JPH02228007A - Superconducting magnet apparatus - Google Patents

Superconducting magnet apparatus

Info

Publication number
JPH02228007A
JPH02228007A JP1049281A JP4928189A JPH02228007A JP H02228007 A JPH02228007 A JP H02228007A JP 1049281 A JP1049281 A JP 1049281A JP 4928189 A JP4928189 A JP 4928189A JP H02228007 A JPH02228007 A JP H02228007A
Authority
JP
Japan
Prior art keywords
converter
circuit
superconducting coil
circuit breaker
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1049281A
Other languages
Japanese (ja)
Inventor
Shohei Suzuki
昌平 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1049281A priority Critical patent/JPH02228007A/en
Publication of JPH02228007A publication Critical patent/JPH02228007A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Particle Accelerators (AREA)
  • Rectifiers (AREA)

Abstract

PURPOSE:To enhance reliability economically with a compact configuration by distributing and arranging circuit breakers not in a main DC circuit but for each unit circuit on the DC output side corresponding to each phase of the AC input of a converter. CONSTITUTION:This apparatus is composed of an exciting power source 1, a load 2, a transition detector 3 and a controller 4. The load 2 comprises a superconductor coil 5 which is formed by winding a superconductor. The exciting power source 1 comprises a converter 6, circuit breakers 7 which cut off the connection between the converter 6 and the superconductor coil 5 when the superconductor coil 5 is changed into the normal conducting state, a coil 8, a capacitor 9 and a protecting resistor 10. The converter 6 comprises two converter 6A each having an input terminal 11 of three-phase AC. The circuit breaker 7 is provided for every unit circuit on the DC output side corresponding to each phase of the AC input of a thyristor 6B. Six circuit breakers are provided for each thyristor 6B, and total of 12 circuit breakers are provided. In this way, the number of the circuit breakers can be decreased, and the compact configuration and the low cost are made possible. The possibility of the fail in circuit breaking can be decreased, and the reliability is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超伝導マグネットシステムに係り、特に高電圧
・大電流電源を備えた核融合装置やエネルギ貯蔵装置に
好適な超伝導マグネットシステムに間する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a superconducting magnet system, and particularly to a superconducting magnet system suitable for a nuclear fusion device or an energy storage device equipped with a high voltage/large current power source. do.

〔従来の技術〕[Conventional technology]

一般的に超伝導マグネットシステムは、超伝導体を巻回
して成る超伝導コイルと、交流電流を直流電流に変換す
る変換器を有し、変換器を制御して超伝導コイルに通電
する励磁電源とを備えている。ところで、超伝導マグネ
ントシステムにおいては、超伝導コイルが常伝導状態に
転位した場合に超伝導コイルを保護することが必要であ
る。このため従来は、特開昭63−3405号に記載の
ように、変換器と超伝導コイルとを接続する直流主回路
に直流遮断器を設置して、超伝導コイルが常伝導転移し
たことを検知した場合、この直流遮断器を開くことによ
り励磁電源と超伝導コイルの連絡を断ち、超伝導コイル
のエネルギーを超伝導コイルに並列に接続された抵抗に
消費させて超伝導コイルを保護するようにしていた。
Generally, a superconducting magnet system has a superconducting coil made by winding a superconductor, a converter that converts alternating current to direct current, and an excitation power source that controls the converter and energizes the superconducting coil. It is equipped with By the way, in a superconducting magnet system, it is necessary to protect the superconducting coil when the superconducting coil is transposed to a normal conducting state. For this reason, conventionally, as described in Japanese Patent Application Laid-Open No. 63-3405, a DC breaker was installed in the DC main circuit connecting the converter and the superconducting coil to detect when the superconducting coil has transitioned to normal conduction. When detected, this DC circuit breaker is opened to cut off the connection between the excitation power source and the superconducting coil, and the energy of the superconducting coil is consumed by a resistor connected in parallel to the superconducting coil to protect the superconducting coil. I was doing it.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら上記従来技術では、変換器と超伝導コイル
とを接続する直流主回路に直流遮断器を設置する構成で
あるため、直流遮断器の容量に限界があり、核融合装置
やエネルギー貯蔵装置等に用いられる高電圧及び大電流
のシステムには対応できないという問題があった。
However, in the above conventional technology, the DC circuit breaker is installed in the DC main circuit that connects the converter and the superconducting coil, so there is a limit to the capacity of the DC circuit breaker, and it is not suitable for nuclear fusion devices, energy storage devices, etc. There was a problem in that it was not compatible with the high voltage and large current systems used.

即ち、現在の直流遮断器の容量には上限があり、核融合
装置やエネルギー貯蔵装置に用いられる大容量のシステ
ムでは多数の遮断器を用いることになる。このなめ、ス
ペース、配線、経済性の点から非現実的な構成となる。
That is, there is an upper limit to the capacity of current DC circuit breakers, and large-capacity systems used in nuclear fusion devices and energy storage devices require the use of a large number of circuit breakers. This configuration is unrealistic in terms of space, wiring, and economy.

また、多数の遮断器を同時に動作させることは極めて困
難であり、遮断失敗時には回路部品ひいては負荷超伝導
コイルの焼損という事態を招く恐れがある。
Furthermore, it is extremely difficult to operate a large number of circuit breakers at the same time, and when circuit breakers fail, there is a risk that the circuit components and even the load superconducting coils will be burnt out.

本発明の目的は、遮断器の適切な設置により小型かつ経
済的で信頼性の高い超伝導マグネットシステムを提供す
ることにある。
An object of the present invention is to provide a compact, economical, and highly reliable superconducting magnet system by appropriately installing a circuit breaker.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、遮断器を直流主回路でなく、変換器の交流
入力の各相に対応する直流出力側の各単位回路毎に分散
配置することにより達成される。
The above object is achieved by distributing the circuit breakers not in the main DC circuit but in each unit circuit on the DC output side corresponding to each phase of the AC input of the converter.

遮断器は機械的遮断器即ちスイッチでも良いが、ゲート
入力により回路を遮断するサイリスタで構成することも
できる。
The circuit breaker may be a mechanical circuit breaker or switch, but may also be a thyristor that interrupts the circuit by gate input.

〔作用〕[Effect]

変換器のn個の直流出力側各単位回路(アーム)に設け
られた遮断器は常時は閉状態であるが、常伝導転移時は
それぞれの単位回路を開路するように動作する。単位回
路を流れる電流は直流主回路の1 / nとなる上、直
流主回路の電流と異なり、変換素子の開閉によって電流
が断続する脈流となっている。即ぢ、ここに流れる電流
波形は単相交流を半波整流した直後の電流波形に近く、
変換素子が開の間は電流が零となる。従って、ここに置
かれた遮断器は主9回路の1 / nの脈流を遮断する
ことになり、変換素子の閉極後少なくとも半サイクルの
時間を経れば電流が零となるため、例えば機械的遮断器
の場合は遮断時に発生したスノく−クが短時間で消滅し
、直流遮断よりも確実に動作し、遮断失敗の恐れが少な
くなる。また、スパークを確実に消滅できるため、遮断
器の小形化、低コスト化が可能となると共に、遮断器の
個数を低減でき同時操作が容易となるので、同時操作の
困難性による遮断失敗の恐れも低減する。
The circuit breakers provided in each of the n DC output side unit circuits (arms) of the converter are normally closed, but operate to open the respective unit circuits during normal conduction transition. The current flowing through the unit circuit is 1/n of that of the DC main circuit, and unlike the current of the DC main circuit, it is a pulsating current that is interrupted by opening and closing of the conversion element. In other words, the current waveform flowing here is close to the current waveform immediately after half-wave rectification of single-phase AC,
The current is zero while the conversion element is open. Therefore, the circuit breaker placed here will interrupt the ripple current of 1/n in the main 9 circuits, and the current will become zero after at least half a cycle after the conversion element is closed. In the case of a mechanical circuit breaker, the snoke that occurs when the circuit is shut off disappears in a short period of time, and it operates more reliably than a DC circuit breaker, with less risk of circuit breakage failure. In addition, since sparks can be reliably extinguished, circuit breakers can be made smaller and lower in cost, and the number of circuit breakers can be reduced, making simultaneous operation easier, so there is a risk of failure due to difficulty in simultaneous operation. It also reduces

遮断器にサイリスタ例えばGTOを用いた場合には、閉
極後少なくとも半サイクルの時間を経れば電流が零とな
るため、遮断のための逆電圧が脈流のピーク値より小さ
くても確実に遮断できる。
If a thyristor such as a GTO is used as a circuit breaker, the current will be zero after at least half a cycle after closing, so even if the reverse voltage for breaking is smaller than the peak value of pulsating current, it will be reliable. Can be blocked.

このため同様に遮断失敗の恐れを低減できると共に、遮
断器の容量を小さくでき、小形化、低コスト化が可能と
なる。また機械的遮断器に比べて遮断の応答性が向上す
る。
Therefore, it is possible to similarly reduce the risk of failure of circuit breaker, and also to reduce the capacity of the circuit breaker, making it possible to downsize and reduce costs. Also, the response of breaking is improved compared to mechanical circuit breakers.

各単位回路の開動作が終了すると、変換器を流れていた
直流出力電流は負荷超伝導コイルに転流し、超伝導コイ
ルに貯わえられていたエネルギーはこれに並列に接続さ
れた抵抗によりジュール熱として取り出され、超伝導コ
イルの過熱損傷を防ぐ。
When the opening operation of each unit circuit is completed, the DC output current flowing through the converter is commutated to the load superconducting coil, and the energy stored in the superconducting coil is converted into joules by the resistor connected in parallel. It is extracted as heat and prevents overheating damage to the superconducting coil.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図〜第3図により説明す
る。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 3.

第1図において、本実施例の超伝導マグネットシステム
は、励磁電源1、負荷2、転移検出器3及び制御器4と
からm成され、負荷2は超伝導体を巻回して成る超伝導
コイル5からなっている。
In FIG. 1, the superconducting magnet system of this embodiment is composed of an excitation power source 1, a load 2, a transition detector 3, and a controller 4, where the load 2 is a superconducting coil formed by winding a superconductor. It consists of 5.

励磁電源1は、超伝導コイル5への通電を行うため交流
電流を直流電流に変換する変換器6と、超伝導コイル5
が常伝導状態に転位した場合に変換器6と超伝導コイル
5の連絡を断つ遮断器7と、フィルタの役目をするコイ
ル8及びコンデンサ9と、超伝導コイル5に並列に設け
られた保護抵抗10とからなっている。
The excitation power source 1 includes a converter 6 that converts alternating current into direct current in order to energize the superconducting coil 5, and a superconducting coil 5.
A circuit breaker 7 that disconnects the converter 6 and the superconducting coil 5 when the superconducting coil 5 changes to a normal conducting state, a coil 8 and a capacitor 9 that serve as filters, and a protective resistor provided in parallel with the superconducting coil 5. It consists of 10.

本実施例では励rii電源1は6相交流を直流に変換す
る例を示しており、変換器6は各々3相交流の流入力端
子11を備えた2組の変換器6Aからなっている。
In this embodiment, the excitation power source 1 converts six-phase alternating current into direct current, and the converter 6 includes two sets of converters 6A, each having a three-phase alternating current input terminal 11.

また各変換器6Aは、第2図に示すように、交流入力の
各相に対応して設けられた6個のサイリスタ6Bからな
り、遮断器7はサイリスタ6Bの出力回路6C@に設け
られている。即ち、遮断器7はサイリスタ変換器6Aの
交流入力の各相に対応する直流出力側の各単位回路毎に
設けられており、その数は各サイリスタ変換器6A毎に
6個で合計12個である。また、遮断器7はR械的遮断
器即ち遮断スイッチで構成されている。
Each converter 6A is composed of six thyristors 6B provided corresponding to each phase of the AC input, as shown in FIG. 2, and the circuit breaker 7 is provided in the output circuit 6C@ of the thyristor 6B. There is. That is, the circuit breaker 7 is provided for each unit circuit on the DC output side corresponding to each phase of the AC input of the thyristor converter 6A, and the number of circuit breakers is 12 in total, 6 for each thyristor converter 6A. be. Further, the circuit breaker 7 is constituted by an R mechanical circuit breaker, that is, a cutoff switch.

以上の超伝導マグネットシステムにおいては、通常は交
流入力端子11より入力された交流電流はサイリスタ変
換器6により直流電流に変換され、閉路状態の遮断器7
、コイル8及び超伝導コイル5という経路で電流が流れ
る。しかし超伝導コイル5に常伝導転存が生じると、こ
の超伝導マグネットシステムは以下ように動作する。
In the above-described superconducting magnet system, normally, the alternating current input from the alternating current input terminal 11 is converted to direct current by the thyristor converter 6, and the circuit breaker 7 in the closed state is converted to direct current by the thyristor converter 6.
, coil 8 and superconducting coil 5. However, when normal conduction transposition occurs in the superconducting coil 5, this superconducting magnet system operates as follows.

転移検出器3は超伝導コイル5の抵抗を検出することに
より超伝導コイル5が常伝導状態に転移したことを検知
する。制御器4は転移検出器3からの常伝導転移発生信
号を受けて各遮断器7を開極する。
The transition detector 3 detects that the superconducting coil 5 has transitioned to a normal conduction state by detecting the resistance of the superconducting coil 5. The controller 4 receives the normal conduction transition occurrence signal from the transition detector 3 and opens each circuit breaker 7 .

遮断器7が開極すると、超伝導コイル5に流れていた電
流は変換器6から保護用の抵抗10に分流し、ここでジ
ュール熱としてエネルギーが回収され、超伝導コイル5
や他の回路素子が過熱することを防止する。
When the circuit breaker 7 opens, the current flowing through the superconducting coil 5 is shunted from the converter 6 to the protective resistor 10, where the energy is recovered as Joule heat and the superconducting coil 5
and other circuit elements from overheating.

ここで、本実施例の遮断器7の作用を更に詳細に知るた
めに、例えば60000V又は30000Aという核融
合用の超伝導マグネットシステムを考える。従来例では
、第4図に示すように、電a20の変fA器21と超伝
導コイル5とを接続する直流主回路に多数の直流遮断器
22を設置している。この場合、遮断器22として現状
の最大容址級(1500V、7500A)のものを用い
なとすると、上記高電圧、大電流のシステムでは4直列
−5並列の20台の遮断器が必要となってくる。このた
め、スペース、経、済性の点から非現実的であるだけで
なく、20台の遮断器を同時に動作させることは極めて
困難であり、最悪の場合には遮断失敗に至る可能性があ
る。
Here, in order to understand the operation of the circuit breaker 7 of this embodiment in more detail, consider a superconducting magnet system for nuclear fusion of, for example, 60,000 V or 30,000 A. In the conventional example, as shown in FIG. 4, a large number of DC circuit breakers 22 are installed in the DC main circuit connecting the F/A transformer 21 of the electric a20 and the superconducting coil 5. In this case, if the current maximum capacity class (1500V, 7500A) is used as the circuit breaker 22, the above high voltage, large current system would require 20 circuit breakers in 4 series and 5 parallel configurations. It's coming. For this reason, it is not only impractical in terms of space, economy, and economy, but also extremely difficult to operate 20 circuit breakers at the same time, and in the worst case, it may lead to failure. .

一方、本実施例では、サイリスタ変換器6の6本の各ア
ーム6Cに遮断器7を設けるため、脈流遮断となり、遮
断器(60000V、50000A)が小形化、低コス
ト化できるだけでなく遮断失敗の恐れもなくなる。
On the other hand, in this embodiment, since the circuit breaker 7 is provided in each of the six arms 6C of the thyristor converter 6, pulsating current is cut off, and the circuit breaker (60000V, 50000A) can not only be made smaller and lower in cost, but also fail to break. There will be no fear of

今このことを第3図を用いて詳細に説明する。This will now be explained in detail using FIG.

変換器6の6個の直流出力側各単位回路(アーム)6C
には、第3図に示すように直流主回路の電流とは異なり
、サイリスタ6Bの開閉によって断続する脈流が流れ、
この脈流の電流量は直流主回路の電流の1/6である。
Each unit circuit (arm) 6C on the DC output side of the converter 6
As shown in Fig. 3, unlike the current in the DC main circuit, a pulsating current flows intermittently due to the opening and closing of the thyristor 6B.
The amount of current of this pulsating current is 1/6 of the current of the DC main circuit.

即ち、アーム6Cを流れる電流波形は単相交流を半波整
流した直後の電流波形に近く、サイリスタ6Bが開の間
は電流が零となる。従って、ここに置かれた遮断器7は
主回路の1/6の脈流を遮断することになり、サイリス
タ6Bの閉極後少なくとも半サイクルの時間を経れば電
流が零となるため、仮に遮断時にスパークが発生したと
してもそのスパークは短時間で消滅し、直流遮断よりも
確実に動作し、遮断失敗の恐れが少なくなる。また、ス
パークを確実に消滅できるため、遮断器の小形1ヒ、低
コスト化が可能となると共に、遮断器の個数を低減でき
同時操作が容易となるので、同時操作の困難性による遮
断失敗の恐れも低減する。
That is, the current waveform flowing through the arm 6C is close to the current waveform immediately after half-wave rectification of single-phase alternating current, and the current is zero while the thyristor 6B is open. Therefore, the circuit breaker 7 placed here will interrupt 1/6 of the pulsating current in the main circuit, and the current will become zero after at least half a cycle after the thyristor 6B is closed. Even if a spark is generated when shutting off, the spark disappears in a short time, and it operates more reliably than DC shutoff, reducing the risk of failure. In addition, since sparks can be extinguished reliably, circuit breakers can be made smaller and lower in cost, and the number of circuit breakers can be reduced, making simultaneous operation easier, which prevents failures due to difficulty in simultaneous operation. It also reduces fear.

本発明の他の実施例を第5図及び第6図により説明する
。第5図は第1図のa械的遮断器即ちスイッチ7の代わ
りに、ゲート入力により回路を遮断できる機能を存する
サイリスタ、即ちゲートターンオフサイリスタ(GTO
)7Aを用いた実施例である。この場合も、GTO7A
はサイリスタ変換器6の6本の各アーム6C(第2図参
照)に設けられており、サイリスタの閉極後少なくとも
半サイクルの時間を経れば電流が零となるため(第3図
参照)、GTOを遮断するためのゲート電圧が脈流のピ
ーク値より小さくても確実に遮断できる。このため同様
に遮断失敗の恐れを低減できると共に、遮断器の容量を
小さくでき、小形化、低コスト化が可能となる。またG
TOは機械的遮断器に比べて遮断の応答性が優れている
という利点がある。
Another embodiment of the present invention will be described with reference to FIGS. 5 and 6. FIG. 5 shows a thyristor that has the function of breaking the circuit by a gate input, that is, a gate turn-off thyristor (GTO), in place of the mechanical breaker or switch 7 in FIG. 1.
) This is an example using 7A. In this case as well, GTO7A
is provided in each of the six arms 6C of the thyristor converter 6 (see Figure 2), and the current becomes zero after at least half a cycle after the thyristor is closed (see Figure 3). Even if the gate voltage for interrupting the GTO is smaller than the peak value of the pulsating flow, it can be reliably interrupted. Therefore, it is possible to similarly reduce the risk of failure of circuit breaker, and also to reduce the capacity of the circuit breaker, making it possible to downsize and reduce costs. G again
TO has an advantage over mechanical circuit breakers in that it has superior disconnection responsiveness.

第6図は遮断器としてトリガ入力端子Gによる外部から
の強制溶断可能なヒユーズ7Bを設けたものであり、こ
の場合も変換器の各アーム6C(第2図参照)に遮断機
能を持たせることにより第1図の実施例と同等の効果が
得られる。
Fig. 6 shows a circuit breaker equipped with a fuse 7B that can be forcibly blown from the outside using a trigger input terminal G. In this case as well, each arm 6C of the converter (see Fig. 2) should have a breaking function. Accordingly, the same effect as the embodiment shown in FIG. 1 can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、遮断器を変換器の直流出力側の各単位
回路毎に設けたので、遮断器の個数の低減、小形化、低
コスト化が可能となり、かつ遮断失敗の恐れを低減でき
、超伝導マグネットシステムの小形化、経済性の向上、
信顆性の向上が図れる効果がある。
According to the present invention, since a circuit breaker is provided for each unit circuit on the DC output side of the converter, the number of circuit breakers can be reduced, the size can be reduced, the cost can be reduced, and the possibility of failure of circuit breaker can be reduced. , miniaturization of superconducting magnet systems, improvement of economic efficiency,
This has the effect of improving reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による超伝導マグネットシス
テムの回路図であり、第2図はその超伝導マグネットシ
ステムの変換器及び遮断器部分の詳細回路図であり、第
3図はその変換器の各単位出力回路を流れる脈流を示す
図であり、第4図は従来の超伝導マグネットシステムを
湿す回路図であり、第5図は本発明の他の実施例による
変換器及び遮断器部分を示す構成図であり、第6図は本
発明の更に他の実施例による変換器及び遮断器部分を示
す構成図である。 符号の説明 1・・・励磁電源 5・・・超伝導コイル 6・・・変換器 6C・・・直流出力側単位回路 7・・・遮断器 7B・・・GTO
FIG. 1 is a circuit diagram of a superconducting magnet system according to an embodiment of the present invention, FIG. 2 is a detailed circuit diagram of the converter and circuit breaker portions of the superconducting magnet system, and FIG. FIG. 4 is a circuit diagram of a conventional superconducting magnet system, and FIG. 5 is a diagram showing a converter and a circuit breaker according to another embodiment of the present invention. FIG. 6 is a block diagram showing a converter and circuit breaker part according to still another embodiment of the present invention. Explanation of symbols 1... Excitation power source 5... Superconducting coil 6... Converter 6C... DC output side unit circuit 7... Breaker 7B... GTO

Claims (4)

【特許請求の範囲】[Claims] (1)超伝導体を巻回して成る超伝導コイルと、交流電
流を直流電流に変換する変換器及び前記超伝導コイルが
常伝導状態に転位したときに変換器と超伝導コイルの連
絡を断つ遮断器を有し、前記変換器を制御して前記超伝
導コイルに通電する励磁電源とを備えた超伝導マグネッ
トシステムにおいて、 前記遮断器を、前記変換器の交流入力の各相に対応する
直流出力側の各単位回路毎に設けたことを特徴とする超
伝導マグネットシステム。
(1) A superconducting coil formed by winding a superconductor, a converter that converts alternating current to direct current, and when the superconducting coil transitions to a normal conduction state, communication between the converter and the superconducting coil is cut off. A superconducting magnet system including a circuit breaker and an excitation power supply that controls the converter and energizes the superconducting coil, wherein the circuit breaker is connected to a DC input corresponding to each phase of the AC input of the converter. A superconducting magnet system characterized by being provided for each unit circuit on the output side.
(2)前記遮断器を、ゲート入力により回路を遮断する
サイリスタで構成したことを特徴とする請求項1記載の
超伝導マグネットシステム。
(2) The superconducting magnet system according to claim 1, wherein the circuit breaker is constituted by a thyristor that interrupts the circuit by gate input.
(3)交流電流を直流電流に変換する変換器及び超伝導
コイルが常伝導状態に転位したときに変換器と超伝導コ
イルの連絡を断つ遮断器を有し、前記変換器を制御して
超伝導コイルに通電する励磁電源において、 前記遮断器を、前記変換器の入力交流の各相に対応する
出力の各単位回路毎に設けたことを特徴とする励磁電源
(3) It has a converter that converts alternating current into direct current and a circuit breaker that cuts off communication between the converter and the superconducting coil when the superconducting coil transitions to a normal conduction state, and controls the converter to An excitation power supply that energizes a conductive coil, wherein the breaker is provided for each output unit circuit corresponding to each phase of input AC of the converter.
(4)交流電流を直流電流に変換する変換器を有し、こ
の変換器を制御して超伝導コイルに通電する励磁電源用
の変換器装置において、 前記変換器の入力交流の各相に対応する出力の各単位回
路毎に、超伝導コイルが常伝導状態に転位したときに変
換器と超伝導コイルの連絡を断つ遮断器を設けたことを
特徴とする変換器装置。
(4) A converter device for an excitation power source that has a converter that converts alternating current to direct current, and controls this converter to energize a superconducting coil, corresponding to each phase of the input alternating current of the converter. 1. A converter device characterized in that a circuit breaker is provided for each unit circuit of an output that cuts off communication between the converter and the superconducting coil when the superconducting coil transitions to a normal conduction state.
JP1049281A 1989-03-01 1989-03-01 Superconducting magnet apparatus Pending JPH02228007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1049281A JPH02228007A (en) 1989-03-01 1989-03-01 Superconducting magnet apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1049281A JPH02228007A (en) 1989-03-01 1989-03-01 Superconducting magnet apparatus

Publications (1)

Publication Number Publication Date
JPH02228007A true JPH02228007A (en) 1990-09-11

Family

ID=12826488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1049281A Pending JPH02228007A (en) 1989-03-01 1989-03-01 Superconducting magnet apparatus

Country Status (1)

Country Link
JP (1) JPH02228007A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007060833A (en) * 2005-08-25 2007-03-08 Toshiba Mitsubishi-Electric Industrial System Corp Power converter for superconducting coil

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007060833A (en) * 2005-08-25 2007-03-08 Toshiba Mitsubishi-Electric Industrial System Corp Power converter for superconducting coil
JP4721825B2 (en) * 2005-08-25 2011-07-13 東芝三菱電機産業システム株式会社 Power converter for superconducting coils

Similar Documents

Publication Publication Date Title
CA2165101C (en) Power converter protecting apparatus for electric power system
US5305174A (en) Method of and device for protecting electrical power system
JP2004072846A (en) Rectifying device
JPWO2009104277A1 (en) Magnetic energy regenerative switch with protection circuit
JPH11235039A (en) Power conversion apparatus
JPH06276756A (en) Converter
JPH02228007A (en) Superconducting magnet apparatus
JP4528552B2 (en) Excitation control device for synchronous machine
JPH09233833A (en) Ac/dc converter
JP3399905B2 (en) Three-phase current limiter
JP2003061241A (en) Protector of superconducting power storage system
JP2634692B2 (en) Secondary overvoltage protection device for AC-excited synchronous machine
JPH0866047A (en) Voltage type power converter
JPS63114501A (en) Protective system of power converter for dc electric rolling stock
JPH1042461A (en) Capacitor protective device for dc filter
JPH10174441A (en) Current form conversion device
JP2001333537A (en) Power supply facility
JPH0834665B2 (en) AC / DC converter
JP2739022B2 (en) High-voltage three-phase distribution line phase switching device
JPH0512891Y2 (en)
JP2653639B2 (en) Superconducting magnet system
JP3746552B2 (en) Abnormality confirmation method of instantaneous voltage drop countermeasure device
JPH1042460A (en) Capacitor protective device for dc filter
JPH04217814A (en) Input overvoltage protective circuit for semiconductor power converter
JP3367504B2 (en) Three-phase rectification type current limiting device