JPH02144616A - Cooperative operation control system for reactive power compensating device - Google Patents

Cooperative operation control system for reactive power compensating device

Info

Publication number
JPH02144616A
JPH02144616A JP63298510A JP29851088A JPH02144616A JP H02144616 A JPH02144616 A JP H02144616A JP 63298510 A JP63298510 A JP 63298510A JP 29851088 A JP29851088 A JP 29851088A JP H02144616 A JPH02144616 A JP H02144616A
Authority
JP
Japan
Prior art keywords
reactive power
svc
circuit
voltage
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63298510A
Other languages
Japanese (ja)
Other versions
JPH0642183B2 (en
Inventor
Hideki Yamamura
山村 英機
Norikazu Kawakami
了司 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP63298510A priority Critical patent/JPH0642183B2/en
Publication of JPH02144616A publication Critical patent/JPH02144616A/en
Publication of JPH0642183B2 publication Critical patent/JPH0642183B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To attain the cooperative operation control with a quip response by comparing the outputs of control circuits with each other in a reactive power compensating device (SVC) so that the same quantity of reactive power is generated, integrating a difference by an integrator, adding the output of the integrator to the input of an arithmetic circuit to be followed in the SVC to always compensate reactive power. CONSTITUTION:A difference signal to be the output of an adder 88 for comparing a reactive power supply signals from limiter circuits 85, 95 with each other is added to the input of the limiter circuit 85 by an adder 82 through an integrating circuit 89. In this case, an SVC 1 is controlled so as to follow up an SVC 2, and in the case of allowing the SVC 2 to follow up the SVC 1, an output signal from the circuit 89 may be added to an adder 92. Thus, cooperative operation between the SVC 1 and SVC 2 can be quickly attained by setting up the time constant of the integrating circuit 89 to approximately the same as the integration constants of proportional integrators 84, 94.

Description

【発明の詳細な説明】 [産業上の利用性fi] 本発明は、系統の電圧変動制御機能等をもたせt−、無
効電力補償装置(以下SVCと略す)と別の同系統に接
続された複数のSvCの協調運転におけるj!4御方式
に関するものである。
[Detailed Description of the Invention] [Industrial Applicability] The present invention provides a voltage fluctuation control function for a grid, and a variable power compensator (hereinafter abbreviated as SVC) connected to another same grid. j! in cooperative operation of multiple SvCs! This is related to the 4-way method.

[背景技術と問題点] 変電所設置のSVCは系統電圧を定電圧制御(ムVR制
御という)シ、電圧変動を抑制するが、その系統に増設
するSVCと既設のsvcを連動する場合、例えば、電
圧、電流ツユどの各検出入力及び基準電圧に微妙な差が
あると全く逆の動作をするなどその結果、電圧変動を拡
大シ5、系統動揺を槓く不具合がある。これらの不具合
を防止する具体的手段として次のものがある。
[Background technology and problems] SVC installed in a substation performs constant voltage control (referred to as VR control) on the system voltage and suppresses voltage fluctuations, but when an SVC to be added to the system and an existing SVC are linked, for example, If there is a slight difference in the reference voltage and each detection input such as voltage, current, etc., the system will operate in the completely opposite manner, resulting in problems such as magnifying voltage fluctuations and disrupting the system. The following are specific measures to prevent these problems.

(1)電圧、電流検出回路及び基準電圧回路部品を高性
能化し、各制御定数を現場に即した定数に再@調整する
(1) Improve the performance of voltage and current detection circuits and reference voltage circuit components, and readjust each control constant to a constant that suits the site.

(2)第2図(イ)に系統に接続されたsyc i及び
5VC2を示し% (+1)はその制御回路を示す。
(2) Figure 2 (a) shows syc i and 5VC2 connected to the grid, and % (+1) indicates its control circuit.

ここでsve tの接続されている母線の電圧vlを補
償したい電圧とする。PT、より電圧信号v、、CT、
よりsyc i通電電流信’6’IQ+が検出され、(
0)図に示すように無効電力検出器0丁01で無効電力
が検出される。圭た、1・T2より電圧信号v、、、C
T、、より5vC2の通電電流信号1°2が検出され、
無効電力検出器QTO2で無効電力が検出される。これ
らQTOI 、QTO2よりの出力信号はiR制御信号
、つまりVTOよりの制御信号と合成され、電圧基準V
、。。
Here, the voltage vl of the bus to which sve t is connected is assumed to be the voltage to be compensated for. PT, the voltage signal v, ,CT,
syc i current signal '6'IQ+ is detected, (
0) As shown in the figure, reactive power is detected by reactive power detector 0-01. Keita, voltage signal v,,,C from 1・T2
An energizing current signal 1°2 of 5vC2 is detected from T, .
Reactive power is detected by reactive power detector QTO2. The output signals from these QTOI and QTO2 are combined with the iR control signal, that is, the control signal from the VTO, and the voltage reference V
,. .

、オヨびVvar2を捕正し、5vci及びSVC2の
制御信号Q1とQ2となり、このQx、Qsに基づいて
協調運転を行う。
, and Vvar2 are captured and become control signals Q1 and Q2 of 5vci and SVC2, and cooperative operation is performed based on these Qx and Qs.

ところが、上記無効電力のトランスデユーサの応答速度
(市販品O,SS程度)に限度があり、又この信号で電
圧基準を補正する時、一般に前記トランスデユーサの応
答速度より1桁程度の時間遅れで制御する(P、!制御
)必要があり(数S)、高速応答の協調運転制御は期待
できない。
However, there is a limit to the response speed of the reactive power transducer (commercially available products O, SS), and when correcting the voltage standard using this signal, it generally takes about an order of magnitude longer than the response speed of the transducer. It is necessary to control with a delay (P, ! control) (several S), and high-speed response cooperative operation control cannot be expected.

[発明の目的、構成] 本発明の目的は上述のように、SVCの協調運転の場合
、従来の制御方式では、系統動揺を招く不具合があるの
で、これを防止することにあり、各sycの制御出力信
号を比較し、その差が零になるように各SvC演算回路
の入力を補正する方式でS70間の協調運転制御をでき
るようにするものである。
[Objective and Structure of the Invention] As mentioned above, the object of the present invention is to prevent the conventional control method from causing system fluctuation in the case of cooperative operation of SVC, and to prevent this from occurring. This system enables cooperative operation control between S70 by comparing the control output signals and correcting the input of each SvC calculation circuit so that the difference becomes zero.

なお、本発明においては、前記第2図の従来方式におけ
るように各S V Cの無効電力量を検出する必要がな
いこともその特徴の一つとしている。
Note that one of the features of the present invention is that there is no need to detect the amount of reactive power of each SVC as in the conventional method shown in FIG.

つまり、制御装置内部信号で制御できるものである。In other words, it can be controlled by internal signals of the control device.

以下、図面に示す実施例より本発明を説明する。The present invention will be explained below with reference to embodiments shown in the drawings.

電源1に系統母線3が接続されるものとする。It is assumed that the system bus 3 is connected to the power supply 1.

なお、この間には電源インピーダンス2があるものとす
る。
Note that it is assumed that there is a power supply impedance 2 between them.

系統母線3と電圧補償対象母線Gとの間に変圧器5が接
続され、変圧器5の3次巻線に9で示すリアクトル、逆
並列接続サイリスタを直列接続してなる5VC2が接続
されている。また、系統母113と電圧補償対象母線θ
との間に変圧器4が接続されている。電圧補償対象母線
6に、8で示すリアクトル、逆並列接続サイリスタを直
列接続してなるSVC1が接続され、電圧検出P7.7
が結合される。
A transformer 5 is connected between the system bus 3 and the voltage compensation target bus G, and the tertiary winding of the transformer 5 is connected to a 5VC2 formed by connecting a reactor 9 and an anti-parallel connected thyristor in series. . In addition, the system bus 113 and the voltage compensation target bus θ
A transformer 4 is connected between the two. An SVC1 consisting of a reactor indicated by 8 and an anti-parallel connected thyristor connected in series is connected to the voltage compensation target bus 6, and voltage detection P7.7
are combined.

80.90はそれぞれPTt 7よりの電圧信号を入力
とするkVR制御装置である。
80 and 90 are kVR control devices each receiving a voltage signal from PTt 7 as input.

8■はvlの検出回路であり、ここで検出された電圧信
号は、100で示す母線6の基準電圧信号v1aftを
減算して比例積分器84に入力し、その出力信号はリミ
ッタ回路85に入力する。
8■ is a detection circuit for vl, the voltage signal detected here is inputted to the proportional integrator 84 after subtracting the reference voltage signal v1aft of the bus 6 indicated by 100, and the output signal is inputted to the limiter circuit 85. do.

一方、 91はv2の検出回路であり、ここで検出され
た電圧信号は基準信号vrs、2を減算して比例積分器
94に入力し、その出力信号はリミッタ回路95に入力
する。ここで、VreriとVrer2とはそれぞれV
、、V2における基準電圧である。
On the other hand, 91 is a detection circuit for v2, the voltage signal detected here is inputted to a proportional integrator 94 after subtracting the reference signal vrs, 2, and its output signal is inputted to a limiter circuit 95. Here, Vreri and Vrer2 are each V
, , is the reference voltage at V2.

リミ・!夕回路85は、5VC1の制御量に対応するも
のであり、ここでは、比例積分器84より出力する電圧
補償対象母線6の電圧の補正電圧信号に基づいて、5v
ciのサイリスクの通電制御を行う無効電力量i[f!
信号VQIをリミッタ85によって、5VCIの制御範
囲内にとどめ、712217回路86を介し、パルス発
生回路87に入力し、点弧パルスを生じる。
Rimi! The evening circuit 85 corresponds to the control amount of 5VC1, and here, based on the correction voltage signal of the voltage of the voltage compensation target bus 6 output from the proportional integrator 84, the control amount of 5V is determined.
The reactive power amount i [f!
The signal VQI is kept within a control range of 5VCI by a limiter 85 and is inputted to a pulse generation circuit 87 via a 712217 circuit 86 to generate an ignition pulse.

これに対し、リミッタ回路95は、5VC2の制御量に
対応するものであり、ここでは、比例積分器94の補正
電圧信号に基づいて、5ve2の・サイリスクの通電制
御を行う無効電力通電量信号vanを5VC2の制御範
囲にとどめ、)1クシ四ン回路9Gを介し、パルス発生
回路97に入力する。−・般的に、5VC2の接続され
ζいる電圧v3は、電圧補償対象母線の電圧V、と異な
っているから、パルス発生回路97では、パルス発生回
路87とは異なり、電圧v2を基準に5VC2の点弧パ
ルス位相が決定される。
On the other hand, the limiter circuit 95 corresponds to the control amount of 5VC2, and here, based on the correction voltage signal of the proportional integrator 94, a reactive power energization amount signal van is used to control the energization of 5ve2 and si-risk. is kept within the control range of 5VC2 and is input to the pulse generation circuit 97 via the 1-comb circuit 9G. - Generally, the voltage v3 to which 5VC2 is connected is different from the voltage V of the voltage compensation target bus, so the pulse generation circuit 97, unlike the pulse generation circuit 87, The firing pulse phase of is determined.

88はリミッタ回路85.95よりの無効電力通電量信
号を比較する加算器で、その出力の差(3号は積分回路
89を介して加算器82でリミッタ回路85の入力に加
算される。本例の場合、5VC2に5VC1を追従制御
するものであり、5YCIにSVC2を追従させたい場
合は積分回路89よりの出力信号を加算器92に加算す
ればよい。
88 is an adder that compares the reactive power energization amount signals from the limiter circuits 85 and 95, and the difference between the outputs (No. 3 is added to the input of the limiter circuit 85 by the adder 82 via the integrating circuit 89. In the case of the example, 5VC1 is controlled to follow 5VC2, and if it is desired to make SVC2 follow 5YCI, the output signal from the integrating circuit 89 may be added to the adder 92.

ここで、積分回路89の時定数は比例積分器84゜94
の積分定数と同程度にすれば、5VCIとSvC2の協
調運転は高速に実現できる。また積分は不完全積分でも
よい。
Here, the time constant of the integrating circuit 89 is the proportional integrator 84°94
If the integral constant is made to be approximately the same as that of , cooperative operation of 5VCI and SvC2 can be realized at high speed. Further, the integral may be an incomplete integral.

IJ ミッタ回路85.81Eの制御出力、つまり無効
電力量N1信号vQl =VQ2ニ基づイテSVC1、
S%lC2のサイリスタを位相制御し、リアクトル電流
を増減し、電圧補償対象母線6に対し、発生無効電力を
調整して、電圧変動を抑制する。
IJ Mitter circuit 85. Control output of 81E, that is, reactive power amount N1 signal vQl = VQ2 based on SVC1,
The phase of the thyristor S%lC2 is controlled, the reactor current is increased or decreased, and the generated reactive power is adjusted for the voltage compensation target bus 6 to suppress voltage fluctuations.

IJ lツタ回路85の出力信号”Qlと95の出力信
号VQ2の出力を加算器88で比較し、Y、l>Y。
The adder 88 compares the output signal "Ql" of the IJ l vine circuit 85 and the output signal "VQ2" of the 95, and Y, l>Y.

2、又は”Ql<’/Q2であれば、この差を積分器8
9で積分し、その出力信号を加算器82でリミッタ回路
85の入力に加算する。この信号にてVa、+”12に
なるようにマイナーループを制御する。
2, or if “Ql<’/Q2, this difference is calculated by the integrator 8.
9 and its output signal is added to the input of a limiter circuit 85 by an adder 82. With this signal, the minor loop is controlled so that Va becomes +''12.

v、、&−FvQ2テあれば、Q+=QBテあるノ”I
!、5VC1と5vC2の発生無効電力量は等しくなり
、協調運転制御を行うことになる。
If v, , &-FvQ2, then Q+=QB exists.”I
! , 5VC1 and 5vC2 have the same amount of generated reactive power, and cooperative operation control is performed.

[発明の効果] 本発明では、協調運転されるS V Cにおいて、同量
の無効電力が発生するように、これらSvCの制御回路
の出力を比較し、この差分を積分器にで積分してこの出
力を追従させたいSYCの演算回路の入力に加算して常
時補正しているので、従来のように、各SVCの制御回
路の高精度な部品の使用又は微妙な現場調整を行う必要
はなく、円滑にsyc iとSVC2の協調運転制御を
行うことができる。
[Effect of the invention] In the present invention, the outputs of the control circuits of these SVCs are compared and the difference is integrated by an integrator so that the same amount of reactive power is generated in the SVCs operated in coordination. Since this output is added to the input of the arithmetic circuit of the SYC to be tracked and constantly corrected, there is no need to use high-precision parts for the control circuit of each SVC or to make delicate on-site adjustments as in the past. , it is possible to smoothly perform cooperative operation control of syci and SVC2.

更に本発明では無効電力量を検出する変成器等が不要で
あるので、設備費、信頼性に於いても育利である。
Furthermore, since the present invention does not require a transformer or the like for detecting the amount of reactive power, it is advantageous in terms of equipment costs and reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例を示す。 第2図(イ)は系統におけるSVCの複数配置を示し、
同(0)は前記SvCの連動運転のための制御回路を示
す。 7・・・電圧検出P丁、8 ・5VC2,9−5VC1
゜80.90・・・ムVR制御装置、81.91−・・
電圧検出回路、82.92・・・加算器、83.93・
・・基準電圧信号、84.94・・・比例積分器、85
.95・・・リミッタ回路、88.98・・・ファンク
シーン回路、87.97・・・パルス発生回路、8ト・
・積分回路、100・・・基準値信号。 嶌 1 図 亨2尺 (ロ)
FIG. 1 shows an embodiment of the invention. Figure 2 (a) shows the arrangement of multiple SVCs in the system,
(0) indicates a control circuit for interlocking operation of the SvC. 7... Voltage detection P-d, 8 ・5VC2, 9-5VC1
゜80.90...mu VR control device, 81.91-...
Voltage detection circuit, 82.92... Adder, 83.93.
・・Reference voltage signal, 84.94 ・・Proportional integrator, 85
.. 95...Limiter circuit, 88.98...Funk scene circuit, 87.97...Pulse generation circuit, 8t.
・Integrator circuit, 100...Reference value signal. Shima 1 figure 2 shaku (ro)

Claims (1)

【特許請求の範囲】[Claims] (1)系統の電圧変動制御等を目的として設置する無効
電力補償装置の連動運転において、電圧補償対象母線の
電圧信号と当該各母線の基準電圧信号の差信号を各比例
積分回路を介して各演算回路に入力し、それぞれの無効
電力補償装置のサイリスタ制御無効電力通電量信号を演
算するとともに、前記無効電力通電量信号の差を積分回
路にて、積分し、該積分出力を追従させたい無効電力補
償装置の演算回路の入力に加算して複数無効電力補償装
置を協調運転制御することを特徴とする無効電力補償装
置の協調運転制御方式。
(1) In the interlocking operation of the reactive power compensator installed for the purpose of controlling voltage fluctuations in the grid, the difference signal between the voltage signal of the voltage compensation target bus and the reference voltage signal of each bus is transmitted through each proportional-integral circuit. It is input to an arithmetic circuit and calculates the thyristor control reactive power energization amount signal of each reactive power compensator, and the difference between the reactive power energization amount signals is integrated in an integrating circuit, and the reactive power to be made to follow the integral output is A cooperative operation control method for a reactive power compensator, characterized in that a plurality of reactive power compensators are controlled in a cooperative manner by adding to an input of an arithmetic circuit of the power compensator.
JP63298510A 1988-11-25 1988-11-25 Coordinated operation control system of reactive power compensator Expired - Lifetime JPH0642183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63298510A JPH0642183B2 (en) 1988-11-25 1988-11-25 Coordinated operation control system of reactive power compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63298510A JPH0642183B2 (en) 1988-11-25 1988-11-25 Coordinated operation control system of reactive power compensator

Publications (2)

Publication Number Publication Date
JPH02144616A true JPH02144616A (en) 1990-06-04
JPH0642183B2 JPH0642183B2 (en) 1994-06-01

Family

ID=17860652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63298510A Expired - Lifetime JPH0642183B2 (en) 1988-11-25 1988-11-25 Coordinated operation control system of reactive power compensator

Country Status (1)

Country Link
JP (1) JPH0642183B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012123450A (en) * 2010-12-06 2012-06-28 Mitsubishi Electric Corp Reactive power compensator
CN102545241A (en) * 2012-02-06 2012-07-04 保定市尤耐特电气有限公司 Multi-string SVC (Static Var Compensator) coordination control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012123450A (en) * 2010-12-06 2012-06-28 Mitsubishi Electric Corp Reactive power compensator
CN102545241A (en) * 2012-02-06 2012-07-04 保定市尤耐特电气有限公司 Multi-string SVC (Static Var Compensator) coordination control method

Also Published As

Publication number Publication date
JPH0642183B2 (en) 1994-06-01

Similar Documents

Publication Publication Date Title
DE69217109T2 (en) System for parallel operation of inverters
US5808462A (en) Apparatus for detecting the amplitude and phase of an a.c. signal
US4234842A (en) Voltage regulator and flicker compensator
JPH02144616A (en) Cooperative operation control system for reactive power compensating device
JPS6216022A (en) Semiconductor type current compensator
JPH09135535A (en) Static-type reactive power compensator
JPH03222016A (en) Control system for reactive power compensator
JP2000276243A (en) Controller for semiconductor switch
JPS6295618A (en) Reactive power compensating device
JPH0923585A (en) Control of reactive power compensation
JPS61156320A (en) Static reactive power compensator
TWI660553B (en) Faulty tolerant control method for delta-connected cascaded converters and device thereof
JPH0417570A (en) Voltage control method for inverter
JPH07212979A (en) Controller of flicker handling equipment
JPH0615115U (en) Control system of reactive power compensator
JPH0731301Y2 (en) Controller for reactive power compensator
JPS6162102A (en) Control arithmetic unit
SU957409A1 (en) Thyristor converter control method
JPS62118414A (en) Reactive power compensator
JPH0767255A (en) Control circuit for reactive power compensator
JPS6320514A (en) Control method for reactive power compensating device
JPS62138911A (en) Control method for reactive power compensating device
JPS61264416A (en) Control system for reactive power compensating device
JP3180999B2 (en) Inverter device
CN116545034A (en) Grid-connected current balance control method for inversion system with linear symmetrical load