源の出力) を 2方向性スィ ッチを通して 出力端子に接続し、 メイ ン電源を入力端子から 2方向性スィ ッチを通して 出力端子に接続して成ることを特徴とする第 1発明または第 2発明または 第 3発明の並列運転装置。 Replacement paper (Kaikai 26) A power supply and a voltage signal or a current signal on the output side of the AC filter are connected to a signal detection input terminal of the control section to constitute a backup power supply, and the output of the AC filter (the output of the backup power supply) is formed. ) Is connected to the output terminal through a two-way switch, and the main power supply is connected from the input terminal to the output terminal through the two-way switch. The parallel operation device of the three inventions.
5. 第 5発明と して、 メイ ン電源によって充電される蓄電器を直流を交流 に変換するインバ一タ回路の入力側に接続し、 前記インバ一タの出力側を 交流フィルタの入力側に接続し、 前記イ ンバ一タ回路を構成するスィ ッチ の制御端子を制御部の制御出力端子に接続し、 メィン電源と前記交流フィ ルタの出力側の電圧信号または電流信号を前記制御部の信号検出入力端子 に接続してバッ クアップ電源を構成し、 前記交流フ ィルタの出力 (バック アップ電源の出力) を 2方向性スィ ッチを通して出力端子に接続し、 メイ ン鼋源を入力端子から 2方向性スィ ッチを通して出力端子に接続して成る ことを特徴とする第 1発明または第 2発明または第 3発明の並列運転装置。 5. As a fifth invention, a capacitor charged by the main power supply is connected to an input side of an inverter circuit for converting DC to AC, and an output side of the inverter is connected to an input side of an AC filter. A control terminal of a switch constituting the inverter circuit is connected to a control output terminal of a control unit, and a main power supply and a voltage signal or a current signal on the output side of the AC filter are transmitted to the control unit by a signal of the control unit. A backup power supply is configured by connecting to the detection input terminal. The output of the AC filter (output of the backup power supply) is connected to the output terminal through a bidirectional switch, and the main power source is connected to the input terminal. The parallel operation device according to the first invention, the second invention, or the third invention, wherein the parallel operation device is connected to an output terminal through a directional switch.
6. 第 6発明と して、 メイ ン電源によって充電される 1個または複数個の 蓄電器を備え、 該蓄電器によって電圧を発生するバッ クアツプ鷺源を 2方 向性スィ ッチを通して出力端子に接続し、 メイン電源を入力端子から過負 荷保護装置と 2方向性スィ ツチを通して出力端子に接続し、 前記過負荷保 護装置の出力側とメィン電源との間にサージアブソ一バ等の過電圧保護装 置を接続して成ることを特徴とする第 1発明または第 2発明または第 3発 明または第 4発明または第 5発明の並列運転装置。 6. According to a sixth aspect of the present invention, there is provided one or more capacitors that are charged by a main power supply, and a backup source that generates a voltage by the capacitors is connected to an output terminal through a bidirectional switch. The main power supply is connected from the input terminal to the output terminal through an overload protection device and a bidirectional switch, and an overvoltage protection device such as a surge absorber is connected between the output side of the overload protection device and the main power supply. A parallel operation device according to the first invention, the second invention, the third invention, the fourth invention, or the fifth invention, wherein the parallel operation devices are connected to each other.
差替え用紙 (規則 26) Replacement form (Rule 26)
PCT/JP1999/004695 1998-08-31 1999-08-31 Parallel operation device WO2000013290A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU54459/99A AU5445999A (en) 1998-08-31 1999-08-31 Parallel operation device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP28471898 1998-08-31
JP10/284718 1998-08-31
JP28191199 1999-08-26
JP11/281911 1999-08-26

Publications (1)

Publication Number Publication Date
WO2000013290A1 true WO2000013290A1 (en) 2000-03-09

Family

ID=26554389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/004695 WO2000013290A1 (en) 1998-08-31 1999-08-31 Parallel operation device

Country Status (2)

Country Link
AU (1) AU5445999A (en)
WO (1) WO2000013290A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1217711A2 (en) * 2000-12-21 2002-06-26 Airbus France Electric energy distribution system and contactor for such system
JP2007174311A (en) * 2005-12-22 2007-07-05 Sanyo Electric Co Ltd Voltage selecting circuit
JP4551483B1 (en) * 2009-11-19 2010-09-29 四郎 荒井 Power supply control method and power supply control device
EP2381567A1 (en) * 2009-01-19 2011-10-26 Daikin Industries, Ltd. Bidirectional switch circuit and power converter provided with same
US9935465B2 (en) 2014-01-20 2018-04-03 Mitsubishi Electric Corporation Power conversion device
US10481184B2 (en) 2015-08-04 2019-11-19 Sumitomo Electric Industries, Ltd. Input-voltage-abnormality detection method and power source device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6318421B2 (en) * 1981-12-24 1988-04-18 Shindengen Electric Mfg
JPS63117242U (en) * 1987-01-19 1988-07-28
JPS6440246U (en) * 1987-09-07 1989-03-10
JPH02119416A (en) * 1988-08-31 1990-05-07 Sgs Thomson Microelectron Sa Bidirectional monolithic switch
JPH04281343A (en) * 1991-03-06 1992-10-06 Hitachi Ltd Uninterruptible power supply and switching method
JPH04296116A (en) * 1991-03-26 1992-10-20 Fuji Electric Co Ltd Bidirectional semiconductor switching circuit
JPH05344655A (en) * 1992-06-11 1993-12-24 Toshiba Corp Operating method for parallel connection of power converter
JPH0739088A (en) * 1993-07-20 1995-02-07 Nippon Telegr & Teleph Corp <Ntt> Uninterraptible power supply apparatus
JPH08308147A (en) * 1995-04-27 1996-11-22 Nippon Electric Ind Co Ltd Ups equipped with multi-output & socket with switch and uninterruptible output socket
JPH10174210A (en) * 1996-12-17 1998-06-26 Honda Motor Co Ltd Electric vehicle

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6318421B2 (en) * 1981-12-24 1988-04-18 Shindengen Electric Mfg
JPS63117242U (en) * 1987-01-19 1988-07-28
JPS6440246U (en) * 1987-09-07 1989-03-10
JPH02119416A (en) * 1988-08-31 1990-05-07 Sgs Thomson Microelectron Sa Bidirectional monolithic switch
JPH04281343A (en) * 1991-03-06 1992-10-06 Hitachi Ltd Uninterruptible power supply and switching method
JPH04296116A (en) * 1991-03-26 1992-10-20 Fuji Electric Co Ltd Bidirectional semiconductor switching circuit
JPH05344655A (en) * 1992-06-11 1993-12-24 Toshiba Corp Operating method for parallel connection of power converter
JPH0739088A (en) * 1993-07-20 1995-02-07 Nippon Telegr & Teleph Corp <Ntt> Uninterraptible power supply apparatus
JPH08308147A (en) * 1995-04-27 1996-11-22 Nippon Electric Ind Co Ltd Ups equipped with multi-output & socket with switch and uninterruptible output socket
JPH10174210A (en) * 1996-12-17 1998-06-26 Honda Motor Co Ltd Electric vehicle

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1217711A2 (en) * 2000-12-21 2002-06-26 Airbus France Electric energy distribution system and contactor for such system
FR2818820A1 (en) * 2000-12-21 2002-06-28 Eads Airbus Sa ELECTRIC POWER DISTRIBUTION SYSTEM AND CONTACTOR FOR SUCH A SYSTEM
US6597154B2 (en) 2000-12-21 2003-07-22 Airbus France Electrical energy distribution system and contactor for such a system
US6683771B2 (en) 2000-12-21 2004-01-27 Airbus France Electrical energy distribution system and contactor for such a system
EP1217711A3 (en) * 2000-12-21 2004-11-03 Airbus France Electric energy distribution system and contactor for such system
JP2007174311A (en) * 2005-12-22 2007-07-05 Sanyo Electric Co Ltd Voltage selecting circuit
EP2381567A4 (en) * 2009-01-19 2014-06-04 Daikin Ind Ltd Bidirectional switch circuit and power converter provided with same
EP2381567A1 (en) * 2009-01-19 2011-10-26 Daikin Industries, Ltd. Bidirectional switch circuit and power converter provided with same
US9178412B2 (en) 2009-01-19 2015-11-03 Daikin Industries, Ltd. Bidirectional switch circuit configured to conduct current in reverse direction without applying an on-drive signal and power converter including the same
JP2011109844A (en) * 2009-11-19 2011-06-02 Shiro Arai Power supply control method and power supply control device
JP4551483B1 (en) * 2009-11-19 2010-09-29 四郎 荒井 Power supply control method and power supply control device
US9935465B2 (en) 2014-01-20 2018-04-03 Mitsubishi Electric Corporation Power conversion device
DE112014006215B4 (en) * 2014-01-20 2020-10-29 Mitsubishi Electric Corporation Energy conversion device
US10481184B2 (en) 2015-08-04 2019-11-19 Sumitomo Electric Industries, Ltd. Input-voltage-abnormality detection method and power source device

Also Published As

Publication number Publication date
AU5445999A (en) 2000-03-21

Similar Documents

Publication Publication Date Title
US6879062B2 (en) Electrical substation
Bekiarov et al. Uninterruptible power supplies: classification, operation, dynamics, and control
US6118676A (en) Dynamic voltage sag correction
Kamran et al. A novel on-line UPS with universal filtering capabilities
Choi et al. High-performance online UPS using three-leg-type converter
US7129599B2 (en) Dual feed power supply systems with enhanced power quality
US6266260B1 (en) Inverter having center switch and uninterruptible power supply implementing same
Tang et al. An LVDC industrial power distribution system without central control unit
KR102379687B1 (en) Apparatus and method for concentrating and supplying energy
JPH04325832A (en) Multifunction power converting system
Hatziadoniu et al. A power conditioner for a grid-connected photovoltaic generator based on the 3-level inverter
US20100237704A1 (en) Single-phase to n-phase converter and power conversion system
GB2287843A (en) Off-Line Uninterruptible Power Supply
WO2018087204A1 (en) 3-wire multiphase ups with bypass
JP2000228826A (en) Power supply device according to quality
Kim et al. Transformerless three-phase on-line UPS with high performance
CN115940387A (en) Power supply system of server and data center
Bekiarov et al. A new on-line single-phase to three-phase UPS topology with reduced number of switches
JP2002354679A (en) Power conversion device, and power supply system using it
Windhorn A hybrid static/rotary UPS system
WO2000013290A1 (en) Parallel operation device
Lee et al. High-efficiency large-capacity uninterruptible power supply using bidirectional-switch-based NPC multilevel converter
US10700597B1 (en) Distribution transformer power flow controller
JP4189985B2 (en) Instantaneous incoming power control system
JPH11103540A (en) Uninterruptive power source system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AU BA BB BG BR CA CN CU CZ EE GD GE HR HU ID IL IN IS JP KR LC LK LR LT LV MG MK MN MX NO NZ PL RO SG SI SK TR TT UA US UZ VN YU ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP